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Abstract This paper presents a distance invariant manifold that preserves the neigh-

borhood relations among data patterns. All patterns have their corresponding cells in

the manifold space. The constellation of neighborhood cells closely resembles that of

patterns. The manifold is invariant under the translation, rotation and scale of the pat-

tern coordinates. The neighborhood relations among cells are adjusted and improved

in each iteration according to the reduction of the distance preservation energy.

Keywords information visualization · self-organizing map · manifold construction ·

horizontal gene transfer · economic state · phylogenetic tree · influenza A virus

1 Introduction

Dimension reduction (Kohonen, 1982)(Liou and Musicus, 1990) in the manifold space

can display meaningful relationships among patterns. Foundations for various data

manifolds have been set down for factorial components (Liou and Musicus, 1990) and

for generalized adaline (Wu et al., 2006). They have been successfully applied in various

temporal data analyses (Wu et al., 2005).

The principal component analysis (PCA) and multidimensional scaling (MDS)

(Torgerson, 1952) are well established linear models that have been developed for such

reduction. Nonlinear reduction algorithms have been devised with varying degrees of

success. The Isomap (Tenenbaum et al., 2000) and the conformal C-Isomap (de Silva

and Tenenbaum, 2002) extend MDS by using the geodesic distance to construct the

nonlinear manifold. The Locally Linear Embedding (LLE) (Roweis and Saul, 2000)

computes certain linear model coefficients to maintain the local geometric properties
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in the manifold. Both Isomap and LLE have distinguished performances. Isomap has

been extended to find the intrinsic curvature manifold (de Silva and Tenenbaum, 2002),

such as a fishbowl surface.

Distortion analysis (Luttrell, 1991; Kohonen, 1999; Liou and Tai, 2000) has been

introduced to study the formation mechanism of the self organizing map (SOM) (Koho-

nen, 1982). The lack of a precise energy function for the SOM is studied in (Erwin et al.,

1992). The ill-posed problem of SOM is conjectured by Kohonen, refer the Preface in

(Kohonen, 2001). It is very difficult to use the SOM for the non-vector data (Kohonen

and Somervuo, 1998). This paper devised a distance preservation energy to construct

the manifold. It is a precise energy for the coordinate transformation of the patterns.

The ill-posed problem does not exist for such a precise energy function. As this energy

is used to manipulate the pattern coordinates, there is no probability manipulation in

the manifold construction. The manifold is developed for data visualization only. It is

not designed for LVQ or for the clustering purpose.

This energy is devised to display the local relations among patterns directly. Since

it uses the relative distances among local patterns to construct the manifold, it is invari-

ant under the translation, rotation and scale of the pattern coordinate. Many existing

manifolds are heavily sensitive to the setting of coordinates and obtain serious unreli-

able results, for example, the eigenvector system and LLE. This kind of invariance is

very useful in many applications. The manually assigned numerical codes for the phys-

ical entities of patterns are usually arbitrary and abstract. The absolute values of these

codes are meaningless. We expect that the distance between two neighborhood pat-

terns carries rich and reliable meaning. The distance preservation manifold is capable

of mapping the whole distribution of very high dimensional patterns to a perceptible

space, 2D or 3D. We show experiments on market states (Deboeck and Kohonen, 1998;

Liou and Kuo, 2002) and influenza protein sequences.

2 Method

Suppose there are P patterns distributed in a D-dimensional pattern space, X =

{xj , j = 1, ..., P}. Each pattern, xj , is a D-dimensional column vector and has a

corresponding mapped cell, yj , in the manifold space. The positions of the cells in the

manifold space are Y = {yj , j = 1, ..., P}. Each cell position, yj , is a M -dimensional

column vector. In the pattern space, giving a pattern xp, the set of those patterns

whose distances to xp are less than r are included in the set U (p, r), where r denotes

the radius of neighborhood region in the pattern space. The notation |U (p, r)| denotes

the number of patterns in the set U (p, r).

Note that the space, M , is a pre-designed space that is continuous without fixed

borders. One may set a different M in a different application. This preset M can

drastically simplify the manifold problem. All other manifold methods, except SOM,

attempt to seek such a space, for example, a wrapped surface in the pattern space.

