
1

Build a TOY

2

Machine "Core" Dump

Machine contents at a particular place and time.
ν Record of what program has done.
ν Completely determines what machine will do.

0008 0005 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
8A00 8B01 1CAB 9C02 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

00:
08:
10:
18:
20:
28:
.
.
E8:
F0:
F8: 0000 0000 0000 0000 0000 0000 0000 0000

Main Memorypc
10

next
instruction

program

Registers

0000
R2

0000
R3

0000
R8

0000
R9

R0
0000
R1

0000
RA

0000
RB

0000

0000
R6

0000
R7

0000
RC

0000
RD

R4
0000
R5

0000
RE

0000
RF

0000

variables

data

3

TOY Reference Card

0: halt

#

1: add
2: subtract
3: and
4: xor
5: shift left
6: shift right
7: load addr

exit(0)
R[d] ← R[s] + R[t]
R[d] ← R[s] - R[t]
R[d] ← R[s] & R[t]
R[d] ← R[s] ^ R[t]
R[d] ← R[s] << R[t]
R[d] ← R[s] >> R[t]
R[d] ← addr

8: load
9: store
A: load indirect
B: store indirect
C: branch zero
D: branch positive
E: jump register
F: jump and link

R[d] ← mem[addr]
mem[addr] ← R[d]
R[d] ← mem[R[t]]
mem[R[t]] ← R[d]
if (R[d] == 0) pc ← addr
if (R[d] > 0) pc ← addr
pc ← R[d]
R[d] ← pc; pc ← addr

13 12 11 1015 14 7 69 8 6 4 1 03 25

opcode dest d addr
opcode dest d source s source t

Format 2
Format 1

Operation Pseudocode
1

Fmt

1
1
1
1
1
1
2
2
2
1
1
2
2
2
2

Register 0 always 0.
Loads from mem[FF] from stdin.
Stores to mem[FF] to stdout.

4

Useful TOY "Idioms"

Jump absolute.
ν Jump to a fixed memory address.

– branch if zero with destination
– register 0 is always 0

Register assignment.
ν No instruction that transfers contents of one register into another.
ν Pseudo-instruction that simulates assignment:

– add with register 0 as one of two source registers

No-op.
ν Instruction that does nothing.
ν Plays the role of whitespace in C programs.

– numerous other possibilities!

17: C014 pc ← 14

17: 1230 R[2] ← R[3]

17: 1000 no-op

5

addr

Load Address (a.k.a. Load Constant)

Load address. (opcode 7)
ν Loads an 8-bit integer into a register.
ν 7A30 means load the value 30 into register A.

Applications.
ν Load a small constant into a register.
ν Load a 8-bit memory address into a register.

– register stores "pointer" to a memory cell

1
13

1
12

1
11

0
10

0
15

1
14

0
7

?
6

1
9

0
8

0
6

1
4

0
1

0
0

0
3

0
2

1
5

716 A16 316 016
opcode dest d

a = 30;

Java code

6

0A: 0003 3
0B: 0009 9
0C: 0000 0
0D: 0000 0
0E: 0001 1

10: 8A0A RA ← mem[0A] a
11: 8B0B RB ← mem[0B] b
12: 8C0D RC ← mem[0D] c = 0
13: 810E R1 ← mem[0E] always 1
14: CA18 if (RA == 0) pc ← 18 while (a != 0) {
15: 1CCB RC ← RC + RB c = c + b
16: 2AA1 RA ← RA - R1 a = a - 1
17: C014 pc ← 14 }
18: 9C0C mem[0C] ← RC
19: 0000 halt

Multiply

loop

inputs

constants

output

multiply.toy

7

Function Call: A Failed Attempt

Goal: x × y × z.
ν Need two multiplications: x × y, (x × y) × z.

Solution 1: write multiply code 2 times.
Solution 2: write a TOY function.

A failed attempt:
ν Write multiply loop at 30-36.
ν Calling program agrees to store arguments

in registers A and B.
ν Function agrees to leave result in register C.
ν Call function with jump absolute to 30.
ν Return from function with jump absolute.

Reason for failure.
Need to return to a VARIABLE
memory address.

10: 8AFF
11: 8BFF
12: C030
13: 1AC0
14: 8BFF
15: C030
16: 9CFF
17: 0000
30: 7C00
31: 7101
32: CA36
33: 1CCB
34: 2AA1
35: C032
36: C013?

function?

