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1 Introduction

We will introduce three theories that formulate the static description and
dynamic evolution of quantum physics from the viewpoint of information.
The first two theories study the possible information structures of quantum
mechanics, the last one is the basis of quantum information theory. The
informational viewpoint is also the viewpoint of measurement, since we gain
information only by the act of measurement or observation. All refutable
theories involving physical phenomenon are dependent on measurement re-
sults. We can even state that all physical phenomenon arises from the act of
measurement or observation, this is the central concept of this work.

Classical physics holds the assumption that physical phenomenon have
a reality independent of observation, and that any observer can perform
measurements with arbitrary accuracy. Regarding the first point, we note
that all useful physical theories (theories that can predict future physical
states) are facts about measurement results, hence they can be verified or
refuted by measurement. This means that physical theories need not have
an existence independent of conscious measurement or observation, and that
such an assumption is neither provable nor useful, and hence is unnecessary.
Once we accept this, we realize that all theories are just models constructed
by our minds to account for what we preceive in nature. That is, there are no
“correct” physical theory, only theories that are more useful, or make better
predictions about measurement results, the “reality” of a physical theory is
meaningless.

To discuss the second point stated earlier, we have to construct a “model”
for the act of observation. We take currently the most “accurate” physical
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theory - quantum physics as the basis for the discussion. When we observe
the position of an object, that object is no longer where we observed it,
because the photon our eyes received gave it momentum. This means that
there are no passive observation, all physical acts are interactions of some
kind; as soon as we observe something, we change its physical state. So we
say that measurements to infinite accuracy is not impossible, but rather the
concept doesn’t have any meaning (in our model of reality); in the physical
world, there is no observation, only interaction. This is the viewpoint of
quantum physics, and also the viewpoint adapted here. We will take the
uncertainty of the measurement process as a starting point, and demostrate
how to derive physical theories from it.

2 Information in the Measurement Process -

Fisher Information

2.1 Measurement

We will now start with a description of the classical measurement process.
Measuring a physical system means estimating the value of some of its phys-
ical parameters by data obtained from the system. Let the ideal value of
the parameter we are trying to estimate be θ, we obtain N data values
y ≡ {y1, y2, . . . , yN}, the values of which are determined by conditional prob-
ability p(y|θ). This conditional probability represents the intrinsic physical
properties of the measured parameter.

Let the relationship between ideal value and measured data be

y = θ + x, (1)

where x ≡ {x1, x2, . . . , xN} represents the measurement uncertainty, or data
fluctuations. We can define an estimator θ̂(y) for θ based on the obtained
data y. A possible estimator is the sample mean θ̂(y) = 1

N

∑
n yn.

Here we step beyond classical physics, and interpret x as a physical quan-
tity intrinsic to the parameter θ, and independent of the measurement pro-
cess. This means that x represents the uncertainty of the parameter when it
is observed, and its values are not dependent on the measurement methods
used or measurement errors encountered; it is an intrinsic physical prop-
erty of the measured parameter. So x is the measurement uncertainty, not
measurement error; it is a physical quantity independent of measurement,
but manifested only by the measurement process (it has an “experimental
reality”, though it may not be “real”).
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If we accept that the uncertainty x of a parameter θ has physical meaning,
then y, θ, and x form a closed, physically isolated system.

2.2 The Cramer-Rao Inequality

We assume that the estimator θ̂(y) is unbiased, that is,〈
θ̂(y)− θ

〉
≡
∫
dy
[
θ̂(y)− θ

]
p(y|θ) = 0, (2)

where dy ≡ dy1dy2 . . . dyN . Here p(y|θ) is the conditional probability distri-
bution of the parameter’s fluctuation, or uncertainty, given that the value of
the parameter is θ. Operating by ∂

∂θ
on both sides of equation (2), we get∫

dy
(
θ̂(y)− θ

) ∂p(y|θ)
∂θ

−
∫
dyp(y|θ) = 0. (3)

The second term on the left is 1, using ∂p
∂θ

= p∂ ln p
∂θ

, we have∫
dy
(
θ̂(y)− θ

) ∂ ln p(y|θ)
∂θ

p(y|θ) = 1. (4)

Separate the integrand∫
dy

[
∂ ln p(y|θ)

∂θ

√
p(y|θ)

] [(
θ̂(y)− θ

)√
p(y|θ)

]
= 1 (5)

and square both sides, from the Schwarz inequality we get∫ dy

(
∂ ln p(y|θ)

∂θ

)2

p(y|θ)

 [∫ dy
(
θ̂(y)− θ

)2
p(y|θ)

]
≥ 1. (6)

The first term on the left of eq. (6) is defined as the Fisher information I for
(the measurement of) the parameter θ,

I(θ) ≡
∫
dy

(
∂ ln p(y|θ)

∂θ

)2

p(y|θ) =
∫
dy

1

p(y|θ)

(
∂p(y|θ)
∂θ

)2

, (7)

and the second term is the mean-squared error for the estimator θ̂(y)

e2 ≡
∫
dy
(
θ̂(y)− θ

)2
p(y|θ) =

〈(
θ̂(y)− θ

)2
〉
. (8)

Thus we have the Cramer-Rao inequality

e2I ≥ 1. (9)
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This inequality holds for any measurement using unbiased estimates of the
measured parameter, it establishes the relationship between the Fisher in-
formation and mean-squared error of any measurement. As the estimation
error increases, the Fisher information decreases, so the Fisher information
can be seen as a measure of information. Moreover, because the estimation
errors come only from x, which is an intrinsic property of the parameter, the
Fisher information represents the quality of measurement attainable when
there is no measurement errors or human mistakes, its value depends only
on the parameter and the measured system.

2.3 The Special Case of Shift-Invariance

Assume that we take only one data value, N = 1, and p(y|θ) = p(y|θ). If

p(y|θ) = p(y − θ) = p(x), (10)

which means that the fluctuation of the data value y relative to the ideal
value θ is independent of the value of θ, we call this property shift-invariance.
Under this condition the fluctuation (or uncertainty) x is independent of the
value of θ, hence the Fisher information is also indenpendent of θ (in three
dimensions we call this Galilean invariance, invariance of physical laws to
changes of reference point). Since ∂

∂θ
= − ∂

∂(y−θ)
, the Fisher information can

be written as

I =
∫
dy

1

p(y − θ)

[
∂p(y − θ)
∂(y − θ)

]2

=
∫
dx

1

p(x)

[
dp(x)

dx

]2

. (11)

So we can calculate the uncertainty and Fisher information of parameter θ
without knowing its ideal value. When a parameter satisfies shift-invariance,
no matter what its ideal value, the fluctuations observed in measurements are
the same. To simplify the discussion, we will assume all parameters satisfy
this property.

