Computer Organization and Assembly
Languages Term Report

B93902043 ZL5HF

January 17, 2006

1 Preface

Since my first semester in university, I have taken on an interest in the in-
ner workings of operating systems and computer architectures. During this
semester, having taken this course and a course on operating systems, I have
learned a great deal on things such as virtual memory and paging. However,
the projects we’ve done in the operating system course concentrates more
on the way things should work (an simulation written in C++), instead of
how they work physically. In doing this report, I wish to extend my knowl-
edge of how modern operating systems utilize hardware features imeplement
virtual memory. This report will focus on x86 architecture proteced mode,
segmentation and paging.

2 Brief History of the x86 Architecture

The x86 architecture started with the release of the 8086 processor. Since
then, it has recieved many updates, while being backward compatible. Many
have critisised this decision, pointing out that the x86 architecture is filled
with relics from old time. Throughout the years, the x86 architecture has
been upgraded many times: protected mode was added in 80286; 32-bit ar-
chitecture and paging support in 80386; superscaler architecture in Pentium;
SIMD instruction sets MMX, SSE, SSE2, SSE3.



3 Real Mode and Protected Mode Basics

In the early days of 8086 and 8088, the processors only supported real mode.
Then, 16-bit protected mode was provided by the 80286, but was rarely used
because existing code would not run and the instability in switching to and
from protected mode. Thus we will not discuss it here. All future refer-
ences of protected mode will refer to 32-bit protected mode on 80386s
or higher. With the release of the new 32-bit 80386, and the addition of a
paging unit, 32-bit proteced mode became popular now that virtual memory
techniques were supported and the addressing space expanded.

3.1 Real Mode

In real mode, all access to memory is segmented. There are 4 ~ 6 segment
registers (CS, DS, SS, and ES; FS and GS were added later on). Logical
memory address have the form segment:offset. Each segment has a size
of 64 KB. Every type of access has a default segment register, while data
accesses can explicitly specify one as well. The segment is shifted left by 4
bits, then added to the offset to give a 20-bit physical address. In real mode,
the processor can address as much as 22° bytes, or 1 MB. With this addressing
scheme, two different logical addresses can point to the same physical address,
which can become an obstacle when tracing code.

3.2 Protected Mode

In protected mode, many features provide support for multitasking, such as
memory protection, paging, and hardware virtual memory support. Mem-
ory protection is provided by segmentation and paging units. Paging also
provides the ability to remap memory access. Protected mode also allows
access beyond 1 MB, up to 4 GB. Logical addresses are converted to linear
addresses by the segmentation unit, then converted to physical addresses by
the paging unit. The segment size in protected mode can be 1~1M bytes or
4K~4G bytes. Segment registers now contain an index to a descriptor table
holding information on all segments.

4 Memory Addresses

In the x86 architecture, we have three kinds of memory addresses:

2



Logical Addresses are addresses used throughout programs to specify the
address of instructions and operands. Each logical address consists of
a segment and an offset. The offset denotes the distance from the start
of the segment

Linear Addresses are 32-bit unsigned integers that can be used to address
up to 4 GB, from 0 ~ 232 — 1.

Physical Addresses are 32-bit unsigned integers which correspond to elec-
trical signals sent along the CPU’s memory address bus. They are used
to address memory cells on memory chips.

n TATION ; A n
i) SEGMm” 0 ; : PU?JII'%G Physical add

Figure 1: Logical Address Translation

5 Segmentation

5.1 Segmentation Registers

In protected mode, a logical address consists of a 16-bit segment selector
and a 32-bit offset. Usually the CPU uses the segment registers to store the
segment selectors for convenience. Some of the segment registers have special
meanings:

cs The code segment register, which points to a segment containing in-
structions.

ss The stack segment register, which points to a segment with the stack.

ds The data segment register, which points to a segment with data.

The cs register also contains a 2-bit field that specifies the Current Priv-
ilege Level (CPL). 0 denotes the highest privilege, while 3 denotes the lowest
one.



