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Independent component analysis of correlated
neuronal responses in area MT
Jiann-Ming Wu†, Chia-Yi Lu†, Cheng-Yuang Liou∗

Abstract–This work explores independent com-
ponents of correlated firing in area MT. The pair-
wise time-varying firing rate of two neighboring
MT neurons in response to the same stimulus is
estimated by the spline approximation to aver-
aged spike trains over trials, and processed by
the PottsICA algorithm for recovering independent
sources. Numerical results show independent com-
ponent analysis of correlated firing able to retrieve
the effective source whose behaviors are highly con-
sistent with variation of the stimulus.
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I. Introduction

Correlated firing of neighboring neurons in ar-
eas from retina to visual cortex have been reported
in [1]-[3]. Correlated neuronal activities have
been considered as crucial materials for explor-
ing population encoding of the stimulus. In this
work, we employ independent component analy-
sis[4][5][6] to retrieve independent sources of cor-
related neuronal responses and examine the con-
sistency between behaviors of the extracted inde-
pendent source and variation of the stimulus.
The data that we analysis was published by the

authors of the work[2]. The data, filed as emu084
in the homepage[7], contains pair-wise spike trains
measured from two neighboring MT neurons in re-
sponse to stochastic motions. For each trial, the
stimulus realized by stochastic motions of tremen-
dous dots on a video screen is characterized by
a coherence parameter whose sign specifies two-
alternative moving directions of coherent dots and
whose absolute scalar corresponds to the number
of coherent dots. Every 45 milliseconds during a
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trial, according to the absolute value of the coher-
ence parameter, a portion of dots on the screen are
randomly selected as coherent dots, all of which
are programmed to move along the direction spec-
ified the sign of the coherence parameter, and the
remains are considered as random dots, each of
which moves along a random direction by a small
displacement.
In the previous work[2], it has been shown that

each MT neuron has its own preference to the co-
herent direction of stochastic motions. The exper-
imenter can thus select two neighboring MT neu-
rons which have similar preferred directions, and
measure their correlated firing in response to a va-
riety of stimuli characterized by variant coherence
parameters. In the experiment[2], the two possi-
ble signs of the coherence parameter respectively
denote the preferred and anti-preferred directions
of the monitored MT neurons.

II. Materials and methods

The data contains experimental results of 420
trials. For each trial j, the pair-wise spike train
can be represented by {xj[t]}Nt=1, where N de-
notes the number of total time steps during a
trial, xj[t] = (xj1[t] xj2[t])T denotes the response
of the two neurons at the tth time step, and
xjk[t] ∈ {0, 1} for all j, k, t. By the representa-
tion, a neuron generates at most one spike at each
time step.
The experiment uses 15 possible coherence pa-

rameters, denoted by C = {ci}15
i=1, for 420 trials.

Let c(j) ∈ C denote the coherence parameter used
at trial j. The averaged pair-wise spike train over
all trials with coherence parameters identical to ci
is expressed as follows,

ξi[t] =
1

ni

X
j:c(j)=ci

xj[t],

where ni denotes the size of the set {j|c(j) = ci}.
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The averaged pair-wise spike train, {ξi[t]}t, is
further processed by the spline interpolation to
form the time-varying firing rate, {λi[t]}Nt=1, of
the two neurons in response to the stimulus corre-
spondent to ci, where λi[t] = (λi1[t],λi2[t])T. The
spline approximation is carried out by the built-in
spline tools in the MATLAB package. The time-
varying firing rate of the two neurons is shown in
figure 1, where the plot in figure 1a or 1b contains
15 curves. A curve in figure 1a represents the fir-
ing rate of one neuron, {λi1[t]}Nt=1, and in figure
1b represents the firing rate of the other neuron,
{λi2[t]}Nt=1, in response to ci.
Independent component analysis is further em-

ployed to retrieve independent sources from obser-
vations, {λi[t]}Nt=1, separately for each i. Since the
ICA process is the same for all i, the subindex i
is omitted in the following presentation. Assume
that the time-varying firing rate of the two neu-
rons in responding to the stimulus correspondent
to c ∈ C are linear mixtures of two independent
sources, represented by

λ[t] = As[t], (1)

where A denotes the unknown mixing matrix
and {s[t]}Nt=1 denotes the unknown independent
sources. An ICA algorithm aims to search for an
effective demixing matrix W, by which the linear
transformation,

γ[t] = Wλ[t], (2)

could recover independent sources.
Let γ = (γ1,γ2)

T denote a random vector that
characterizes estimated sources {γ[t]}Nt=1. The ef-
fectiveness of W can be quantified by the KL-
divergence between the joint pdf of γ and the
product of marginal pdfs of components in γ, ex-
pressed by

KL (γ) =

Z
R2

p (γ) ln
p (γ)

p1 (γ1) p2(γ2)
dγ

where p denotes the joint pdf of γ and pk denotes
the marginal pdf of γk. If the two components in
γ are independent, KL(γ) reduces to zero. Since
KL(γ) must be non-negative, it measures the mu-
tual information or dependency among compo-
nents in γ. The transformation in equation (2) will

make a difference betweenKL(λ) and KL(γ), ex-
pressed by

D(W)
∆
= KL(λ)−KL(γ),

which quantifies the reduced dependency caused
by the transformation (2). Following the fact that
the pdf of γ is the product of the pdf of λ and
| det(W)|−1, the difference can be rewritten as fol-
lows,