2.4 Probability Amplitude Functions

In eq. (11) the term 1
p(x)

would diverge when p(x) → 0, we can define real

probability amplitude functions q(x) to avoid this problem:

p(x) = q2(x). (12)

Using this in eq. (11) we have

I = 4
∫
dx

(
dq(x)

dx

)2

(13)
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2.5 Extension to Vectors and Multi-Dimensions

Under the framework of relativity, physical quantities are four-vectors such as
x ≡ (x, y, z, t), we will define a scalar Fisher information for the measurement
of multiple four-vectors.

Suppose we are measuring N four-vector parameters of a physical system,
these four-vectors can represent any physical attribute of the system. We
obtain the data

yn = θn + xn, n = 1, . . . , N (14)

where yn ≡ (yn1, yn2, yn3, yn4), θn ≡ (θn1, θn2, θn3, θn4), and xn ≡ (xn1, xn2, xn3, xn4)
are all four-vectors, they are the obtained data, ideal value, and fluctuation
of the parameters respectively. For notational simplicity, we also define grand
vectors

θ ≡ (θ1,θ2, . . . ,θN)

y ≡ (y1,y2, . . . ,yN) (15)

dy ≡ dy1dy2 . . . dyN ,

where dyn ≡ dyn1dyn2dyn3dyn4. If the measurement consists of the same
physical four-vector parameter measured N times, or N particles sufficient
distance apart measured for the same physical quantity, then measurement
of the individual four-vectors are independent, and yn represents the data of
the n-th measurement, or the n-th particle.

We assume that all estimators θ̂n(y) on θn are unbiased, so that〈
θ̂n(y)

〉
≡
∫
dyθ̂n(y)p(y|θ) = θn, n = 1, . . . , N (16)

Using the mean-squared error of the four components of each four-vector,
we can derive the Cramer-Rao inequality for each of them. Since the Fisher
information is additive [1], we get the scalar Fisher information for the mea-
surement

I ≡
∑
n

∫
dyp(y|θ)

∑
ν

(
∂ ln p(y|θ)

∂θnν

)2

(17)

If we assume independence between measurements of all four-vectors, then

p(y|θ) =
∏
n

pn(yn|θ) =
∏
n

pn(yn|θn). (18)

So that

∂ ln p(y|θ)

∂θnν

=
∑
m

∂ ln pm(ym|θm)

∂θnν

=
1

pn(yn|θn)

∂pn(yn|θn)

∂θnν

. (19)
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Using eq. (18) and eq. (19) to simplify the Fisher information eq. (17), we
have

I =
∑
n

∫
dyn

1

pn(yn|θn)

∑
ν

(
∂pn(yn|θn)

∂θnν

)2

. (20)

For shift-invariant four-vectors

pn(yn|θn) = pn(yn − θn) = pn(xn) (21)

the Fisher information can be further simplified to

I =
∑
n

∫
dxn

1

pn(xn)

∑
ν

(
∂pn(xn)

∂xnν

)2

. (22)

Using probability amplitudes qn(xn), we have

I = 4
∑
n

∫
dxn

∑
ν

(
∂qn(xn)

∂xnν

)2

, pn(xn) = q2
n(xn). (23)

Finally, if all the parameters θn’s represent the same physical quantity, then
all fluctuations xn are equivalent, we can then drop the subscript n on xn

and get

I = 4
∑
n

∫
dx
∑
ν

(
∂qn(x)

∂xν

)2

, (24)

where x ≡ (x1, x2, x3, x4) is the uncertainty of each four-vector.

2.6 Total Probability Function

If the measurement in the previous section is N measurements for the same
four-vector parameter of the same particle, then each xn represents the same
physical quantity’s n-th measurement result. Since there is only one param-
eter being measured, we can set

pn(yn|θn) = pn(y|θn) = pxn(x|θn) = q2
n(x). (25)

The probability of measuring any of the θn’s is equal, so the total probability
(or net probability) function of the fluctuation four-vector x is

p(x) =
N∑

n=1

pxn(x|θn)P (θn) =
1

N

N∑
n=1

q2
n(x). (26)
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3 Derivation of Physical Laws by EPI

3.1 The Basics

The principle of EPI (extreme physical information) by B. Roy Frieden [1]
rests on the assumption that the act of measurement (or observation) pro-
duces the physical laws.

The hierarchy of physical knowledge according to EPI consists of four
layers. The topmost laws are:

1. The Fisher I-theorem. The Fisher information monotonically de-
creases with time. Like entropy, I can be transferred from one system
to another.

2. Bound information J. There is an information bound J intrinsic
to each physical phenomenon. The information J represents an upper
limit to the information gained in measurement.

3. Invariance principle. There is an invariance, or symmetry principle
governing the time evolution of each physical phenomenon.

These laws exist prior to and independent of any explicit measurements, that
is, they govern all physical phenomenon. At the next level we have the three
axioms describing the measurement process:

Axiom 1. The conservation of information perturbation, δI = δJ ,
during a measurement.

Axiom 2. The existence of information densities in(x) and jn(x) de-
fined as

I ≡
∫
dx
∑
n

in(x) and J ≡
∫
dx
∑
n

jn(x), (27)

where in(x) = 4∇qn · ∇qn = 4
∑

ν

(
∂qn

∂xnν

)2
.

Axiom 3. The efficiency of information transition from phenomenon
to intrinsic data on the microlevel

in(x)− κjn(x) = 0, ∀x, n. (28)

The third level of knowledge consists of the EPI principle, which include the
variational principle and the zero-condition. The variational principle states
the extremization of K[q] ≡ I[q]− J [q], that is

δK = δ(I − J) = 0. (29)
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The zero-condition is the efficiency of information transition on the macrolevel

I = κJ. (30)

These follows either from the axioms or from the existence of a physically
meaningful unitary transformation space.

The fourth and lowest level is the physical laws found by calculation of
EPI, that is, the qn(xn)’s found to extremize K, where the form of J is
determined by the invariance principles for the particular phenonmenon in
question.

3.2 The Schrödinger Wave Equation

This derivation runs parallel to the fully covariant EPI derivation of the
Klein-Gordon equation in [1], chapter 4. However the Schrödinger equation
treats space and time coordinates differently, time coordinates are assumed
to have no fluctuations, and can always be determined precisely, whereas
space coordinates cannot be determined with arbitrary accuracy. Since the
EPI approach is covariant while the Schrödinger equation is not, some ap-
proximations have to be made in the derivation, the end result of which is
also an approximation of nature.

We will derive the one-dimensional time-independent Schrödinger equa-
tion. The position θ of a particle of mass m is measured as data y = θ + x,
where x is a random excursion governed by probability amplitudes qn(x),
which is to be found. We ignore time t in the derivation, hence we will get
a stationary solution to this problem. The particle is assumed to be in a
conservative field of scalar potential V (x), with total energy W conserved.

