
Course overview

Computer Organization and Assembly Languages
Yung-Yu Chuang
2006/09/18

with slides by Kip Irvine

Logistics

• Meeting time: 9:10am-12:10pm, Monday
• Classroom: CSIE Room 102
• Instructor: Yung-Yu Chuang
• Teaching assistants: 謝毓庭/黃子桓

• Webpage:
http://www.csie.ntu.edu.tw/~cyy/assembly

id / password
• Forum:

http://www.cmlab.csie.ntu.edu.tw/~cyy/forum/viewforum.php?f=7

• Mailing list: assembly@cmlab.csie.ntu.edu.tw
Please subscribe via
https://cmlmail.csie.ntu.edu.tw/mailman/listinfo/assembly/

Prerequisites

• Programming experience with some high-level
language such C, C ++,Java …

Textbook

Assembly Language for
Intel-Based Computers,
5th Edition,
Kip Irvine

References

Computer Systems: A Programmer's
Perspective, Randal E. Bryant and David
R. O'Hallaron

The Art of Assembly Language, Randy
Hyde

Michael Abrash' s Graphics Programming
Black Book

•

Grading (subject to change)

• Assignments (50%)
• Class participation (5%)
• Midterm exam (20%)
• Final project (25%)

Computer Organization and Assembly language

• It is not only about assembly.
• I hope to cover

– Basic concept of computer systems and architecture
– x86 assembly language

Why taking this course?

• It is required.
• It is foundation for computer architecture and

compilers.
• At times, you do need to write assembly code.

“I really don’t think that you can write a book
for serious computer programmers unless you are
able to discuss low-level details.”

Donald Knuth

Reasons for not using assembly

• Development time: it takes much longer to
develop in assembly. Harder to debug, no type
checking, side effects…

• Maintainability: unstructured, dirty tricks
• Portability: platform-dependent

Reasons for using assembly

• Educational reasons: to understand how CPUs
and compilers work. Better understanding to
efficiency issues of various constructs.

• Making compilers, debuggers and other
development tools.

• Hardware drivers and system code
• Embedded systems
• Making libraries.
• Accessing instructions that are not available

through high-level languages.
• Optimizing for speed or space

To sum up

• It is all about lack of smart compilers

• Faster code, compiler is not good enough
• Smaller code , compiler is not good enough, e.g.

mobile devices, embedded devices, also
Smaller code → better cache performance →
faster code

• Unusual architecture , there isn’t even a
compiler or compiler quality is bad, eg GPU,
DSP chips, even MMX.

Syllabus (topics we might cover)
• IA-32 Processor Architecture
• Assembly Language Fundamentals
• Data Transfers, Addressing, and Arithmetic
• Procedures
• Conditional Processing
• Integer Arithmetic
• Advanced Procedures
• Strings and Arrays
• Structures and Macros
• High-Level Language Interface
• Real Arithmetic (FPU)
• SIMD
• Code Optimization

What you will learn

• Basic principle of computer architecture
• IA-32 modes and memory management
• Assembly basics
• How high-level language is translated to

assembly
• How to communicate with OS
• Specific components, FPU/MMX
• Code optimization
• Interface between assembly to high-level

language

Chapter.1 Overview

• Virtual Machine Concept
• Data Representation
• Boolean Operations

Translating Languages

English: Display the sum of A times B plus C.

C++:

cout << (A * B + C);

Assembly Language:
mov eax,A
mul B
add eax,C
call WriteInt

Intel Machine Language:
A1 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Virtual machines

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Abstractions for computers

High-Level Language

• Level 5
• Application-oriented languages
• Programs compile into assembly language

(Level 4)

cout << (A * B + C);

Assembly Language

• Level 4
• Instruction mnemonics that have a one-to-one

correspondence to machine language
• Calls functions written at the operating

system level (Level 3)
• Programs are translated into machine

language (Level 2)
mov eax, A
mul B
add eax, C
call WriteInt

Operating System

• Level 3
• Provides services
• Programs translated and run at the instruction

set architecture level (Level 2)

Instruction Set Architecture

• Level 2
• Also known as conventional machine language
• Executed by Level 1 program

(microarchitecture, Level 1)

A1 00000000
F7 25 00000004
03 05 00000008
E8 00500000

Microarchitecture

• Level 1
• Interprets conventional machine instructions

(Level 2)
• Executed by digital hardware (Level 0)

Digital Logic

• Level 0
• CPU, constructed from digital logic gates
• System bus
• Memory

Data representation

• Computer is a construction of digital circuits
with two states: on and off

• You need to have the ability to translate
between different representations to examine
the content of the machine