Consider the local distance invariant manifold (LDIM) energy (Liou et al., 2000),

E (r) =
∑

p
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1

4
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The energy is a function of y and r. The main difference between this energy (1) and

that of MDS (Torgerson, 1952) is that (1) is a function of r. All patterns are used in
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(1) when r is very large. Few neighbors are used when r is small. These near neighbors

are much reliable for setting and supporting, collectively, the position of the cell yp in

the manifold space. The algorithm for the LDIM that adjusts the cell position, yj , in

the manifold space is as follows.

LDIM Relaxation Algorithm

1. Initialize the cell set Y .

2. Assign a value to r.

3. For each epoch t from t0 to t1
4. For every pair patterns xp and xq, adjust their cell positions by

y
p(t) = y

p(t− 1)− η

[

∂E (r)

∂yp

]

t−1

,

y
q(t) = y

q(t− 1)− η

[

∂E (r)

∂yq

]

t−1

. (2)

5. Reduce r.

6. End For

In the above algorithm, η is the learning rate. The computational complexity for

calculating the pairwise distance is O
(

DP 2
)

and finding the neighbors for every pat-

tern is O
(

P 2
)

. The computational complexity of Isomap is O
(

P 3
)

. It is higher than

that of LLE. M is a small number, M = 2 or 3 in many cases, in the dimension

reduction.

To explain the idea of this algorithm, one may imagine that there are P labeled

balls (cells) on a flat table. The surface of this table resembles the low dimensional

space, M = 2. These balls are free to move on the table. They are confined on this M -

dimensional space. Each ball is labeled with its corresponding pattern xp. The position

of the pth ball on the table is yp. The algorithm seeks a ball distribution Y in M that

can resemble the neighborhood relations of X in D. The system energy (1) exerts an

implicit, distant and remote, force to the current distribution Y to force it maximally

similar (resemble) to the distribution X. One may construct a Gibbs type system for

the energy (1) to relax the table distribution as a whole and solve the distribution Y .

Here, we prefer a batch operation, Step 4, by using the forces to redistribute the balls.

There are many ways to assign the initial positions of cells in Step 1. For example,

one may apply the linear projection methods, such as PCA and MDS, to project all

patterns onto the M -dimensional space. Other developed methods, LLE and Isomap,

can also be used for the initial assignment. Using the manifold by LLE or Isomap as

the initial arrangement is computationally expensive for certain applications.

In Step 2, r denotes the neighborhood radius of the hypersphere in the pattern

space. The patterns inside the hypersphere are used in the energy (1). During the end

of the relaxation process, the value of r is shrunk to the minimum distance among all

pattern pairs. We set the initial value r to be the maximum distance among all pattern

pairs and reduce r linearly or exponentially. The computational complexity of updates

is

(number of iterations)×O
(

MP max
x
p
|U (p, r)|

)

. (3)

This algorithm is different from SOM. The LDIM organizes the positions of the cells

based on the distance relations instead of the absolute pattern vectors used in the self-

organizing map (SOM) (Kohonen, 1988). These relative distances are readily available
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Table 1 Differences between SOM and LDI.

SOM LDIM
Number of neurons N P >> N P = N

Lyapunov function N.A. E (1)
Neighborhood (Nc) Isotropic in manifold space Anisotropic in M

Constellations of neurons Neurons are fixed in grid positions on a Cells move freely in a continuous space M .
confined rigid plate. M is not a confined space with fixed border.

Clustering Clustering with various competition laws N.A.
Coordinate Sensitive and difficult for non-vector data Insensitive and invariant

Table 2 Comparison of Energy Function

Method Energy function

LDIM E (r) = 1
4

∑

p

∑

x
q∈U(p,r)

(

‖yp − yq‖2 − ‖xp − xq‖2
)2
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∥

∥

∥

∥

in many applications. The positions of the cells will not be fixed in regular positions

as those in SOM. There is no synaptic weight attached to each cell that indicates its

constellation in the pattern space. The differences between SOM and LDIM are listed

in Table 1. Table 2 lists the energy functions of LDIM, Isomap and LLE. In Table

2, the term, dG (xp,xq), computes the shortest path distance between xp and xq in

a weighted graph G. The weight, Wij , summarizes the contribution of the point xj

to the xi. The pseudocode of LDIM is contained in Table 3. In the pseudocode, the

parameter r is reduced exponentially. Alternatively, r can be decreased linearly,

r (t)←− r̂ − (r̂ − ř)×
(t− t0)

(t1 − t0)
. (4)

All distance relations will be included in the tuning of each cell’s position in the be-

ginning of the relaxation algorithm. The number of neighbors of a pattern, |U (i, r)|,

will be reduced to zero, δi will approach to zero. This will stop the movement of the

cell position on the manifold space and reach the convergence.