8

Multiplication Function

Calling convention.
ν Jump to line 30.
ν Store a and b in registers A and B.
ν Return address in register F.
ν Put result c = a × b in register C.
ν Register 1 is scratch.
ν Overwrites registers A and B.

30: 7C00 R[C] ← 00
31: 7101 R[1] ← 01
32: CA36 if (R[A] == 0) goto 36
33: 1CCB R[C] += R[B]
34: 2AA1 R[A]--
35: C032 goto 32
36: EF00 pc ← R[F]

function.toy

return

opcode E
jump register

10: 8AFF
11: 8BFF
12: FF30
13: 1AC0
14: 8BFF
15: FF30
16: 9CFF
17: 0000
30: 7C00
31: 7101
32: CA36
33: 1CCB
34: 2AA1
35: C032
36: EF00

function

9

Multiplication Function Call

Client program to compute x × y × z.
ν Read x, y, z from standard input.
ν Note: PC is incremented before instruction is executed.

– value stored in register F is correct return address

10: 8AFF read R[A] x
11: 8BFF read R[B] y
12: FF30 R[F] ← pc; goto 30 x * y
13: 1AC0 R[A] ← R[C] (x * y)
14: 8BFF read R[B] z
15: FF30 R[F] ← pc; goto 30 (x * y) * z
16: 9CFF write R[C]
17: 0000 halt

function.toy (cont)
opcode F
jump and link

R[F] ← 16

R[F] ← 13

10

Function Call: One Solution

Contract between calling program and function:
ν Calling program stores function parameters in specific registers.
ν Calling program stores return address in a specific register.

– jump-and-link
ν Calling program sets PC to address of function.
ν Function stores return value in specific register.
ν Function sets PC to return address when finished.

– jump register

What if you want a function to call another function?
ν Use a different register for return address.
ν More general: store return addresses on a stack.

11

Fibonacci Numbers

Fibonacci rabbits: Beginning with a single pair of rabbits, if every
month each productive pair bears a new pair (which become productive
when one month old), how many rabbits after n months?

L. P. Fibonacci
(1170 - 1250)

12

Fibonacci Numbers

Fibonacci rabbits: Beginning with a single pair of rabbits, if every
month each productive pair bears a new pair (which become productive
when one month old), how many rabbits after n months?

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

L. P. Fibonacci
(1170 - 1250)

Fn =
0 if n = 0
1 if n =1
Fn−1 + Fn−2 otherwise

⎧

⎨
⎪

⎩ ⎪

13

Standard Output

Standard output.
ν Writing to memory location FF sends one word to TOY stdout.
ν 9AFF writes the integer in register A to stdout.

00: 0000 0
01: 0001 1

10: 8A00 RA ← mem[00] a = 0
11: 8B01 RB ← mem[01] b = 1

while(a > 0) {
12: 9AFF print RA print a
13: 1AAB RA ← RA + RB a = a + b
14: 2BAB RB ← RA - RB b = a - b
15: DA12 if (RA > 0) goto 12 }
16: 0000 halt

0000
0001
0001
0002
0003
0005
0008
000D
0015
0022
0037
0059
0090
00E9
0179
0262
03DB
063D
0A18
1055
1A6D
2AC2
452F
6FF1

fibonacci.toy

14

Standard Input

Standard input.
ν Loading from memory address FF loads one word from TOY stdin.
ν 8AFF reads in an integer from stdin and store it in register A.

Ex: read in a sequence of integers and print their sum.
ν In TOY, stop reading when user enters 0000.

while(!StdIn.isEmpty()) {
a = StdIn.readInt();
sum = sum + a;

}
System.out.println(sum);

00: 0000 0
10: 8C00 RC <- mem[00]
11: 8AFF read RA
12: CA15 if (RA == 0) pc ← 15
13: 1CCA RC ← RC + RA
14: C011 pc ← 11
15: 9CFF write RC
16: 0000 halt

00AE
0046
0003
0000
00F7

15

Standard Input and Output: Implications

Standard input and output enable you to:
ν Put information from real world into machine.
ν Get information out of machine.
ν Process more information than fits in memory.
ν Interact with the computer while it is running.

Information can be instructions!
ν Booting a computer.
ν Sending programs over the Internet.
ν Sending viruses over the Internet.