• Common number systems: binary, octal,
decimal and hexadecimal

Binary Representations

• Electronic Implementation
– Easy to store with bistable elements
– Reliably transmitted on noisy and inaccurate wires

0.0V

0.5V

2.8V

3.3V

0 1 0

Binary numbers

• Digits are 1 and 0
(a binary digit is called a bit)
1 = true
0 = false

• MSB –most significant bit
• LSB –least significant bit

• Bit numbering:

• A bit string could have different interpretations

015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0
MSB LSB

Unsigned binary integers

• Each digit (bit) is either 1 or 0
• Each bit represents a power of 2: 1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Every binary
number is a
sum of powers
of 2

Translating Binary to Decimal

Weighted positional notation shows how to
calculate the decimal value of each binary bit:

dec = (Dn-1 × 2n-1) + (Dn-2 × 2n-2) + ... + (D1 × 21) + (D0
× 20)
D = binary digit

binary 00001001 = decimal 9:

(1 × 23) + (1 × 20) = 9

Translating Unsigned Decimal to Binary

• Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value:

37 = 100101

Binary addition

• Starting with the LSB, add each pair of digits,
include the carry if present.

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

Integer storage sizes

byte

16

8

32

word

doubleword

64quadword

Practice: What is the largest unsigned integer that may be stored in 20 bits?

Standard sizes:

Large measurements

• Kilobyte (KB), 210 bytes
• Megabyte (MB), 220 bytes
• Gigabyte (GB), 230 bytes
• Terabyte (TB), 240 bytes
• Petabyte
• Exabyte
• Zettabyte
• Yottabyte

Hexadecimal integers

All values in memory are stored in binary. Because long
binary numbers are hard to read, we use hexadecimal
representation.

Translating binary to hexadecimal

• Each hexadecimal digit corresponds to 4 binary
bits.

• Example: Translate the binary integer
000101101010011110010100 to hexadecimal:

Converting hexadecimal to decimal

• Multiply each digit by its corresponding
power of 16:
dec = (D3 × 163) + (D2 × 162) + (D1 × 161) + (D0 × 160)

• Hex 1234 equals (1 × 163) + (2 × 162) + (3 × 161) + (4
× 160), or decimal 4,660.

• Hex 3BA4 equals (3 × 163) + (11 * 162) + (10 × 161)
+ (4 × 160), or decimal 15,268.

Powers of 16

Used when calculating hexadecimal values up to
8 digits long:

Converting decimal to hexadecimal

decimal 422 = 1A6 hexadecimal

Hexadecimal addition

Divide the sum of two digits by the number base
(16). The quotient becomes the carry value, and
the remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

Important skill: Programmers frequently add and subtract the
addresses of variables and instructions.

Hexadecimal subtraction

When a borrow is required from the digit to the
left, add 10h to the current digit's value:

C6 75
A2 47
24 2E

−1

Practice: The address of var1 is 00400020. The address of the next
variable after var1 is 0040006A. How many bytes are used by var1?

Signed integers

The highest bit indicates the sign. 1 = negative,
0 = positive

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

If the highest digit of a hexadecmal integer is > 7, the value is
negative. Examples: 8A, C5, A2, 9D

Two's complement notation

Steps:
– Complement (reverse) each bit
– Add 1

Note that 00000001 + 11111111 = 00000000

Binary subtraction

• When subtracting A – B, convert B to its two's
complement

• Add A to (–B)
1 1 0 0 1 1 0 0

– 0 0 1 1 1 1 0 1
1 0 0 1

Advantages for 2’s complement:
• No two 0’s
• Sign bit
• Remove the need for separate circuits for add

and sub

Ranges of signed integers

The highest bit is reserved for the sign. This limits
the range:

Character

• Character sets
– Standard ASCII(0 – 127)
– Extended ASCII (0 – 255)
– ANSI (0 – 255)
– Unicode (0 – 65,535)

• Null-terminated String
– Array of characters followed by a null byte

• Using the ASCII table
– back inside cover of book

IEEE Floating Point

• IEEE Standard 754
– Established in 1985 as uniform standard for floating

point arithmetic
• Before that, many idiosyncratic formats

– Supported by all major CPUs
• Driven by Numerical Concerns

– Nice standards for rounding, overflow, underflow
– Hard to make go fast

• Numerical analysts predominated over hardware
types in defining standard

Fractional Binary Numbers

• Representation
– Bits to right of “binary point” represent fractional

powers of 2
– Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •

•••

1/2
1/4
1/8

2–j

bk ⋅2
k

k=− j

i
∑

Binary real numbers

• Binary real to decimal real

• Decimal real to binary real

4.5625 = 100.10012

Frac. Binary Number Examples

•Value Representation
5-3/4 101.112
2-7/8 10.1112
63/64 0.1111112

•Value Representation
1/3 0.0101010101[01]…2
1/5 0.001100110011[0011]…2
1/10 0.0001100110011[0011]…2