3 Experiments on artificial data

3.1 Swiss roll dataset

In this example, we show that the sampling density affects the LLE manifold. The

swiss roll equation (Liou and Cheng, 2008) is

(
√

u

2π
sin (3πu) ,

√

u

2π
cos (3πu) , v

)

; 0 ≤ u ≤ 1 and −
3

10
≤ v ≤

3

10
. (5)

We uniformly sample data points as patterns along the variable v in the range
[

− 3
10 ,

3
10

]

and non-uniformly along u. Let r (u) be the equation of the curve,

r (u) =

(
√

u

2π
sin (3πu) ,

√

u

2π
cos (3πu)

)

; 0 ≤ u ≤ 1. (6)
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Table 3 Pseudocode of LDI algorithm

For i = 1 to P
For j = 1 to M

initially assign yij by MDS

End For
End For

Create distance matrix S by sij = ‖xi − xj‖

ř ←− min
i<j

sij

r̂ ←− max
i<j

sij

For epochs t = t0 to t1

r (t)←− ř + (r̂ − ř)× e
−

4(t−t0)
(t1−t0)

For i = 1 to P

δi =
∑

x
j∈U(i,r(t))

(

∥

∥yi − yj
∥

∥

2
− (sij)

2
)

(

yi − yj
)

yi ←− yi − ηδi

End For
End For

The arc length of r (u) is

f (u) =

∫ u

0

√

∂r (u′)

∂u′
·
∂r (u′)

∂u′
du′, (7)

where f (u) is the arc length with respect to u. We sample along f (u) and use f−1 to

calculate the u value. With this u value and the v, we can find a corresponding point on

the plane by using the roll formula (5). Using this sampling technique, the probability

densities of points may be uniform or non-uniform along the arc length. We can design

any sampling densities along the variables, u and v.

Figure 1 shows the manifolds obtained by different algorithms using different den-

sity distributions. The left diagrams plot the density distributions with respect to f (u).

In these diagrams, the horizontal coordinate, x-axis, is f (u), and the vertical coordi-

nate, y-axis, is the density. Figure 1(a) shows the manifolds of an unbalanced sampling.

The blue area of the roll has dense sampling points in unit area and the red area has

low density of points. Figure 1(b) shows the manifolds where the red part of the roll

has high density. Figure 1(c) shows the manifolds where the density is even along the

arc length. Figure 1(d) shows the manifolds where the yellow area (middle portion)

has high density.

From Figure 1, we see that the Isomap is not affected much by the density distribu-

tions. The sinusoid curves in the LLE manifolds will fluctuate with the densities. The

LDIM is not affected by the density distributions. This is because every pattern has its

correspondent cell in the manifold space. The number of cells is equals to the number of

patterns. The probability density of each pattern is preserved and equal to the density

of its cell. The LDIM algorithm is a coordinate transformation algorithm. It maps all
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events (patterns) from the event space (the pattern space) to their corresponding cells

in the manifold space. This algorithm accomplishes the coordinate transformation from

the pattern space to the manifold space automatically. The LDIM is a precise energy

for such transformation. There is no manipulation on the probability density function

in the construction of the manifold. The ill-posed problem in the Preface in Kohonen’s

book (Kohonen, 2001) does not exist in the LDIM. The LDIM has a perfect energy

function and bypasses the problem skillfully. Note that the conformal self-organizing

map (Liou and Tai, 1999) is also devised without this problem.

Fig. 1 The manifolds of LLE, Isomap and LDI for different sampling densities along arc length
f (u) plotted in the left column.
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Fig. 2 The top-left image is the pattern curve which has two kinds of structures. The curve
has an S-shape on the xy-plane and a sinusoid curve along the z-axis. The manifolds obtained
by using LDI, Isomap, C-Isomap, LLE and MDS are plotted with their labels.

3.2 S-curve

The LDIM fully utilizes the manifold space to maintain both global and local structures.

As an example, the curve pattern in Figure 2 has two kinds of structures. It consists of

240 pattern points. These points globally form a S-curve on the xy-plane and locally

form a sinusoidal curve along the z-axis. The points that have the same color are

from the same pattern data. The LDIM reveals these two kinds of structures. Both

Isomap with the parameter, K = 7, and LLE with the parameter, K = 12, derive

incorrect structures. MDS maps the points onto a projection plane and reveals the

S-curve structure only.