The information associated with the measurement of position is

I = 4
N∑

n=1

∫
dx

(
dqn(x)

dx

)2

(31)

in the one-dimensional case. We define the complex wave functions ψn(x) as

ψn(x) ≡ 1√
N

(q2n−1(x) + iq2n(x)), (32)

where there are N/2 of them. The information expressed with the ψn(x)’s
becomes

I = 4N
N/2∑
n=1

∫
dx

(
dψn(x)

dx

)∗ (
dψn(x)

dx

)
= 4N

N/2∑
n=1

∫
dx

∣∣∣∣∣dψn(x)

dx

∣∣∣∣∣
2

. (33)
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We next define a Fourier transform space consisting of wave functions φn(µ)
of momentum µ

ψn(x) =
1√
2πh̄

∫
dµφn(µ)e−

iµx
h̄ , (34)

operating on both sides by d
dx

we get

dψn(x)

dx
=

1√
2πh̄

∫
dµ
(
−iµ
h̄
φn(µ)

)
e−

iµx
h̄ . (35)

So we have
ψn(x)

F←→ φn(µ) (36)

and
dψn(x)

dx
F←→ −iµ

h̄
φn(µ), (37)

then by Parseval’s theorem we have∫
dx |ψn(x)|2 =

∫
dµ |φn(µ)|2 (38)

and ∫
dx

∣∣∣∣∣dψn(x)

dx

∣∣∣∣∣
2

=
1

h̄2

∫
dµµ2 |φn(µ)|2 . (39)

Using equation (39) in the information expression we have

I =
4N

h̄2

∫
dµµ2

N/2∑
n=1

|φn(µ)|2 ≡ J, (40)

that is, the unitary nature of the fourier transform inherent in the nature
of the measurement device gives rise to the invariance principle (40), where
J is the bound information, and I is constrained to be equal to J . The
bound information represents the maximum information obtainable from the
measurement, with I = J this means that information is transferred with
maximum efficiency. Yet only the workings of the input side of the measure-
ment device is described by the fourier transform, we have not considered
the measurement device’s output yet, hence the hallmark of quantum phe-
nomenon, uncertainty in the precise state of physical systems is not included
in this derivation. In other words, we are describing the situation where the
Schrödinger cat experiment is completed, yet no one has opened the box and
looked at the cat yet. For more detail see [1], 3.8 and chapter 10.

The total probability distribution for variable x is (by eq. (26))

p(x) =
1

N

N∑
n=1

q2
n(x) =

N/2∑
n=1

|ψn(x)|2 , (41)
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so by equation (38)∫
dµ
∑
n

|φn(µ)|2 =
∫
dx
∑
n

|ψn(x)|2 =
∫
dxp(x) = 1, (42)

so that
P (µ) =

∑
n

|φn(µ)|2 (43)

is a probability density on µ. Thus we have

J =
4N

h̄2

∫
dµµ2

N/2∑
n=1

|φn(µ)|2 =
4N

h̄2

∫
dµµ2P (µ) =

4N

h̄2

〈
µ2
〉
. (44)

We use the non-relativistic approximation that the kinetic energy of the
particle is µ2

2m
, so W = V (x) + µ2

2m
, we have

J =
4N

h̄2

〈
µ2
〉

=
8Nm

h̄2 〈W − V (x)〉

=
8Nm

h̄2

∫
dx(W − V (x))p(x)

=
8Nm

h̄2

∫
dx(W − V (x))

N/2∑
n=1

|ψn(x)|2 . (45)

Thus we have successfully expressed J as a functional of the ψn’s, J [ψ] is the
bound information functional for this problem, and I[ψ] = J [ψ].

According to the principle of extreme physical information, K = I − J is
extremized, that is

K = I − J = 4N
N/2∑
n=1

∫
dx

∣∣∣∣∣dψn(x)

dx

∣∣∣∣∣
2

− 2m

h̄2 [W − V (x)]|ψn(x)|2
 = Extrem.

(46)
The Euler-Lagrange equation for the variational problem is

d

dx

(
∂L
∂ψ∗nx

)
=

∂L
∂ψ∗n

, n = 1, . . . , N/2, ψ∗nx ≡
∂ψ∗n
∂x

, (47)

using the integrand in equation (46) as the Lagrangian L, the solution to
this variational problem is

d2ψn(x)

dx2
+

2m

h̄2 [W − V (x)]ψn(x) = 0, n = 1, . . . , N/2, (48)
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the time-independent Schrödinger wave equation.
Since the solution (SWE) is the same for each index n, an N = 2 solution

is permitted, that is, the SWE defines a single complex wave function ψ(x) =
1√
2
(q1(x) + iq2(x)) and

d2ψ(x)

dx2
+

2m

h̄2 [W − V (x)]ψ(x) = 0. (49)

3.3 Uncertainty Principles

According to the Heisenberg uncertainty principle, a particle’s position and
momentum intrinsically fluctuates by amounts x and µ from ideal (classical)
values θx and θµ with variances ε2x and ε2µ obeying

ε2xε
2
µ ≥ (

h̄

2
)2. (50)

This relation is conventionally derived from the fourier transform relation eq.
(36) between position and momentum spaces.

This result may also be proved using the Cramer-Rao inequality of Fisher
information. The mean-square error for position (θx) measurements is defined
as

e2x ≡
〈
(θ̂x(y)− θx)

2
〉
, (51)

where θ̂x(y) is a general estimator for the ideal position θx based on measured
data y. Suppose the probability distribution for x is p(x), then the Fisher
information for the variable x is

Ix =
∫
dx

1

p(x)

(
dp(x)

dx

)2

. (52)

The Cramer-Rao inequality states that

e2xIx ≥ 1. (53)

The one-dimensional wave function for a quantum particle is derived in the
previous section, suppose the solution is attained with N = 2, then there is
only one ψ1(x) = ψ(x). The Fisher information (on one-dimension variable)
for the quantum particle is

I = 8
∫
dx

∣∣∣∣∣dψ(x)

dx

∣∣∣∣∣
2

. (54)
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Since |ψ(x)|2 = p(x) we have |ψ(x)| =
√
p(x) so that

I = 8
∫
dx

∣∣∣∣∣ ddx |ψ(x)|eiS(x)

∣∣∣∣∣
2

= 8
∫
dx

∣∣∣∣∣ ddx
√
p(x)eiS(x)

∣∣∣∣∣
2

= 8
∫
dx

∣∣∣∣∣∣ 1

2
√
p(x)

dp(x)

dx
eiS(x) +

√
p(x)i

dS(x)

dx
eiS(x)

∣∣∣∣∣∣
2

= 8
∫
dx

∣∣∣∣∣∣ 1

2
√
p(x)

dp(x)

dx
+
√
p(x)i

dS(x)

dx

∣∣∣∣∣∣
2

= 8
∫
dx

 1

4p(x)

(
dp(x)

dx

)2

+ p(x)

(
dS(x)

dx

)2


= 2
∫
dx

1

p(x)

(
dp(x)

dx

)2

+ 8
∫
dxp(x)

(
dS(x)

dx

)2

= 2Ix + 8

〈(
dS(x)

dx

)2〉
,

where S(x) ∈ < is the phase of ψ(x). So we have 2Ix ≤ I, from eq. (99) we
have

I = J =
8

h̄2

〈
µ2
〉
, (55)

so

Ix ≤
4

h̄2

〈
µ2
〉

=
4

h̄2 ε
2
µ, (56)

since µ is the fluctuation in momentum. Using the Cramer-Rao inequality
we have

e2x
4

h̄2 ε
2
µ ≥ e2xIx ≥ 1, (57)

and finally

e2xε
2
µ ≥

(
h̄

2

)2

. (58)