16

Arrays in TOY

TOY main memory is a giant array.
ν Can access memory cell 30 using load and store.
ν 8C30 means load mem[30] into register C.
ν Goal: access memory cell i where i is a variable.

Load indirect. (opcode A)
ν AC06 means load mem[R6] into register C.

Store indirect. (opcode B)
ν BC06 means store contents of register C into mem[R6].

for (int i = 0; i < N; i++)
a[i] = StdIn.readInt();

for (int i = 0; i < N; i++)
System.out.println(a[N-i-1]);

Reverse.java

a variable index

a variable index

17

TOY Implementation of Reverse

TOY implementation of reverse.
ν Read in a sequence of integers and store in memory 30, 31, 32, …
ν Stop reading if 0000.
ν Print sequence in reverse order.

10: 7101 R1 ← 0001 constant 1
11: 7A30 RA ← 0030 a[]
12: 7B00 RB ← 0000 n

while(true) {
13: 8CFF read RC c = StdIn.readInt();
14: CC19 if (RC == 0) goto 19 if (c == 0) break;
15: 16AB R6 ← RA + RB address of a[n]
16: BC06 mem[R6] ← RC a[n] = c;
17: 1BB1 RB ← RB + R1 n++;
18: C013 goto 13 }

read in the data

18

TOY Implementation of Reverse

TOY implementation of reverse.
ν Read in a sequence of integers and store in memory 30, 31, 32, …
ν Stop reading if 0000.
ν Print sequence in reverse order.

19: CB20 if (RB == 0) goto 20 while (n > 0) {
1A: 16AB R6 ← RA + RB address of a[n]
1B: 2661 R6 ← R6 – R1 address of a[n-1]
1C: AC06 RC ← mem[R6] c = a[n-1];
1D: 9CFF write RC System.out.println(c);
1E: 2BB1 RB ← RB – R1 n--;
1F: C019 goto 19 }
20: 0000 halt print in reverse order

19

TOY assembly

jl rd, addrjlF
jr rdjrE
bp rd, addrbpD
bz rd, addrbzC
sti rd, rtstiB
ldi rd, rtldiA
st rd, addrst9
ld rd, addrld8
lda rd, addrlda7
shr rd, rs, rtshr6
shl rd, rs, rtshl5
xor rd, rs, rtxor4
and rd, rs, rtand3
sub rd, rs, rtsub2
add rd, rs, rtadd1
hlthlt0

syntaxmnemonicopcode
ν Data directives
ν A DW n: initialize a variable A as n
ν B DUP n: reserve n words (n is DEC)
ν Support two types of literals,

decimal and hexadecimal (0x)
ν Label begins with a letter
ν Comment begins with ;
ν Case insensitive
ν Program starts with the first

instruction it meets

ν Some tricks to handle the starting
address 0x10

20

Assembler

Assembler’s task:
ν Convert mnemonic operation codes to their machine language

equivalents
ν Convert symbolic operands to their equivalent machine addresses
ν Build machine instructions in proper format
ν Convert data constants into internal machine representations (data

formats)
ν Write object program and the assembly listing

21

Forward Reference

Definition
ν A reference to a label that is defined later in the program

Solution
ν Two passes

– First pass: scan the source program for label definition, address
accumulation, and address assignment

– Second pass: perform most of the actual instruction translation

ν One-pass assemblers are used when
– it is necessary or desirable to avoid a second pass over the

source program
– the external storage for the intermediate file between two

passes is slow or is inconvenient to use
– Main problem: forward references to both data and instructions
– One simple way to eliminate this problem: require that all areas

be defined before they are referenced. It is possible, although
inconvenient, to do so for data items. Forward jump to instruction
items cannot be easily eliminated.