This curve consists of 240 points and there are (240×239)/2 = 28680 distances. We

divide all 28680 distances into frequency bins (groups). The length of each bin interval

is 0.1. We plot the tabulated frequency in each interval, see Figure 3. All distances are

in the range [0, 4.1). The notation [0, 4.1) means that the interval includes 0 but exclude

4.1. The group which has the highest frequency is in the interval [2.0, 2.1). There are

2356 distances belong to this interval. The sinusoidal wave induces a small peak in

the region [0.4, 1.1). The MDS manifold does not derive the sinusoidal wave. From

Figure 3, the MDS histogram is lack of a peak in the region [0.4, 1.1). MDS obtains the

detailed frequency information for large distances, [2, 4.1). The Isomap and C-Isomap

obtain distorted histogram informations. The LLE histogram is distorted.

4 Experiments on real data

4.1 Economic data

Data reduction techniques are extensively applied in analyzing the economic states

(Deboeck and Kohonen, 1998; Liou and Kuo, 2002)(Aranha and Iba, 2009). We use

the LDIM to display the states of the global economy. We select D = 18 country indices

collected from January, 2000 to September, 2009. The index names and country names

are listed in Table 4. These 18 indices can reveal certain national policies. We use the

monthly data in the analysis. Each pattern vector, xp, contains the 18 records of the

normalized indices of the pth month and is regarded as the month state of the economy.
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Fig. 3 The histogram of the curve pattern and the manifolds by the five methods.

Each country indices Ip is normalized by

Ip − I(January,2000)
∥

∥I(January,2000)
∥

∥

. (8)

The normalization uses the country indices in January, 2000 as the base. There are

P = 117 states and each state is an 18-dimension vector (D = 18). Figure 4 displays

the LDIM (M = 2). The black solid circle denotes the state cell in January 2000 and

the concentric circles denote the cell in September, 2009. The green line shows the

LDIM when r is set to the maximum distance, r̂ = 6.474. The red line is the converged

manifold when r is decreased to the minimum distance, ř = 0.070. We record the

relaxation processes between the green line and the red line, from light gray to dark

gray. In Figure 4, the red line reveals much more detailed information than that of the

green line. It clearly shows that the subprime mortgage mess in July, 2007 is right on

the turning point of the global economy.

Figure 5 displays the 3D manifold (M = 3). The line is the converged manifold.

The computation time is 1524 seconds. With this figure, one see the significant market

trends over time vividly. Both Figure 4 and Figure 5 show that the subprime mortgage

mess in July 2007 is the turning point of the global economy. The 3D manifold provides

similar trend information as that of 2D manifold.
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Fig. 4 The green line plots the initial setting of the LDI manifold. Gray lines, from light
to dark, record the results during relaxation epochs. The red line plots the converged LDI
manifold. We also plot the manifolds by Isomap, C-Isomap, LLE and MDS.

Table 4 World market indices

Amsterdam Australia Bombay Frankfurt New York
AEX ALL ORDS BSE SENSEX DAX DJ-INDUS

London Hong Kong Jakarta Kuala Korea
FTSE100 HANG SENG JKSE KLSE KOSPI
Nasdaq Osaka New York OSLO New York

NASDAQ NIKKEI 225 NYSE COMP OBX S&P 500
Shanghai Swiss Taiwan

SSE SWISS MARKET TAIEX

We list several important events in Table 5 that have great impact to the global eco-

nomic system and may have long-term effects. The manifold shows that the economic

states before the year 2006 are different from the states after the year 2007. They are

two very different patterns. Those states after the year 2007 are very difficult to predict

from those before the year 2006. There is a sharp turn on the October, 2007 that is

three months after the reveal of the mess news. This turn shows the trend deviation
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Table 5 Events that have great impact to the economics.