There is a subtle difference between ε2x in the Heisenberg uncertainty and
e2x used earlier, the former represents the variance of the position fluctuation
distribution of a particle, and is independent of any measurements; while
the latter is a measure of the quality of a position measurement and the
subsequent position estimate, which depends on the intrinsic properties of
a particle, but is only manifested by actual measurements. This difference

12



results in different interpretations of the meaning of the Heisenberg uncer-
tainty and its Fisher version, the former treats the fluctuations as intrinsic
and exists independent of any observation, while the latter inequality arises
when a measurement of position is actually made, that is, when a position
measurement is made on a particle, its momentum would exhibit a fluc-
tuation governed by the uncertainty principle. The latter interpretation is
consistent with the EPI principle in that the uncertainty is intrinsic to the
phenonmenon, but only by an actual observation can its effects be felt.

3.4 Boltzmann Energy Distribution

We will derive the Boltzmann energy distribution law for a perfect gas in
equilibrium. The gas is composed of M identical molecules within a con-
tainer, all collisions with other molecules and container walls are assumed to
be elastic. The gas has temperature T .

We again start the derivation on a covariant basis and choose the fisher
coordinates to be

x0 ≡ ixE,xµ ≡ cµ ≡ (cµ1, cµ2, cµ3). (59)

We take the non-relativistic approximation and treat the energy fluctuation
xE and the momentum fluctuations xµ separately. We are only interested in
deriving the law on energy, hence the subscript on xE is dropped and the
measured value of the energy is

E = θE + x, E0 ≤ E ≤ ∞, (60)

where θE is the ideal value of the energy.
Thus we have

I(E) = −4
∫
dx
∑
n

(
dqn(x)

dx

)2

, (61)

where the probability amplitudes qn(x) relate to the probability distribution
function by

p(x) =
1

N

∑
n

q2
n(x). (62)

The negativity of I(E) is due to the use of imaginary coordinate for energy,
which is justified later. The goal of this analysis is then to solve the two EPI
principles

I(E)− J(E) = extrem. and I(E) = κJ(E), (63)

the extremization of physical information and the zero-condition respectively.
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We find the bound information functional J [q] by assuming that both EPI
principle yields the same solution qn(x)’s. The more general form J [q, x] is
not needed since the extra dependence on energy x explicitly only yields
non-equilibrium solutions, and will be discarded after further derivations.

According to axiom 2, the existence of information densities, we can rep-
resent J [q] as

J [q] = 4
∫
dx
∑
n

Jn(qn(x)), (64)

hence we have

K ≡ I − J = −4
∫
dx
∑
n

(q′2n (x) + Jn(qn(x))), q′n(x) =
dqn(x)

dx
, (65)

and the extremum principle results in the Euler-Lagrange equation of the
integrand L

d

dx

(
∂L

∂q′n(x)

)
=

∂L
∂qn(x)

, (66)

the solution of which is

d2qn
dx2

=
1

2

dJn

dqn
, n = 1, . . . , N. (67)

For the information efficiency we first change the form of I by noting that

∫
dx

(
dqn(x)

dx

)2

=
dqn(x)

dx
qn(x)

]∞
E0−θE

−
∫
dxqn(x)

d2qn(x)

dx2
, (68)

the first term of the result is zero since we assume that the probability of the
energy to be infinity or E0 to be zero. So we have

I = 4
∫
dx
∑
n

qn(x)
d2qn(x)

dx2
, (69)

by the energy efficiency zero-condition we have

I − κJ = 4
∫
dx
∑
n

(
qn(x)

d2qn(x)

dx2
− κJn(qn(x))

)
= 0. (70)

By axiom 3, the efficiency on the microlevel we have

qn(x)
d2qn(x)

dx2
− κJn(qn(x)) = 0, n = 1, . . . , N. (71)
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Combining eqs. (67) and (71) we find that the qn’s obey

κJn

qn
=

1

2

dJn

dqn
, (72)

or
2κ

qn
=

1

2

d

dqn
ln Jn. (73)

Intgrating both sides by qn we have

Jn(qn) = Anq
2κ
n , An ≥ 0. (74)

Using this equation in either eq. (67) or eq. (71) yields

d2qn(x)

dx2
= α2

nq
2κ−1
n (x), α2

n ≡ κAn ≥ 0. (75)

For the invariance principle we use the normalization of p(E), which is
weak in the sense that any p.d.f. is normalized. Hence for this phenomenon
we have minimum prior information, that is, maximum ignorance about the
independent variable in question. By classical assumptions, we set κ = 1,
which represents maximum information transfer from the bound information
of the phenomenon to the fisher information we gain as a result of observation.
So we have

d2qn(x)

dx2
= α2

nqn(x), (76)

the general solution of which is

qn(x) = Bne
−αnx + Cne

αnx, αn ≥ 0. (77)

Since x is bounded below (by E0 − θE) yet unbounded above, the Cn’s must
vanish for p(E) to be normalizable. The solution now becomes

qn(x) = Bne
−αnx. (78)

In retrospective if the coordinate of energy x0 ≡ ixE is taken to be real,
then the right hand side of eq. (75) would be negative, and we would have
obtained the general solution

qn(x) = Bne
−iαnx + Cne

iαnx, (79)

which is sinusoidal. Which then causes p(E) to be sinusoidal too, and cannot
be normalized.
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From the form of the solution the N for this problem need only be one,
so we have

q(x) = Be−αx, (80)

and
p(x) = B2e−2αx. (81)

Using the change of variable x = E − θE we have

p(E) = Ce−2αE, C ≡ B2e2αθE . (82)

We find the value of constants C and α by normalization and in terms of the
expectation value of E: ∫ ∞

E0

p(E)dE = 1, (83)

〈E〉 =
∫ ∞

E0

Ep(E)dE. (84)

We have

p(E) =
1

〈E〉 − E0

e
− E−E0
〈E〉−E0 , E ≥ E0, (85)

and p(E) = 0 for other values of E. Shifting the origin of E by a constant
does not change the physical law, so we subtract E0 from E and get

p(E) = 〈E〉−1 e−
E
〈E〉 , E ≥ 0. (86)

The energy of a perfect gas in equilibrium with three degrees of freedom
per molecule is

〈Et〉 =
3MkT

2
, (87)

so

〈E〉 =
〈Et〉
M

=
3kT

2
, (88)

and the energy distribution is

p(E) =
2

3kT
e−

2E
3kT . (89)

3.5 Newton’s Law of Motion

Lastly we present a mock derivation of Newton’s law of motion using a pseudo
EPI procedure. We assume that the energy of a particle has two forms,
kinetic and conservative potential, and the total energy is constant. We
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define the position perturbation q(t) in terms of a function of time, then the
constant energy requirement becomes

E =
1

2
m

(
dq(t)

dt

)2

− V (q(t)) = const. (90)

The fisher information for this phenomenon is

I = 4
∫
dt

(
dq(t)

dt

)2

=
8

m

∫
dt(E + V (q(t))) ≡ J, (91)

and κ = 1 here. We have perfect efficiency because time can be measured to
infinite accuracy in the non-relativistic picture.