0 100 0001 1 011 1110 1100 1100 1100 1100

IEEE floating point format

• IEEE defines two formats with different
precisions: single and double

23.85 = 10111.1101102=1.0111110110x24

e = 127+4=83h

IEEE floating point format

special values

IEEE double precision

Denormalized numbers

• Number smaller than 1.0x2-126 can’t be
presented by a single with normalized form.
However, we can represent it with
denormalized format.

• 1.0000..00x2-126 the least “normalized” number
• 0.1111..11x2-126 the largest “denormalized”

numbr
• 1.001x2-129=0.001001x2-126

Summary of Real Number Encodings

NaNNaN

+∞−∞

−0

+Denorm +Normalized-Denorm-Normalized

+0

(3.14+1e20)-1e20=0
3.14+(1e20-1e20)=3.14

Representing Instructions
int sum(int x, int y)
{

return x+y;
}

Different machines use totally different
instructions and encodings

– For this example, Alpha &
Sun use two 4-byte
instructions

• Use differing numbers of
instructions in other cases

– PC uses 7 instructions
with lengths 1, 2, and 3
bytes

• Same for NT and for Linux
• NT / Linux not fully binary

compatible

E5
8B

55
89

PC sum

45
0C
03
45
08
89
EC
5D
C3

00
00
30
42

Alpha sum

01
80
FA
6B

E0
08

81
C3

Sun sum

90
02
00
09

Machine Words

• Machine Has “Word Size”
– Nominal size of integer-valued data

• Including addresses
– Most current machines use 32 bits (4 bytes) words

• Limits addresses to 4GB
• Becoming too small for memory-intensive

applications
– High-end systems use 64 bits (8 bytes) words

• Potential address space ≈ 1.8 X 1019 bytes
– Machines support multiple data formats

• Fractions or multiples of word size
• Always integral number of bytes

Word-Oriented Memory Organization

• Addresses Specify Byte
Locations
– Address of first byte in

word
– Addresses of successive

words differ by 4 (32-
bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Data Representations

• Sizes of C Objects (in Bytes)
– C Data Type Alpha (RIP) Typical 32-bit Intel IA32

• unsigned 4 4 4
• int 4 4 4
• long int 8 4 4
• char 1 1 1
• short 2 2 2
• float 4 4 4
• double 8 8 8
• long double 8/16† 8 10/12
• char * 8 4 4

– Or any other pointer

(†: Depends on compiler&OS, 128bit FP is done in software)

Byte Ordering

• How should bytes within multi-byte word be
ordered in memory?

• Conventions
– Sun’s, Mac’s are “Big Endian” machines

• Least significant byte has highest address
– Alphas, PC’s are “Little Endian” machines

• Least significant byte has lowest address

Byte Ordering Example

• Big Endian
– Least significant byte has highest address

• Little Endian
– Least significant byte has lowest address

• Example
– Variable x has 4-byte representation 0x01234567
– Address given by &x is 0x100

0x100 0x101 0x102 0x103
01 23 45 67

0x100 0x101 0x102 0x103
67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Boolean algebra

• Boolean expressions created from:
– NOT, AND, OR

NOT

• Inverts (reverses) a boolean value
• Truth table for Boolean NOT operator:

NOT

Digital gate diagram for NOT:

AND

• Truth if both are true
• Truth table for Boolean AND operator:

AN D

Digital gate diagram for AND:

OR

• True if either is true
• Truth table for Boolean OR operator:

O R

Digital gate diagram for OR:

Operator precedence

• NOT > AND > OR
• Examples showing the order of operations:

• Use parentheses to avoid ambiguity

Implementation of gates Implementation of gates

Implementation of gates

• Fluid switch (http://www.cs.princeton.edu/introcs/lectures/fluid-computer.swf)

Truth Tables (1 of 3)

• A Boolean function has one or more Boolean
inputs, and returns a single Boolean output.

• A truth table shows all the inputs and outputs
of a Boolean function

Example: ¬X ∨ Y

Truth Tables (2 of 3)

• Example: X ∧ ¬Y

Truth Tables (3 of 3)

• Example: (Y ∧ S) ∨ (X ∧ ¬S)
mux

X

Y

S

Z

Two-input multiplexer