5.2 Segment Descriptors

A segment is represented by a segment descriptor, which is stored in the
Global Descriptor Table (GDT) or the Local Descriptor Table (LDT). The
segment selector is basicly an index to the descriptor table.

Data Segment Descriptor
G162 61 60 9% 58 57 56 55 54 53 52 50 S0 49 43 47 46 45 44 43 47 41 40 39 30 37 36 5 M 1 1
Al uwm 0
BASE24-31) GIB|O|Y]| pgam || P |=| TYPE BASE [16-23}
] L 11
BASE(0-15) LIMIT {0-15)
M BOMHBMBENNWEIT B EBENW N E T s S 430
Code Segment Descriptor
61 G2 &1 600 59 5B 57 56 55 54 51 57 51 S0 49 &3 47 46 a5 44 43 47 41 40 30 W ONF 36 M5 M M3 12
A T Do|s
BASE24-31) GID|O|Y| ig1my |T1| P |=| TYPE BASE [16-23)
] L 11
BASE(0-15) LIMIT {0-15)
EE U R LR U I R I AR R IR R AR TR EAR CRR EUR PR 1 HR I T T A S T I B B
System Segment Descriptor
G162 61 60 9% 58 57 56 55 54 53 52 50 S0 49 43 47 46 45 44 43 47 41 40 39 30 37 36 5 M 1 1
LIsIT b|s
BASE24-31) G| |0 me1m (1| B [=| TYeE BASE [16-23}
L 1o
BASE(0-15) LIMIT {0-15)

NAVHBELN RN ARDNWTBET BTN W 98 76 543 210
Figure 2: Segment Descriptor format

Normally, only one GDT is defined, while each process may have its own
LDT if it needs to create additional segments. The address of the GDT is
stored in the GDTR register, and LDT in the LDTR register.

A segment descriptor has the following fields:

A 32-bit Base that contains the linear address of the beginning of the
segment.

e A @ Granularity flag. If it is set, the segment size is measured in units
of 4KB; otherwise the unit is bytes.

A 20-bit Limit field that denotes the size of the segment. A segment
of size 0 is considered null.

An § system flag, which indicates whether the segment is used to store
system structures.

A 4-bit Type field. The following list shows commonly used types.

4



— Code Segment Descriptor
Indicates the segment descriptor refers to a code segment. The S
flag is set. It can be used in both the GDT and LDT.

— Data Segment Descriptor
Indicates the segment refered to is a data segment. Stack segments
are implemented with this type as well. It can be used in both
the GDT and LDT.

— Task State Segment Descriptor (TSSD)
Indicates a Task State Segment — a segment that is used to save
the contents of the processors registers. It can only be used in the
GDT. Ths S flag is set to 0.

— Local Descriptor Table Descriptor
Indicates a LDT. It can only be used in the GDT. The S flag is set
to 0.

A 2-bit DPL (Descriptor Privilege Level) field used to limit access.
It represents the minimal CPL (refer to previous section) required to
access the segment.

A Segment-Present flag indicating whether the segment is currently in
main memory.

A flag named D or B, depending on the segment type.

A reserved bit.

An AVL flag that may be freely used.

The Segment Selector, which is 16-bits long, includes the following
fields:

e A 13-bit index to the GDT or LDT

e A TI (Table Identifier) flag that specifies whether the descriptor is in
the GDT or LDT.

e An 2-bit RPL (Requester Privilege Level) field, which is set to the CPL
when the cs register was loaded.

Since a segment descriptor is 8 bytes long, the relative address in the de-
scriptor table is obtained by shifting the index field of the selector by 3.



5.3 Fast Access

To speed up address translation, the processor has 4 ~ 6 non-programmable
registers to store the segment descriptors — one for each segment register.
When a segment register is loaded, the corresponding segment descriptor is
also loaded. All following address translations use the descriptor stored in
the register; the GDT and LDT are only used when the segment registers are
altered.

