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Abstract

The values of richness in semantic meaning recorded in Table 3 in [1] are

further discussed in this work. These values according to the writing time of

Shakespeare can reveal the changes of writing style. The values for Mark Twin’s

works show similar changes.
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1. Review: the measure of richness in semantic meaning

The re-encoding method [5] developed a measure of richness in semantic

meaning (RS M) and applied it to analyze Shakerspeare’s 36 dramas. The 36

values of RS M recorded in ‘Table 3 in [5]’ reveal the evolution of writing style

of Shakespear. This work provides a further discussion on those records. We

briefly review the measure in this section and discuss the records in the next

section. The RMS values for Mark Twain’s works are also included in the next

section.

1.1. Elman network

In [1], Elman network has two important achievements. One is that it can

discover the underlying structure of word. The other is that it can discover lexical

classes from word order. This network is a simple recurrent network that has a

context layer as an inside self-referenced layer, see Fig. 1. It was designed to

find the hidden structure of sequential inputs [1]. Let Lo, Lh, Lc, and Li be the

number of neurons in the output layer, the hidden layer, the context layer, and the

input layer, respectively. The context layer in the network is a copy of the hidden

layer at previous time step, Lh = Lc. The weights of self-referenced links which

are from hidden neurons to context neurons are fixed to 1. During operation, at

time step t, the output of hidden layer will be loaded to the context layer and

together with the input layer to activate the hidden layer at time t + 1.
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Figure 1: Illustration of Elman network

Let the two weight matrices between layers be Woh and Whic, where Woh is an

Lh + 1 by Lo matrix, and Whic is an Li + Lc + 1 by Lh matrix. Consider a sequence

of words, {p(t), t = 1, 2, 3, ...}. The output vector of the hidden layer is denoted

as h(p(t)) when p(t) is fed to the input layer. h(p(t)) is an Lh by 1 column vector.

Let o(p(t)) be the output vector of the output layer when p(t) is fed to the input

layer. o(p(t)) is an Lo by 1 column vector. The function of the hidden layer is

h(p(t)) = ϕ(WT
hic

[in(p(t))]), where in(p(t)) is an Li + Lc + 1 by 1 column vector

and ϕ is a sigmoid activation function that operates on each element of a vector

[2]. The in(p(t)) has the form, in(p(t)) =
[

p(t), h(p(t − 1)), 1
]T

. The function of

the output layer is o(p(t)) = ϕ(WT
oh

[

h(p(t)), 1]T
]

).

The back-propagation algorithm [2] is commonly employed to train the weights,

Woh and Whic, to reduce the difference between o(p(t)) and its desired output.

What is the desired output of the input pattern p(t)? Elman used the network to

model human language processing, and he chose the next input pattern p(t + 1)

as the desired output [1]. For example, consider a sequence of input patterns,

{p(1), p(2), p(3), ...}. The input at time t = 1 is p(1), and the desired output at

time t = 1 is p(2). All the attempts are aimed at minimizing the error between

the network’s outputs and the desired outputs, ‖o(p(t)) − p(t + 1)‖2, to satisfy the

prediction o(p(t)) ≈ p(t + 1).

There are several reasons to choose prediction as the main task of the network

[3]. When human brains process language, there is limited observation from the

environment except the sequence of word events. The desired outputs are im-

mediately available and require minimal priori theoretical analysis. On the other

hand, prediction plays a role in language processing. Listeners indeed predict
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and notice sequences of words which violate expectations. Moreover, the pre-

diction task can explain why children won’t get the faulty over-generalizations

from positive data when they lack for negative evidence (wrong usage of words)

in the process of language learning.

1.2. Iterative re-encoding

Based on Elman network’s achievements of linguistic process [1][5], we used

it to study and solve language issues. Instead of using simple generated sentences

as corpora, the work [5] analyzed the real corpus which contains complex sen-

tences and large amount of vocabularies. Elman’s method has been redesigned

in [5][6] to accomplish such complex task. In the redesigned method, consider a

corpus D with N different words {cn; n = 1, 2...,N}. Each word cn initially has

a random lexical code vector with R dimensions, ct=0
n = [ct=0

n1
, ct=0

n2
,...,ct=0

nR
]T . The

input word stream is encoded accordingly, p(t) = ct
i
; ct

i
∈ {ct

n; n = 1, 2...,N}. This

stream {p(1), p(2), p(3), ...} is formed by concatenating all sentences in the cor-

pus. p(1) is the first word of the first sentence. Minimize the error between the

network’s output o(p(t)) and its desired output p(t + 1) to satisfy the prediction

o(p(t)) ≈ p(t + 1) by using the back-propagation algorithm.

The prediction error is drastically reduced by introducing a renew process for

the code of each word [5]. The training curve is similar to that in [6]. A renewed

code is obtained by normalizing craw
n every T training steps ,

craw
n =

1

f reqn

∑

{t|p(t)=cn}

o(p(t − 1)), n = 1 ∼ N, (1)

where f reqn is the number of times that the word cn appears in the corpus. Note

that Elman averaged all the hidden output vectors for each word cn, but we aver-

aged all the prediction vectors for it instead.

All raw codes must be normalized [5] before using them in the next iteration.

This is because the network may reduce the prediction error simply by decreasing

the distances among all codes. The worst case is that every words converge to

a same code vector. In this case, the network achieves zero prediction error.