22

Assembly version of REVERSE

A DUP 32

lda R1, 1
lda RA, A
lda RC, 0

read ld RD, 0xFF
bz RD, exit
add R2, RA, RC
sti RD, R2
add RC, RC, R1
bz R0, read

exit jl RF, printr
hlt

int A[32];

i=0;
Do {
RD=stdin;
if (RD==0) break;

A[i]=RD;
i=i+1;

} while (1);

printr();

10: C020

20: 7101
21: 7A00
22: 7C00

23: 8DFF
24: CD29
25: 12AC
26: BD02
27: 1CC1
28: C023

29: FF2B
2A: 0000

23

Assembly version of REVERSE

; print reverse
; array address (RA)
; number of elements (RC)
printr sub RC, RC, R1

add R2, RA, RC
ldi RD, R2
st RD, 0xFF
bp RC, printr
bz RC, printr

return jr RF

printr()
{

do {
i=i-1;

print A[i];
} while (i>=0);

return;
}

toyasm < reverse.asm > reverse.toy

2B: 2CC1
2C: 12AC
2D: AD02
2E: 9DFF
2F: DC2B
30: CC2B
31: EF00

24

Horner's Method

Goal: evaluate 2x3 + 3x2 + 9x + 7 at x = 10.
ν Assume "data" stored in locations 30 - 34

– x a b c d
– 30: 000A 0002 0003 0009 0007 0000 0000 0000

First try:
ν Compute x3, multiply by a; compute x2, multiply by b, …

(cumbersome, inefficient)

Efficient algorithm (Horner's method):
ν Rewrite ax3 + bx2 + cx + d as ((a x + b) x + c) x + d.
ν Does polynomial evaluation for arbitrary x.
ν Many applications (e.g., convert from decimal to hex).
ν One raison d'être for early machines.

Converts from decimal to hex: 239710 = 95D16.

25

stack

STK_TOP DW 0xFF

; these procedures will use R8, R9
; return address is assumed to be in RE, instead of RF
; it is the only exception

; push RF into stack
push lda R8, 1

ld R9, STK_TOP
sub R9, R9, R8
st R9, STK_TOP
sti RF, R9
jr RE

stdin/stdoutFF

FE
stack

STK_TOP

data

code

26

stack

; pop and return [top] to RF
pop lda R8, 0xFF

ld R9, STK_TOP
sub R8, R8, R9
bz R8, popexit
ldi RF, R9
lda R8, 1
add R9, R9, R8
st R9, STK_TOP

popexit jr RE

; the size of the stack, the result is in R9
stksize lda R8, 0xFF

ld R9, STK_TOP
sub R9, R8, R9
jr RE

27

Procedure prototype

With stack, now, the procedure prototype is changed. It allows us to
have a deeper call graph by using stack.

mul

jr RF

code

mul jl RE, push

jl RE, pop
jr RF

code

before after

A()

call B

B()

call C

C()

A A

B

A

28

Linking

We will write a procedure horner, which will call multiply. Since multiply
will be used by many applications, could we make multiply a library?

Toyasm has an option to generate an object file so that it can be later
linked with other object files.

That is why we need linking. Write a subroutine mul3 which multiplies
three numbers in RA, RB, RC together and place the result in RD.
Three files:

ν stack.obj: implementation of stack, needed for procedure
ν mul.obj: implementation of multiplication.
ν multest.obj: main program and procedure of mul3

toylink multest.obj mul.obj stack.obj > multest.toy

29

object file (multest.obj)

A DW 3
B DW 4
C DW 5

; calculate A*B*C
main ld RA, A

ld RB, B
ld RC, C
jl RF, mul3
st RD, 0xFF
hlt

; RD=RA*RB*RC
; return address is in RF
mul3 jl RE, push

lda RD, 0
add RD, RC, R0
jl RF, mul
add RA, RC, R0
add RB, RD, R0
jl RF, mul
add RD, RC, R0

jl RE, pop
jr RF

30

object file (mul.obj)

SIXTEEN DW 16

; multiply RC=RA*RB
; return address is in RF
; it will modify R2, R3 and R4 as well
mul jl RE, push

lda RC, 0
lda R1, 1
ld R2, SIXTEEN

m_loop sub R2, R2, R1
shl R3, RA, R2
shr R4, RB, R2
and R4, R4, R1
bz R4, m_end
add RC, RC, R3

m_end bp R2, m_loop

jl RE, pop
jr RF

// size 29
// export 4
// SIXTEEN 0x00
// mul 0x10
// m_loop 0x14
// m_end 0x1A
// literal 2 17 18
// lines 14
00: 0010
10: FE00
11: 7C00
12: 7101
13: 8200
14: 2221
15: 53A2
16: 64B2
17: 3441
18: C41A
19: 1CC3
1A: D214
1B: FE00
1C: EF00
// import 2
// push 1 0x10
// pop 1 0x1B