Descriptar Table Seqmeant
s kY e - e aaseisaniia, "

Segment H
Descriptor

—

Segmentation Register

Segment Selector

Wonprogrammable fegister \
/ ------ ‘

Figure 3: Segment Selector and Segment Descriptor

5.4 Segmentation Unit

The segmentation unit performs the following operations when it receives a
logical address:

e Check the TI field to determine which descriptor table should be used.

e Computes the address of the segment descriptor from the index field
and the GDTR/LDTR.

e Adds the offset of the logical address to the Base field of the segment
descriptor. The result is the linear address.

Because of the non-programmable registers storing the segment descriptors,
the first two operations are seldomly done.

6 Paging

The paging unit translate linear addresses into physical addresses. It checks
the requested access against the access rights of the linear page. If the request



[escriptar Table Segment
'l N g - e eemniannn -

Segment H
Descriptor

| —

Segmentation Register

Segment Selector

Honprogrammable Fegister \
/ ------ i

Figure 4: Translating a logical address

is not valid, it generates a Page Fault exception, which is processed by the
operating system.

For efficiency, linear addresses are grouped in fixed-length units called
pages; likewise, physical memory is divided into units that are the same size
as pages, called page frames or physical pages.

The data structures storing the mapping between linear and physical
addresses are called page tables. They are stored in main memory and must
be initialized before enabling paging.

Paging is enabled by setting the PG flag in the control register CRO.
When paging is not enabled, linear addresses are treated as physical ad-
dresses.

6.1 Normal Paging

The normal page size in the x86 architecture is 4KB. The 1linear address
is split into 3 portions:

e Directory
The 10 most significant bits represent the index in the page directory,
which indicates a page table.

e Table
The 10 intermediate bits represent the index in the page table, which
indicates the page frame.

o Offset
The 12 least significant bits represent the offset in the given page
frame.



The translation is done in two steps, the first using the page directory,
and the second using the page table.

The goal of this two-level paging scheme is to reduce the amount of RAM
needed for per-process page tables, and to fit the page table in a page
frame. Each page table entry is 4 bytes long. If one-level paging was used,
then it would require 22° entries, which sums up to 4MB of RAM, to rep-
resent the whole 4GB address space, even if only a small portion is used.
With two-level paging, second level page tables are only required when the
corresponding virtual addresses are used. The page directory is required
for every process.

The physical address of the base of the page directory is set in the
register CRS3. The linear address’s directory field determines the entry in
the page directory that points to the appropriate page table. The table
field then determines the entry in the given page table that points to correct
page frame. Since the offset field is 12 bits long, it corresponds to a page
size of 4KB.

Lirenr Address
3 2 1 13 11 0
I DIRECTORY TABLE OFFSET
Page
Page Table
'
Fage Diectary ==
0_.. J_.\_J
i
N

Figure 5: Paging by x86 processors

6.2 Page Tables

The entries of Page Directories and Page Tables have the same structure.
Each entry consists of the following fields:

e Present flag
If set, the referred-to page or page table is in main memory. If not,

8



the remaining bits are at the discretion of the operating system. If
the paging unit encounters an entry with the present flag cleared, it
stores the linear address in the CR2 control register, and generates
a Page Fault exception.

Field containing the 20 most significant bits of a page frame physical
address

Since each page frame is 4KB in size, the 12 least significant bits of the
physical address must be 0. The page frame contains a page of data
or apage table.

Accessed flag

This flag is set each time the entry is looked up by the paging unit.
It may be used by the operating system to track page frame usage, to
implement optimal page replacement. The paging unit never resets
the flag.

Dirty flag

This flag is set each time a write operation is done on the corresponding
page frame. It may be used by the operating system to track page
usage, just as the Accessed flag. It is also not reset by the paging
unit.

Read/Write flag
Specifies the access rights of the page or page table.

User/Supervisor flag
Specifies the privilege level required to access the page or page table.

PCD and PWT flags
Controls the way the page or page table is handled by the caching
hardware.