Setting the norm of each code vector as 1, it is able to prevent a diminished

solution, {‖cn‖ ∼ 0, n = 1 ∼ N}, derived by the back-propagation algorithm.

1.3. Experiments setting

The architecture of the network is Li = 64 input neurons, Lo = 64 output

neurons, Lh = 200 hidden layer neurons, and Lc = 200 context layer neurons.

The number of neurons are determined empirically. The initial values of synapse
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weights Whic and Woh are randomly assigned in the range [−1, 1], and the initial

values of the neurons in the context layer are set to zero. The initial code ct=0
n is

randomly assigned under the restriction that different words have different codes

and then is normalized. Then use the back-propagation algorithm to reduce the

prediction error which is ‖o(p(t)) − p(t + 1)‖2. The learning rate is fixed to 0.01.

Whic and Woh are updated after each word presented. Set one epoch, g = 1,

as when all words in the corpus were presented, and renew the codes every k

epochs. {{The corpus contains all Shakespeare 36 plays. All functional words

are removed from the corpus. Each word is stemmed as deep as possible. The

training is stopped when the error reaches a minimum value. The reduced errors

during the training epoches are similar to those in [6]. The trained weights, Whic

and Woh, are used to predict the next word of p(t), o(p(t)). We use the 10000

words in the corpus with the highest frquencies, f reqn.}}

1.4. Multi-meaning re-encoding

The output vectors, o(p(t)), are collected for each word when the minimum

error is reached [6]. These vectors possess very rich information on the meanings

of each word. To save these rich meanings of a word that has a continuous

spectrum, the work [5] developed a new code structure to load such richness of

semantic meaning. This new structure has the following constraints:

ΠR
r=1cnr = 1 and cnr ≥ 0; n = 1 ∼ N and r = 1 ∼ R. (2)

It modifies every saved output, o (p(t − 1)) , to satisfy the constraints in (2). In-

stead of a vector position, this new code has a form of a unit volume and all

positive features.

Note that a new code, cnew
n , obtained by combining two other codes, cA

n and

cB
n , will keep these constraints. The combining operation is

cnew
nr = cA

nr × cB
nr, r = 1 ∼ R. (3)

This operation (3) strengthens the consistent features of two codes and neutral-

izes the discordant features. The constraint for the new code, ΠR
r=1

cnew
nr = 1,

is naturally satisfied. For functional words, because discordance neutralization

happens in every feature, their codes will have a form similar to that of a unit

hypercube with each feature equal to 1. This code structure is also a new kind

of the semantic space model of word. In this structure, cosine and Euclidean

distance are not suitable for measuring the semantic similarity between any two

words. A new measure “RS M” (richness in semantic meaning) is developed as

the product of all features larger than 1:

RS M ≡ ln(ΠR
r=1 max(cnr, 1)). (4)
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2. Discussion

A single RS M value could reveal the richness of a whole play. This single

vector is obtained by combing all of the word vectors (all |D| words in a play

D) using (3), that is, cD
r = Π

|D|

ci∈D
cir, r = 1 ∼ R. Divid the RS M value by the

total number of words in each play and apply a natural logarithm function to it:

RS MD ≡ ln((1/|D|)ΠR
r=1

max(cD
r , 1)). This value, RS MD, can reveal the average

meaning of a word in a whole play. {{Note the 10000 highest frquency words in

the corpus are used in the formula RS MD. All functional words and low frquency

words are not included in |D|.}} Plot the RS MD values of Shakespeare’s works

recorded in ’Table 3 in [5]’ and of Mark Twin’s works according to the writing

time in Fig. 2 and Fig. 3. The high and increasing values after 1604 in Fig. 2

show why people name the years around 1604 “the peak” of Shakespeare [7][9].

To our knowledge, RS MD is the only one that can reveal the peak. For Mark

Twin’s works in Fig. 3, RS MD increases over time also. It’s reasonable that an

author has better writing skill to handle words and apply rich semantic meanings

to words in his/her works when he/she has more living or writing experiences.

There is no clear record to dating Shakespeare’s plays. The commonly used

chronology of Shakespeare’s plays is shown in Fig. 3. We see RS MD increases

over time after the play “Two Gentlemen of Verona” (1952) in Fig. 2. The in-

consistent high RS MD of “Henry VI part 1”(1589), “Henry VI part 2”(1590),

and “Henry VI part 3”(1591) may be caused by wrong dating or even different

authorship. In [8], E.A.J. Honigmann believed the chronology begins with “Ti-

tus Andronicus”, which Shakespeare estimated was written in 1586, and contin-

ued with “The Two Gentlemen of Verona”, which Shakespeare placed in 1587.

This implies that “Henry VI” may not be the first work of Shakespeare. More-

over, a number of Shakespeare’s early plays have been examined for signs of

co-authorship, and especially “Henry VI part 1”, which many notable schol-

ars argue, is definitely a collaboration between Shakespeare and at least one,

but probably more, other dramatists whose identities remain unknown, although

Thomas Nashe, Robert Greene, George Peele and Christopher Marlowe are com-

mon proposals [10]. That may cause the RS MD of “Henry VI part 1” inconsis-

tent, compared with other works in the same period.
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Figure 2: The RS MD of each Shakespeare’s work over time

Figure 3: The RS MD of each Mark Twin’s work over time
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