Time Events

1978–1982 Second oil crisis
Oct., 1987 New York stock crash
Aug., 1990 The Gulf war
Dec., 1997 Asian Economic Storm
Sept., 2001 US 911 (Economic deterioration)
Nov., 2002–Jul., 2003 Outbreak of SARS
Nov., 2003–Feb., 2004 Avian influenza
Dec., 2004 Indian ocean tsunami
Aug., 2005 Hurricane Katrina
2006 Drought in Australia
2007 Subprime mortgage crisis
Jan., 2008 Chinese winter storms
May., 2008 Sichuan earthquake
April, 2009 H1N1 swine flu

Fig. 5 The global markets which evolve over time. The manifold are on the three dimensional
space and the third dimension is represented by the colors.

of the states. Extremely long distances and sharp turns between two successive states

indicate the rough situations, such as the large drift during September 2008. This fig-

ure is suitable for many visualization purposes and facilitates various interpretations

on the content of the world states.

One can apply the manifold technique to interpolate the incomplete data records

and extrapolate the predicted states. As for the interpolation of missing data, suppose

there are three missing records during certain month. We use all P−1 available data to

construct the manifold with P −1 cells. These P −1 cell positions are then fixed. Then,

we insert one new cell in the manifold for the incomplete month and train its position

using the rest 15 = 18− 3 records in the vectors, xp, of all P states. Note that the rest

P (P − 1)/2 distances are calculated by using the 15 rest records of all P vectors. This

inserted cell will converge to a new position and we obtain a fixed manifold with P

cells. The distances of those near neighbors of this inserted cell in the manifold can be

used as the weights to interpolate the missing three records. By a weighted fitting of

these three missing records among the neighbors, one can estimate the missing three

records. With the state trend and distances among neighbors, the extrapolation of the

predicted state can be accomplished in a similar way.

We also select five indices, GDP growth, consumer price index, import value index,

export value index, and unemployment rate to display the individual national economic

states. The data source is recorded in the publications by WDI (World Development

Indicators) of World Bank. There are 21 years from the year 1987 to the year 2007. Each
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Table 6 The settings of parameter r.

ř r̂

US 0.126 3.932
GB 0.260 3.622
JP 0.281 3.405
CN 0.079 3.896

data, xp, is a five dimensional column vector and contains the five indices. Each index

is normalized to the range [−1, 1], separately. The 210 = (21 × 20)/2 pair distances

among the twenty-one year vectors are calculated and used in the LDIM algorithm.

We set the learning rate η = 0.01. The algorithm is operated with 100 millions epochs.

The parameter r is exponentially decreased. The maximum r̂ and minimum ř are listed

in Table 6. Figure 6 shows the 3D manifolds for four countries. They have different

market patterns and trends. We mark several abnormal states. The results in (Liou

and Kuo, 2002) are consistent with those in Figure 6.

4.2 Manifolds for H5N1 and H1N1 proteins

Due to the horizontal gene transfer (Meuth et al., 2009), the life tree may not be an

adequate structure to fully display the evolution relations among generations. Alter-

natively, we show how to display the generations in the manifold space.

The H1N1 and H5N1 are subtypes of the Influenza A virus which can cause illness

in humans and many animal species. The H5N1 subtype has been reported in 445

human cases and has caused 263 human deaths (WHO, 2009). The pathway of H5N1

spread is still unclear.

We use the protein HA segments of all available DNA sequences saved in NCBI’s

Influenza Virus Resource (Bao et al., 2008) . We select 184 distinct Influenza A(H1N1)

protein sequences and 196 distinct H5N1 sequences. All 380 sequences are full lengths.

The minimum and maximum lengths of the H1N1 sequences are 554 and 567 amino

acids respectively. The minimum and maximum lengths of the H5N1 sequences are 552

and 575 amino acids. The host of all the selected isolates is human. All the selected

Influenza A(H1N1) sequences are recorded during the year 2009. The H5N1 sequences

are recorded during the 13 years from 1997 to 2009.

We align all H1N1 sequences together. Multiple-sequence alignments were per-

formed using the Clustal W2 program (Larkin et al., 2007). We compute the Ham-

ming distances between every two sequences. Fig. 7 shows the 2D manifold for the

P = 184 H1N1 sequences. Each aligned sequence consists of 567 amino acids. There

are 184 × 183 ÷ 2 = 16836 Hamming distances among the 184 sequences. The neigh-

borhood region, r, is reduced from r̂ = 20 to ř = 1 in the algorithm. The algorithm

is operated with 500000 epoches. There exists only one cluster. The average center

of the cluster is marked with a black square. The two sequences close to the center,

ymean = 1
184

184
∑

p=1
yp , are marked with two black circles. They are the isolate ACQ99610

and the isolate ACR81633. There is a overlap between these two black circles. We may

expect that certain cells near the center may be the grandmother of the H1N1 virus.