We extremize

K = I − J = 4
∫
dt

(dq(t)
dt

)2

− 2E

m
− 2

m
V (q(t))

 (92)

using the Euler-Lagrange equation and get the solution

m
d2q(t)

dt2
= −dV (q(t))

dq(t)
, (93)

which is Newton’s law of motion.

4 The Geometrical Representation of Physi-

cal Phenomenon

According to the view of Italian physicist E. R. Caianiello, uncertainty is in-
herent in all branches of science, he obtained a geometrical representation of
physics, especially quantum physics, using the theories and methods of infor-
mation geometry. In his formulation [2], the quantum physical uncertainty
appears as a “curvature” in relativistic phase space. He also tries to combine
such representation (quantum geometry) to theories of entropy and informa-
tion, so as to find a theoretical foundation for such representations. Like
the principle of EPI, his goal is to describe physical phenomenon from the
viewpoint of information. But the theories of information geometry, or the
geometrization of information theory used for its foundation are more general
than the Fisher information, and much more difficult to comprehend.
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4.1 Information Geometry

Information geometry is a specialization of differential geometry that deals
with the geometrical structure of probability distributions. Under this formu-
lation, probability distributions are treated as points on a manifold, and the
Fisher information is the distance between different probability distributions
on these manifolds.

According to Caianiello [7], the geometrical representation of a model (or
theory) requires essentially the choice of a metric G and a connection Γµ and
the identification of a reference frame; these depend upon the “universe”
one wishes to model. Below we give a short introduction to these concepts
of differential geometry and apply them to the special case of information
geometry (see [8] for an introduction).

4.1.1 Manifolds

An N -dimensional manifold MN is a “curved” space embedded in an M -
dimensional affine space EM , where M > N . For instance, a curved surface
or the surface of a sphere in 3-dimensions are both 2-dimensional manifolds.
A point on an N -dimensional manifold can be specified with N parameters
(or coordinates) x ≡ {x1, . . . , xN}, so there is a mapping from each point of
the manifold to a point on an affine space EN .

Because probability distributions (probability amplitude and wave func-
tions) are used in quantum physics, Caianiello used manifolds with para-
metric distributions as points, and extend the definitions so obtained to de-
scriptions of quantum physics. The form of the most general parametric
distribution is ρ0(x|z) where z ≡ (z1, z2, . . . , zm) ∈ Rm is the random output
and x ≡ (x1, x2, . . . , xn) ∈ Rn represent the parameters (the subscripts and
superscripts are all indices). So x is a point in EN , but its also a point in the
manifoldMN formed by the probability distributions ρ0(x|z). The parame-
ters x provide a coordinate system for MN , each point of which represents
a different probability distribution.

We will use Gaussian distributions to illustrate these concepts. The mean
µ and standard deviation σ determines a Gaussian distribution

ρ(x|z) =
1√
2πσ

exp

[
−(z − µ)2

2σ2

]
, (94)

where z is the single random output, and the parameter x ≡ (x1 = f 1(µ, σ), x2 =
f 2(µ, σ)) is determined by the mean and standard deviation. Hence Gaussian
distributions form a 2-dimensional manifoldM2.
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4.1.2 Metric

The metric of a manifold MN with N dimensions is a N × N symmetric
matrix G(x), with real elements gij(x) defined on every point of the manifold,
so the metric is a tensor field of some sort. The metric G(x) serves as
a standard of length or distance measure on a manifold, hence its name.
We define the infinitesimal distance between two points x and x + dx ≡
(x1 + dx1, . . . , xN + dxN) by the metric G(x) as

ds2(x) = gij(x)dxidxj (95)

(note the use of Einstein’s convention of summation). In affine spaces the
distance is defined as

ds2 =
∑

i

(dxi)2, (96)

hence its metric is the identity matrix I at all points of the space.
The manifold MN is thus a generalized space that has a “metric” G

defined for the specification of distance between its points. From eq. (95) we
can see that the coordinate axes may not be orthogonal, and that different
coordinates may not have the same “weight” on the value of “distance”.
But more importantly, because the metric defined on different points are not
in general equal, the space of a manifold is “deformed” compared to affine
spaces, so the affine spaces spaned by the coordinate axes of two different
points on the manifold may have no intersection.

We will now use the entropy to define a metric for the manifolds formed
by probability distributions. The Shannon entropy of a p.d.f. is defined as

H(ρ(x|z)) = −
∫
ρ(x|z) ln ρ(x|z)dz, (97)

with continuous p.d.f. this may diverge, that is, it may not have meaning
under certain contexts, hence we use the cross entropy instead. The cross en-
tropy (or Kullback-Leibler information) of two Gaussian distributions ρ(x1|z)
and ρ(x2|z) is

Hc(x1,x2) =
∫
ρ(x1|z) ln

ρ(x1|z)
ρ(x2|z)

dz. (98)

The J-divergence of the two distributions ρ(x1|z) and ρ(x2|z) is defined as

J (x1|x2) = Hc(x1,x2) +Hc(x2,x1). (99)

We interpret the J-divergence as a sort of “distance” between these two
distributions. If we set x1 = x, x2 = x + dx ≡ (x1 + dx1, x2 + dx2), then the
infinitesimal distance can be defined as the J-divergence

J (x|x + dx) = ds2 = ghk(x)dxhdxk, (100)
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where, with the notation ∂h = ∂
∂xh , we have the metric

ghk(x) = gkh(x) =
∫
ρ(x|z)∂h ln ρ(x|z)∂k ln ρ(x|z)dz, (101)

which forms a symmetric matrix G. Because the elements ghk(x) are in the
form of the Fisher information (and yields the familiar form when h = k), the
metric G is a Fisher information matrix, we refer to it as the Fisher metric
in this context.

If we express the two parameters of the Gaussian distribution as

x1 =
µ

σ2
, x2 =

1

2σ2
, (102)

then the Gaussian distribution becomes

ρ(x|z) = exp

[
zx1 − z2x2 − 1

4

(x1)2

x2
+

1

2
lnx2 − 1

2
ln π

]
, (103)

and the Fisher metric

G ≡ {ghk} =

(
σ2 2µσ2

2µσ2 4µ2σ2 + 2σ4

)
. (104)

4.1.3 Coordinate Transformations

A vector field A(x) in the affine space EN can be specified by its N com-
ponents Ai(x), which is the components on some coordinate system x =
{x1, . . . , xN}. If there is another coordinate system x′ = {x′1, . . . , x′N} for
EN , then the components of A(x) on the new coordinate system can be ex-
pressed as

A′j(x′) =
∂x′j

∂xi
Ai(x). (105)

We will now extend these concepts to fields defined on manifolds.
In the discussion below, we will be using local coordinate systems that

are limited to a certain neighborhood of the manifold. Since manifolds are
“deformed”, there may not be a global coordinate system, but a small enough
locality of the manifold may be considered “flat”. Hence we will define two co-
ordinate systems in the neighborhood of M ∈MN , and let the coordinates of
M in the two coordinate systems be x = {x1, . . . , xN} and x′ = {x′1, . . . , x′N}
respectively.