Page Size flag
Applies only to page directory entries. If set, the entry refers to a 4
MB jumbo page frame.

Global flag

Applies only to page table entries. This flag was introduced in the
Pentium Pro to prevent frequently used pages from being flushed from
the TLB cache. It works only if the Page Global Enable (PGE) flag in
the CR4 control register is set.



6.3 Extended Paging

FExtended Paging is enabled by setting the PSFE flag in the CR4 control regis-
ter. Extended paging is used to map large contiguous linear addresses onto
corresponding physical ones. With this mechanism, RAM usage is reduced
since there is no intermediate page table. It also saves TLB entries.

If the page size flag is set in a page directory entry, then the paging
unit splits the linear address into two fields:

e Directory
The most significant 10 bits.

o Offset
The remaining 22 bits.

Page Directory entries for extended paging are the same as for normal
paging, except that:

e The page size flag is set.

e Only the 10 most significant bits of the physical address field are used.

Limear Acdress
31 nn ]
DIRECTORY OFFSET
4 M8 Page
Page Divectary
[z]
N

Figure 6: Extended Paging

6.4 Hardware Protection

The paging unit uses a different protection scheme from the segmentation
unit. While a segment has four possible privilege levels, only two privilege

10



levels are associated with pages and page tables, because privileges are
controlled by the User/Supervisor flag mentioned earlier. When this flag is
cleared, the page can be addressed only when the CPL is less than 3. When
the flag is set, the page can always be addressed.

Furthermore, instead of the three types of access rights (Read, Write, and
Execute) associated with segments, only two types of access rights (Read and
Write) are associated with pages. If the Read/Write flag of a Page Directory
or Page Table entry is equal to 0, the corresponding Page Table or page can
only be read; otherwise it can be read and written.

Any illegal access will result in a Page Fault exception.

6.5 Hardware Cache Control

The CD flag of the CRO control register is used to enable or disable the
cache circuitry. The NW flag, in the same register, specifies whether the
write-through! or the write-back? strategy is used for the caches.

Another interesting feature of the Pentium cache is that it lets an oper-
ating system associate a different cache management policy with each page
frame, which is controled by the two page table entry flags:

e PCD (Page Cache Disable)
Specifies whether the cache must be enabled or disabled while accessing
data included in the page frame.

e PWT (Page Write-Through)
Specifies whether the write-back or the write-through strategy must be
applied while writing data into the page frame.

6.6 Translation Lookaside Buffers (TLB)

Besides general-purpose caches, x86 processors include caches called Transla-
tion Lookaside Buffers (TLB) to speed up linear address translation. When a
linear address is used for the first time, the corresponding physical address is
computed through slow accesses to the page tables in RAM. The physical

'The cache controller always writes into both RAM and the cache
2Qnly the cache line is updated and the contents of the RAM are left unchanged. The
RAM is updated later on.

11



address is then stored in a TLB entry so that further references to the same
linear address are quickly translated.

When the CR3 control register is modified, the hardware automatically
invalidates all entries of the TLB.

7 Entering Protected Mode

Entering protected mode on a 386 or higher processor is quite simple. The
following steps are required:

e Build the GDT
Enable A203

Set the PE (protection enable) bit in the CRO control register

Setup segment registers with valid selectors

Flush the processor’s instruction prefetch queue by executing a JMP
instruction

8 Exiting Protected Mode

Exiting protected mode on a 386 or higher processor requires the following
steps:

e Load the segment registers with real-mode compatible values

e Clear the PE (protection enable) bit in the CRO control register
e Execute a far jump

e Load the segment registers as needed by the real mode code

e Inhibit A20 from the address bus (gate A20 off)

3The 21st addressing pin of the processor, disabled by default for compatibility reasons

12



9 References

Understanding the Linux Kernel, 2nd Edition By Daniel P. Bovet,
Marco Cesati

http://my.execpc.com/ geezer/os/

http://www.online.ee/ andre/i80386/

http://x86.ddj.com/articles/pmbasics/tspec_al_doc.htm

13