Finding the grandmother cell is useful for many medicine goals, such as the design of

vaccine and the trace of the virus source. The evolution trend of the DNA mutations

is displayed by colors. One can monitor the sampled isolates in the trend. The three
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Fig. 6 Economic states of four countries displayed in 3D LDI manifolds. Colors are for the
third dimension.

gray ellipses are the one, two and three times of the covariance. Both the covariance

and the center are calculated in the 2D manifold space, Y .

Fig. 8 shows the distance invariant manifold for the 196 H5N1 gene sequences. In

this case P = 196. Each aligned sequence consists of 583 amino acids. There are (196×

195)/2 = 19110 Hamming distances among these 196 sequences. The neighborhood

region, r, is reduced from r̂ = 74 to ř = 1 in the algorithm. The gray ellipses show

the covariance information in the manifold space. The sequence close to the center is

marked with a black circle. It is the isolate ACA64009.

4.3 Phylogenetic Tree

The manifold space M may have other shapes. We show an application for the manifold

space that has a tree like structure. The phylogenetic tree is useful to display the
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Fig. 7 The 2D LDI manifold for H1N1 gene sequences. The colors mark the monthly infor-
mation from March to August.

Fig. 8 The 2D LDI manifold for H5N1 gene sequences. The colors mark the yearly information
from 1997 to 2009.

inter-relations among species (Johnson, 1967; Sattath and Tversky, 1977; Saitou and

Nei, 1987). Usually, the tree is constructed based on the minimization of the overall

difference between all path lengths of the tree and their corresponding distances among

species that stored in a distance matrix (Farris, 1972). The path distance between two

leaf nodes is the sum of the lengths of the branches along the path connecting these

two nodes. According to the construction, the sum of all distances of all node pairs is

close to that obtained from the distance matrix. Any path length in the tree should

be fitted to its corresponding species relation in the matrix. Based on the LDIM, we

rewrite the LDIM energy for the tree path estimation to fine-tune its branch lengths

for the H5N1 tree and SARS tree.
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Given a set of distance relations among species, we plan to construct the branch

lengths of a given tree that meet the distance relations with its path lengths. The

tree is an undirected binary tree. Its branches have no direction. Suppose there are

total P species, {xp, p = 1, ..., P}, where xp is a column vector that saves the amino

acid sequence of the pth species. The tree has P leaf nodes and 2P − 2 branches. The

tree structure can be saved in a matrix, A(P (P−1)/2) by (2P−2) . In A, the row indices

denote the tree paths corresponding to every species pairs, {
(

xi,xj
)

, i = 1, ..., P ;

j = i + 1, ..., P}, and the column indices denote the 2P − 2 branches of the tree. The

element, aij , of the matrix A is set as

aij =

{

0 , when the path i doesn’t contain the branch j.

1 , when the path i includes the branch j.
. (9)

Let δ =
[∥

∥

∥
x1 − x2

∥

∥

∥
,
∥

∥

∥
x1 − x3

∥

∥

∥
, . . . ,

∥

∥

∥
xP−1 − xP

∥

∥

∥

]T
be a P (P − 1) /2-by-1 column

vector that consists of all distances between species pairs. Assume that the lengths of

the 2P − 2 branches are variables, z =
[

z1, . . . , z(2P−2)

]T
. Then seek a solution for z,

Az ≈ δ, subject to z ≥ 0. (10)

The method in (Sattath and Tversky, 1977) suggested using the least square method

with non-negative constraint to modify the branch lengths of the tree. We rewrite the

LDIM energy to solve the variables z , Ê (r),

Ê (r) =
∑

p

∑

x
q∈U(p,r)

(

t (p, q)−
∥

∥x
p − x

q
∥

∥

)2
(11)

where t (p, q) denotes the path length from the leaf node p to the node q. U (p, r) is the

set that contains all neighbors xq of xp that are within the distance range r; U = {xq;

‖xp − xq‖ ≤ r}. The variables z can be solved by minimizing this energy.

We adjust the branch lengths z by applying the gradient descent method to the

energy Ê (r) and restrict the value of z to be larger than or equal to zero. The value

of r is reduced during the relaxation.