A scalar field F (x) on a manifold maps its points to a real number. Its
variance under coordinate transformation is

F ′(x′) = F (x), (106)
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which is called invariance, since the value of a scalar field on the same point
does not change under coordinate transformations.

A contravariant vector field A(x) on a manifold is the extension of normal
vector fields, the variance of its components Ai(x) under coordinate trans-
formation is

A′j(x′) =
∂x′j

∂xi
Ai(x), (107)

which is the same as a normal vector field and is called contravariance.
A covariant vector field A(x) on a manifold with components Ai(x) is

defined by
Ai(x) = gij(x)Aj(x) (108)

with respect to a contravariant field and the metric. We can also consider
A(x) as a vector field with both contravariant and covariant components.
Under coordinate transformations, the covariant components change as

A′j(x
′) =

∂xi

∂x′j
Ai(x), (109)

which is called covariance.
We can further generalize these concepts to a tensor field T (x) defined as

the direct product of p contravariant fields and q covariant fields. Its Np×N q

components T
i1i2...ip
j1j2...jq

(x) change under coordinate transformation as

T
′i1...ip
j1...jq

(x′) =
∂x′i1

∂xk1
· · · ∂x

′ip

∂xkp

∂xl1

∂x′j1
· · · ∂x

lq

∂x′jq
T

k1...kp

l1...lq
(x), (110)

and we say that T (x) is p times contravariant and q times covariant. A scalar
field F (x) can then be considered as a tensor field 0 times contravariant and
0 times covariant.

If the metric of a manifold is 2 times covariant, that is,

g′rs(x
′) =

∂xi

∂x′r
∂xj

∂x′s
gij(x), (111)

then we call this manifold a Riemannian manifold.

4.1.4 Connection

In affine space EN the derivative is ∇ ≡ (∂1, ∂2, . . . , ∂N), with i-th component
∇i = ∂i = ∂

∂xi . In manifolds, we define the i-th component of the covari-
ant derivative ∇i on scalar fields and the components of contravariant and
covariant vector fields as

∇iF (x) = ∂iF (x), (112)
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∇iA
k(x) = ∂iA

k(x) + Γk
ji(x)Aj(x), (113)

and
∇iAk(x) = ∂iAk(x)− Γj

ki(x)Aj(x) (114)

respectively. The Γi
jk(x)’s are the components of the affine connection field,

and are called affine connection coefficients, Christoffel symbols, or Γ-symbols.
They “connect”, or provides the relationship between coordinate systems of
different points on manifolds, hence is needed to describe derivatives on man-
ifolds. The name covariant derivative comes from the fact that the fields after
operation are increased in covariance by 1, so that ∇iF (x) are components
of a covariant field, ∇iA

k(x) components of a tensor field 1 time contravari-
ant and 1 time covariant, and ∇iAk(x) components of a 2 times covariant
tensor field. Note that the connection Γ(x) is not a tensor field in general,
only when the coordinate transformation is linear do the components of Γ(x)
change like the components of a tensor field 1 time contravariant and 2 times
covariant.

The covariant derivatives of general tensor fields can be found by ex-
tending eqs. (113) and (114). For example, the k-th covariant derivative of
Riemannian metric component gij(x) is

∇kgij(x) = ∂kgij(x)− Γl
ik(x)glj(x)− Γl

jk(x)gil(x). (115)

We define Γjik = gjlΓ
l
ik (this is needed since Γ is not a tensor in general), the

equation above becomes

∇kgij(x) = ∂kgij(x)− Γjik(x)− Γijk(x). (116)

If Γijk = Γikj, then the connection is called a Riemannian connection. Using
eq. (116), we can generate two more equations by permutation of the indices
i, j, k, add two of these equations and subtract by the third, with the assump-
tion of Riemannian connection, we can express the connection coefficients by
the metric components:

Γijk(x) =
1

2
(∂kgji(x) + ∂jgik(x)− ∂igkj(x)) . (117)

We now define the connection for probability distribution manifolds. The
most general connection compatible with information geometry is

Γ
(α)
ij,k(x) = Γkij(x)− α

2

∫
∂i ln ρ(x|z)∂j ln ρ(x|z)∂k ln ρ(x|z)dz. (118)

With the metric eq. (101) we have

Γkij =
∫
ρ
[
∂2

ij ln ρ∂k ln ρ+
1

2
∂i ln ρ∂j ln ρ∂k ln ρ

]
dz (119)
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4.1.5 Curvature Tensor

The curvature tensor (or Riemannian tensor) R(x) of a manifold is a tensor
field 1 time contravariant and 3 times covariant, the definition of its compo-
nents is

Rj
ikl(x) = ∂kΓ

j
il(x)− ∂lΓ

j
ik(x) + Γj

hk(x)Γh
il(x)− Γj

hl(x)Γh
ik(x). (120)

On a Riemannian manifold, because gij = gji and Γi
jk = Γi

kj, we can define

Riklm = ginR
n
klm =

1

2
(∂k∂lgim + ∂i∂mgkl − ∂k∂mgil − ∂i∂lgkm)

+gnp (Γn
klΓ

p
im − Γn

kmΓp
il) , (121)

which is 4 times covariant, the fully covariant form of the Riemannian tensor.
By the Riemannian conditions we can further state the relations

Riklm = −Rkilm (122)

Riklm = −Rikml (123)

Riklm = Rlmik (124)

Riilm = Rikll = 0 (125)

We use Γ
(α)
ij,k as the connection for the Gaussian manifold, using the eqs.

(104), (118) and (119) for the metric and connection, we can obtain the
curvature tensor component for the Gaussian manifold

R
(α)
1212 = (1− α2)σ6. (126)

When α = 0, the connection becomes

Γ
(0)
ijk = Γkij (127)

and the curvature tensor becomes

R
(0)
1212 = σ6. (128)

The previous equation suggests that the curvature tensor expresses our lack
of information since it vanishes only when σ = 0.
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4.2 Quantum Geometry

4.2.1 The Metric and Connection

Because wave functions (complex probability amplitudes) are used instead
of probability functions in quantum mechanics, we need to generalize the
metric defined in information geometry to use wave functions.