D(W) =
X
k

H(λk) + ln | det(W)|−
X
k

H(γk),

(3)
where the marginal entropy of univariate λ is de-
fined by

H(γk) = −
Z
R

pk (γk) ln pk (γk) dγk, (4)

and det(W) denotes the determinant of W.
Here we use the PottsICA algorithm[6] to es-

timate W and D(W). The PottsICA algorithm
uses the normalized histogram to represent the
marginal pdf of each γk. By the marginal pdf rep-
resentation, minimization of KL(γ) with respect
toW turns tractable and can be realized by neural
relaxation based on a hybrid of mean field anneal-
ing and gradient descent methods. The marginal
entropies in D(W) can be also estimated based
on the representation of normalized histograms for
marginal pdfs. So we can estimate D(W) for the
demixing matrix obtained by the PottsICA algo-
rithm.

III. Numerical results and Discussions

For each coherence parameter ci in C, the time-
varying firing rate of the monitored MT neurons,
represented by {λi[t]}Nt=1, is processed by the
PottsICA algorithm, and is then transformed to
the independent firing rate, {γi(t)}Nt=1, by the ob-
tained demixing matrix Wi. The quantity D(Wi)
that measures the reduced dependency by the
demixing transformation is shown in figure 2 for
all i, where the horizontal axis measures the co-
herence parameter.
It is observed that the scale of the reduced de-

pendency appears graded when the coherence pa-
rameter is respectively set high negative, low nega-
tive, low positive and high positive. The evidence
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for dependent firing of the two MT neurons be-
comes stronger as the the coherence parameter
increases. For high negative coherence, the ob-
tained D value is zero; the two MT neurons tend
to have independent firing. This is because the co-
herent direction specified by negative coherence is
the anti-preferred direction of the monitored MT
neurons.
For low negative coherence, the evidence for de-

pendent firing is still weak. However when the co-
herence parameter is set low positive, the evidence
for dependent firing becomes stronger relative to
the case with negative coherence. With positive
coherence, the coherent direction of stochastic mo-
tions is close to the preferred direction of the two
MT neurons. In the occasion, both the individual
firing rates of the two MT neurons are encoded
with informations about the positive stimulus. An
ICA algorithm helps to achieve two independent
sources, one of which is expected to carry with
most informations encoded within the two indi-
vidual firing rates.
Two independent sources extracted from the

time-varying firing rate of the two MT neurons are
shown in figure 3. Since the PottsICA algorithm
possesses the order-preserving property[6], we can
relate the first component of γi to one source and
the second component of γi to the other source
for all i. The response of two independent sources
to each ci is shown in figure 3. A curve in figure
3a displays the sequence of {λi1[t]}Nt=1 for approx-
imating the response of one source, and in figure
3b draws the sequence of {λi2[t]}Nt=1 for approxi-
mating the response of the other source to ci.
From figure 3a, it is observed that the 15 curves

within the time interval at about [200, 350] form
four clusters, respectively corresponding to high
negative, low negative, low positive and high posi-
tive coherence. The response of this source to low
positive coherence becomes distinguishable from
that to low negative coherence. The response of
the source in figure 3a is significantly consistent
with variation of the stimulus. The same consis-
tency can not be found in figure 1a and 1b, where
observed firing rate of the two MT neurons is dis-
played. The extracted source in figure 3a have
been shown to carry with most informations en-
coded within the two individual firing rates.
By independent component analysis of corre-

lated firing of the two MT neurons, we have es-
timated an effective source that encodes most in-
formations within the firing rate of pair-wise neu-
rons for distinguishing variation of the stimulus.
The signals of neuronal activities that encode the
stimulus are partially contained by the measured
individual spike train. The ICA algorithm plays
a role of extracting significant signals from corre-
lated firing of neighboring neurons following the
assumption of linear mixtures. In the near future,
we will explore independent component analysis
for more paired MT neurons for further investiga-
tion to population codes of neuronal activities.
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Figure list
Fig. 1 The pair-wise time-varying firing rate

of two neighboring MT neurons estimated by the
spline approximation to the averaged spike trains
over trials.
Fig. 2 The dependency reduced by the demixing

matrix.
Fig. 3 Independent components of the pair-wise

time-varying firing rate of two MT neurons.



0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
-0 . 0 2

0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 .1

0 . 1 2

0 . 1 4

 m il l is e c o n d s  

 fi
rin

g 
fir

in
g 

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7

0 . 0 8

 m i l l i s e c o n d s  

 fi
rin

g 
fir

in
g 

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
-0 . 0 1

0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

0 . 0 7

0 . 0 8

 m i l l i s e c o n d s  

 fi
rin

g 
fir

in
g 

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

0 . 0 6

 m i l l i s e c o n d s  

 fi
rin

g 
fir

in
g 

R
educed dependency

Low positive coherence

Low negative coherence

Figure 1

Figure 2

Figure 3

a b

a b