export
table

import
table

need to fill in
address of push
once we know it

need to fill in
address of pop
once we know it

These are literals.
No need to relocate

31

Linking

multest.obj mul.obj

stack.obj

32

35

29

0x20

0x00

0x3Dpush 0x10
pop 0x16

mul 0x10

push 0x10
pop 0x1B

start address=0
start address
=0+32=0x20

start address
=32+29=0x3D

0x3D+0x10=0x4D
0x3D+0x16=0x53

32

Resolve external symbols

20: 0010
30: FE4D
31: 7C00
32: 7101
33: 8220
34: 2221
35: 53A2
36: 64B2
37: 3441
38: C43A
39: 1CC3
3A: D234
3B: FE53
3C: EF20

// size 29
// export 4
// SIXTEEN 0x00
// mul 0x10
// m_loop 0x14
// m_end 0x1A
// literal 2 17 18
// lines 14
00: 0010
10: FE00
11: 7C00
12: 7101
13: 8200
14: 2221
15: 53A2
16: 64B2
17: 3441
18: C41A
19: 1CC3
1A: D214
1B: FE00
1C: EF00
// import 2
// push 1 0x10
// pop 1 0x1B

export
table

import
table

need to fill in
address of push
once we know it

need to fill in
address of pop
once we know it

These are literals.
No need to relocate

33

Unsafe Code at any Speed

What happens if we make array start at 00 instead of 30?
ν Self modifying program.
ν Exploit buffer overrun and run arbitrary code!

10: 7101 R1 ← 0001 constant 1
11: 7A00 RA ← 0000 a[]
12: 7B00 RB ← 0000 n

while(true) {
13: 8CFF read RC c = StdIn.readInt();
14: CC19 if (RC == 0) goto 19 if (c == 0) break;
15: 16AB R6 ← RA + RB address of a[n]
16: BC06 mem[R6] ← RC a[n] = c;
17: 1BB1 RB ← RB + R1 n++;
18: C013 goto 13 }

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
8888 8810
98FF C011

Crazy 8s Input

34

Unsafe Code at any Speed

00: 0001 08: 0001
01: 0001 09: 0001
02: 0001 0A: 0001
03: 0001 0B: 0001
04: 0001 0C: 0001
05: 0001 0D: 0001
06: 0001 0E: 0001
07: 0001 0F: 0001
10: 8888
11: 8810
12: 98FF
13: C011 goto 11
14: CC19 if (RC == 0) goto 19 if (c == 0) break;
15: 16AB R6 ← RA + RB address of a[n]
16: BC06 mem[R6] ← RC a[n] = c;
17: 1BB1 RB ← RB + R1 n++;
18: C013 goto 13 }

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
8888 8810
98FF C011

Crazy 8s Input
X X X X X X X X
X X X X X X X X
XXXX XXXX
XXXX XXXX

data becomes code!

35

Buffer overrun.
ν Array buffer[] has size 100.
ν User might enter 200 characters.
ν Might lose control of machine behavior.
ν Majority of viruses and worms caused by

similar errors.

Robert Morris Internet Worm.
ν Cornell grad student injected worm into Internet in 1988.
ν Exploited buffer overrun in finger daemon fingerd.

Microsoft Windows JPEG bug. [September, 2004]
ν Step 1. User views malicious JPEG in Internet Explorer or Outlook.
ν Step 2. Machine is 0wned.
ν Data becomes code by exploiting buffer overrun in GDI+ library.

What Can Happen When We Lose Control (in C or C++)?

#include <stdio.h>
int main(void) {

char buffer[100];
scanf("%s", buffer);
printf("%s\n", buffer);
return 0;

}
unsafe C program

36

Assignment #2

Assigned: 10/23/2006
Due: 11/6/2006

You can write in either TOY assembly or TOY machine code
Part 1 (50%): write a procedure BCD to convert a hexadecimal number
into a BCD (Binary-Coded Decimal). The input number is placed in RA.
The result should be placed in RB. The return address is in RF. (Hint:
you need to implement division)

Part 2 (30%): write a procedure CNT0 to count 0’s in an array. The
address of the array is placed at RA. The size of the array is specified
by RC. The result should be placed in RB. The return address is in RF.

Part 3 (20%): write a program to read a series of numbers specified by
the user from stdin until the input is 0x0000. Count the number of 0-
bits in the input array and display this number using BCD in stdout.