We begin by changing the expression of the metric to

ghk(x) = 4
∫
∂h

√
ρ(x|z)∂k

√
ρ(x|z)dz, (129)

which is in terms of probability amplitude
√
ρ(x|z). Similarly, the infinitesi-

mal distance (J-divergence) can be expressed as

ds2 = 4
∫

(∂h
√
ρdxh)(∂k

√
ρdxk)dz = 4

∫
(d
√
ρ)2dz. (130)

If we change the variable z to a discrete variable, with φα(x) =
√
ρ(x|z = α),

we can then use the inner product form to express the metric

ghk(x) = 4
∑
α

∂hφα(x)∂kφα(x). (131)

The desired generalization of the information metric is now obvious: it is
(neglecting the irrelevant numerical factor)

ghk(x) = gkh(x) =
∫
ψh(x|z)ψk(x|z)dz. (132)

If ψh(x|z) = ∂hφ(x|z) then eq. (132) yields the general holonomic case, if
also ∂hφ = ∂hφ, we return back to the standard information metric (101).

In quantum geometry we wish to use Riemannian manifolds, hence we
must have α = 0 in the connection Γ

(α)
ij,k, since only then would the covariant

derivative of the metric vanish. The Riemannian property of the metric can
be considered to correspond to the Hermitian property of density operators
in quantum physics.

So we set α = 0 in eq. (118), and by eq. (119) and the following relation
(which is easily proven)

k∏
i=1

∂i ln ρ = 2kρ−
k
2

k∏
i=1

∂i
√
ρ, (133)

we have
Γ

(0)
ij,k = 4

∫
∂2

ij

√
ρ∂k
√
ρdz, (134)

which is also expressed with probability amplitudes.
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4.2.2 The Uncertainty Relation

Since the metric is in the form of Fisher information, we can use the Cramer-
Rao inequality to derive the uncertainty relation.

In the one-dimensional case (with manifold M1), let x̂ be an unbiased
estimator for the single parameter x. With variance (∆x)2 ≡ 〈(x̂− x)2〉, the
Cramer-Rao inequality is

(∆x)2 · g11 ≥ 1, (135)

where the only component of the metric g11 is the Fisher information. Using
eq. (129) with x ≡ x1 we have

(∆x)2 · 4
∫
dz

(
∂
√
ρ

∂x

)2

≥ 1, (136)

and with quantum physical identities
√
ρ = φ, px = −ih̄ ∂

∂x
we get the uncer-

tainty relation

∆x ·∆px ≥
h̄

2
. (137)

Thus the uncertainty relation can be derived from Cramer-Rao inequality,
and hence is not exclusive to quantum physics.

4.2.3 The Sign of Infinitesimal Distance ds2

From the preceding derivation, the “infinitesimal distance” ds2 and “infinites-
imal cross-entropy” dHc can be considered equivalent (to within appropiate
identification, see eqs. (99) and (100))

ds2 ≡ dHc = ghkdx
hdxk =

∫
ψhdx

hψkdxkdz. (138)

Under special relativity a particle in space-time is described by the four
parameters (four-vector) x = {x1 = ct, x2 = ix, x3 = iy, x4 = iz}, and the
metric G is identity, we have

ds2 = c2dt2 − dx2 − dy2 − dz2 ≥ 0, (139)

which is the requirement that the speed of particles not exceed c. From this
inequality we also have

dHc ≥ 0. (140)

Since the previous equation is derived from a basic assumption of relativity,
it can be considered as a basic physical principle, similar to other basic
principles such as the second law of thermodynamics or the I-theorem of
EPI.
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5 Quantum Information Theory

In quantum information theory there are three main goals of research: to
find the fundamental unit of static resources, that is, quantum information
classes; to find the basic dynamical processes, that is, quantum information
processing; to quantify the resources needed for these processes, and different
tradeoffs between various quantum information classes. The classical infor-
mation theory can be seen as a special case of quantum information theory,
which is wider in scope and much more difficult.

5.1 Quantum Information Resources

Classical information theory uses Shannon entropy to quantify the uncer-
tainty of probability distributions or information sources, the information
obtained after the value of a random variable is known, and the physical
resources needed for the storage of a random variable. To extend classical
information to the world of quantum physics, we need to define quantum
information sources, or quantum random variables, which is used as the fun-
damental unit of quantum information resources. There are many possible
definitions, each of which may give rise to a different information theory,
following [9], we state two possible definitions.

One simple definition of a quantum information source is a probability
distribution of quantum states. A qubit with probability 1

2
to be in the

state |0〉 or 1√
2
(|0〉+ |1〉) could be treated as a quantum information source,

or quantum random variable. We gain information if we could somehow
measure this qubit and obtain its state, but in our example, since the two
possible states are not orthogonal, they are not completely distinguishable.
This differs from a classical information source, in which different values of
the source can always be distinguished (in principle).

The second definition comes from quantum entanglement. That is, the
information we are trying to process in quantum physics is stored in the
entagled states between two systems, or that the details of entanglement is
our quantum information.

5.2 The Von Neumann Entropy

Using the first definition given in the last section, a quantum information
source X have n possible values ρ1,ρ2, . . . ,ρn, each ρi is a density operator
state occuring with probability pi. So the density operator for this informa-
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tion source is
ρ =

∑
i

piρi, (141)

where
∑

i pi = 1, so ρ must be a density operator. The Von Neumann entropy
of this source X (or state ρ) is defined as

S(ρ) ≡ −tr (ρ log ρ) , (142)

where the logarithm of a matrix is the inverse function of the exponential of
a matrix eA =

∑∞
n=0

An

n!
.

If the ρi’s are mutually orthogonal pure states, then they can be perfectly
distinguished, in this special case the Von Neumann entropy is equal to the
Shannon entropy:

S(ρ) = H(X) = −
∑

i

pi log pi. (143)

If the eigenvalues of ρ is λi, then the Von Neumann entropy is

S(ρ) = −
∑

i

λi log λi. (144)

This is because the eigenvectors of density operators are always mutually
orthogonal. When the state is the most “mixed” ρ = I

d
, where d is the

dimension of the Hilbert space of ρ, the Von Neumann entropy is

S(ρ) = log d. (145)

The same as the maximum Shannon entropy under uniform distribution.
We list some properties of the Von Neumann entropy:

1. The Von Neumann entropy is non-negative, S(ρ) ≥ 0, with equality
only when ρ is a pure state, as can be seen from the definition.

2. In a d-dimensional Hilbert space, the maximum Von Neumann entropy
is log d, which occurs when ρ = I

d
.