4.4 Tree experiments

Three datasets are used in the experiments. One is Case’s data (Case, 1978) that con-

tains the immunological distances among nine frog (Rana) species. The second dataset

is the influenza A virus, H5N1 subtype, from NCBI (National Center for Biotech-

nology Information). The third dataset is the SARS-CoV genome sequences. We will

employ the UPGMA method (Unweighted Pair Group Method with Arithmetic mean)

by (Sokal and Sneath, 1963) or the neighbor-joining method by (Saitou and Nei, 1987)

to build the initial tree, A, and then use the LDIM energy (11) to fine tune the branch

lengths.

Figure 9 shows the estimated branch lengths by the LDIM algorithm. The lengths

by Sattath (Sattath and Tversky, 1977) are also plotted in this figure for comparison.

The LDIM algorithm obtains very different branches for the subtree that contains

the five species, R. aurora, R. boylii, R. cascadae, R. muscosa and R. pretiosa. After

convergence, we calculate the performance using the formula, MDI (r), for the LDIM
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Fig. 9 The trees are constructed by UPGMA. The branch lengths are obtained by LDI algo-
rithm (left) and Sattath’s algorithm (right).

Fig. 10 The performance comparison, MDI (r).

algorithm and Sattath’s method. The measurement of distance invariance, MDI (r),

is

MDI (r) =
1

∑

p
|U (p, r)|

∑

p

∑

x
q∈U(p,r)

√

(t (p, q)− ‖xp − xq‖)2

‖xp − xq‖
. (12)

The performance is plotted in Figure 10. In this figure, the x-axis denotes r and y-axis

denotes the calculated value ofMDI (r) in (12). The performance shows that the LDIM

algorithm obtains very precise length information for those small distance species.

The LDIM algorithm is used to construct the phylogenetic tree for the amino acid

sequences in the segment one region (PB2) of bird flu, H5N1. The sequences in Influenza

Virus Resource (Bao et al., 2008) are used in the construction. All redundant sequences

are removed and will not be used. The tree is constructed for the P = 97 protein

sequences of H5N1 recorded from 1997 to 2007 that hosted only on human. There

are 4656 = (97 × 96)/2 distances for all sequence pairs. The lengths of the sequences

after performing the multiple-alignment, (Edgar, 2004), are all 770. UPGMA uses the

Hamming distances among the aligned sequences to build the tree, see Figure 11. The

initial branch lengths of the UPGMA tree are obtained by Sattath’s method. These

lengths are used in the LDIM algorithm as the initial setting. The neighborhood region,

r, is reduced from r̂ = 51 to ř = 1 in the algorithm. In Figure 12, the performance (12)

shows that the LDIM algorithm obtains very precise lengths for close species.
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Fig. 11 The initial tree is obtained by UPGMA and the branch lengths are estimated by LDI
manifold.

Fig. 12 Performance comparison, MDI (r), on the estimated branch lengths of the H5N1
tree, in Fig. 11, obtained by the LDI algorithm and the non-negative least square algorithm
by (Sattath and Tversky, 1977).

We now construct the phylogenetic tree for SARS. (Rota et al., 2003) analyzed the

sample, SARS-CoV, under the accession number, AY278741, in Genbank. They applied

phylogenetic analysis for the proteins from known coronaviruses and the predicted

proteins produced from SARS-CoV. (Marra et al., 2003) studied the SARS genome,

named Tor2 (AY274119.3), that consists of 29751 base pairs in Genbank. They showed

that the SARS virus does not closely resemble any of the three previously known

groups of coronaviruses. Figure 13 shows the results of the LDIM algorithm. The four

initial trees are constructed by the neighbor-join method. The results clearly show that

SAR-CoV is not in the group of coronavirus.
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Fig. 13 Branch lengths by LDI algorithm for the (Marra et al., 2003)’s SARS dataset. The
four initial trees are obtained by the neighbor-joining method by (Saitou and Nei, 1987).

Finally, we briefly summarize several features of the LDIM. It use the relative dis-

tance between patterns to construct the low dimensional manifold. This manifold is

invariant under the translation, rotation and scale of pattern coordinates. The con-

stellations of cells are fixed reliably by their neighborhood patterns collectively. The

constellation displays both the global and local details of the pattern structure. This

manifold is useful in many applications, such as pattern recognitions (Liou and Yang,

1996); time series; chain and tree branch lengths. It is relatively difficult to display

chains or tree branches in SOM. The LDIM can be applied to many other invariance

preservation problems, such as angular invariance and conformal invariance.
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