3. If the composite system AB is in a pure state, then S(A) = S(B).

4. If the ρi’s have mutually orthogonal supports, then

S

(∑
i

piρi

)
= H(pi) +

∑
i

piS(ρi). (146)
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5. Joint entropy. If the |i〉’s are orthogonal states in the Hilbert space of
system A, and the ρi’s states of system B, then

S

(∑
i

pi|i〉〈i| ⊗ ρi

)
= H(pi) +

∑
i

piS(ρi). (147)

This can be proved by the previous property since |i〉〈i|⊗ρi and |j〉〈j|⊗
ρj are orthogonal for i 6= j. The Von Neumann entropy of joint systems
with states ρ and σ is

S(ρ⊗ σ) = S(ρ) + S(σ). (148)

Following Shannon entropy, we can likewise define the quantum joint
entropy, quantum conditional entropy, and quantum mutual information.
The quantum joint entropy of composite system AB is defined as

S(A,B) ≡ −tr
(
ρAB log ρAB

)
, (149)

where ρAB is the density operator for the composite system. The conditional
entropy of system A when system B is known is

S(A|B) ≡ S(A,B)− S(B), (150)

and the mutual information of systems A and B is

S(A : B) ≡ S(A) + S(B)− S(A,B) = S(A)− S(A|B) = S(B)− S(B|A).
(151)

Under this definition, the Von Neumann conditional entropy may be negative,
as when system AB is in the state 1√

2
(|00〉 + |11〉), the entropies have the

values

S(A,B) = 0

S(A) = S(
I

2
) = 1 (152)

S(B|A) = S(A,B)− S(A) = −1.

Below we list more properties of the Von Neumann entropy:

6. Subadditivity: S(A,B) ≤ S(A) + S(B).

7. Triangle inequality: S(A,B) ≥ |S(A)− S(B)|.

8. Concavity: S (
∑

i piρi) ≥
∑

i piS(ρi), with equality when all ρi’s are
equal. This means that when we have no knowledge about how a
state is prepared, as when we know only ρ =

∑
i piρi, and have no

knowledge about the individual states and probabilities, the entropy
would be higher than if they were known.

9. Strong Subadditivity: S(A,B,C) + S(B) ≤ S(A,B) + S(B,C).
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5.3 Distinguishing Quantum States

Since non-orthogonal quantum states cannot be perfectly distinguished by
measurement, even if quantum data are sent without error, the information
that we can extract from the message states may still be limited. The relative
amount of information that we can extract from any quantum state encoding
a classical message is called the accessible information. As an example, if we
use two non-orthogonal states to encode the bit values 0 and 1, the accessible
information of such a quantum message will surely be less than its classical
equivalent.

Considering the possibility of noise in the classical communication chan-
nel, we can define accessible information as the closeness of the values of
H(X : Y ) and H(X), where X is the message to be send, and Y is the mes-
sage sent. In the case of sending classical message with a quantum channel,
since we encode with quantum states, the accessible information is not only
affected by the channel noise or distortion, but also by the quantum states
chosen to encode the classical values. We assume that the values of the clas-
sical message are represented by the states ρx, with probabilities px, so that
the state of a letter in this quantum encoded message could be represented
by the density operator

ρ =
∑
x

pxρx. (153)

The corresponding Shannon entropy is

H(X) = −
∑
x

px log px ≥ S(ρ). (154)

Without channel errors, the receiver performs a measurement on the state
ρ, with probability p(y|x) of obtaining result y when the received state is
ρx. We could then use the conditional probabilities to calculate the mutual
information H(X : Y ). The quantum accessible information is defined as the
maximum of H(X : Y ) over all possible measurements,

Accessible Information = max
all measurements

H(X : Y ). (155)

The quantum accessible information has an upper bound called the Holevo
bound. Assume that letter ρx occurs with probability px, and that the re-
ceiver performs a generalized POVM measurement Ey on the received state
ρ =

∑
x pxρx, then

H(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx). (156)
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For the ensemble {px,ρx} we define the Holevo χ quantity as

χ ≡ S

(∑
x

pxρx

)
−
∑
x

pxS(ρx). (157)

5.4 Data Compression

According to classical information theory, a classical information source is
defined as a string of random variables X1, X2, . . . , Xn, with the n values as
its output. We assume that they are all taken from the same set of letters
with the same probability distribution. So for the ensemble X = {px, x}, a
string of length n would have on average npx occurence of the letter x, hence
we define such strings as typical. We can prove that the number of typical
strings does not exceed about 2nH(X), where

H(X) = −
∑
x

px log px (158)

is the Shannon entropy of X. So such a string can be compressed to nH(X)
bits of information.

Applying the above result to quantum information, we can define a quan-
tum source as X = {px,ρx}, that is, we use different quantum states to
represent different classical letters. For a message of length n, its quantum
state is the composite of the individual letter states ρ =

∑
x pxρx:

ρn = ρ⊗ ρ⊗ · · · ⊗ ρ︸ ︷︷ ︸
n times

(159)

The use of density operators means that individual letters may be in a mixed
state, so they may be entangled with other physical systems, thus under this
definition of a quantum information source we may say that the information
resource is quantum state and entanglement.

Every letter ρ is in a Hilbert space H, so the entire message ρn is in the
Hilbert space

Hn = H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

. (160)

If H = H⊗m is m-dimensional, then each letter needs m qubits to store, and
the entire message needs n×m qubits. Let λi be the eigenvalues of ρ, then

S(ρ) = −
∑

i

λi log λi. (161)

Here λi is the probability of measuring eigenstate |i〉 when measuring ρ in the
basis formed by its eigenstates. Hence the eigenstate |i1〉⊗|i2〉⊗· · · |in〉 of ρn
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has probability λi1 × λi2 × · · ·λin of being measured. Following the classical
case we can prove that when n is large, there will on average be nλi occurences
of eigenstate |i〉 in the joint eigenstate of the whole message, and that such
typical eigenstates does not exceed nS(ρ) in number. Hence assuming that
only typical eigenstates appear, the entire message can be represented in
a nS(ρ)-dimensional Hilbert space, that is, it can be compressed to nS(ρ)
qubits.

5.5 Data Transmission

Theories of data transmission is an important part of information theory,
it deals mainly with the capacity of noisy data channels. If we transmit a
classical message X = {px, x} through a classical channel, and the channel
changes (distorts) letter x to y with probability p(y|x), that is, p(y|x) re-
flects the channel characteristics, then according to Shannon’s noisy coding
theorem the maximum transmission capacity through the channel is

C = H(X : Y ) = H(Y )−H(Y |X), (162)

where Y = {py, y}, py =
∑

x p(y|x)px and H(Y |X) is the conditional entropy.
We define the capacity of a channel to be the maximum H(X : Y ) over all
possible distributions px

C = max
px

H(X : Y ). (163)

We can use the classical result to find the capacity for a quantum channel
transmitting classical information.

With quantum states ρi representing individual letters, we limit the trans-
mitted quantum states to product states ρi1 ⊗ρi2 ⊗ · · ·, that is, no entangle-
ment is allowed between letters. The capacity under this constraint is called
the product state capacity. Note that there are no restrictions on how the re-
ceiver measures the received letters, hence multiple-letter measurements can
be taken on the message. Let E be a trace-preserving quantum operation
that describes the characteristics of the quantum channel, then the Holevo-
Schumacher-Westmoreland (HSW) theorem tells us that the product state
capacity χ(E) for this channel is

χ(E) = max
{pi,ρi}

S
E

∑
j

pjρj

−∑
j

pjS(E(ρj))

 . (164)

There are currently no theories on general quantum channel capacity, but
many researchers believe it is equal to the product state capacity, which
means that there are no additional advantages in sending entangled letters.
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