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Abstract

We present an economic and efficient technique to reach min-
imal surface. This technique can facilitate many computer-

alded-designs 1n obtaining desired surfaces. Potts type net-
works are formulated for active meshes (Liou 96 & 97) which
are used to emulate soap films. These meshes will reduce their
areas according to the surface energies which are proportional

to the surface areas. Several simulations are carried out, such
as the catenoid, helicoid.

Keywords: soap film, Hopfield network, active mesh, mini-
mal surface, mean field annealing.

1 The discrete surface

The problem of finding minimal surfaces 1s one of the
deeper problems of the calculus of variations. This prob-
lem has been called Plateau’s problem in honor of the Bel-
gian physicist, Plateau (1801-1883). In its simple form, 1t
can be stated as: What 1s surface of smallest area bounded
by a given closed curve (contour) in space ?
Mathematically, Plateau’s problem 1s formulated with
a partial differential equation, or a system of such equa-
tions (Courant and Robbins 1941). All (non-plane) mini-
mal surfaces must be saddle-shaped and the mean curva-
ture, H, at every point must be zero. The mean curvature
1s the average of the principal curvatures (Hoffman and

Meeks 1990).

A minimal surface 1s a mathematician’s 1dealization
of soap film (Callahan and Hoffman 1988). In this work,

we present a new approach to solve this problem using
the active mesh (Liou 96 & 97), which is devised to em-
ulate the soap film. This discrete surface 1s a topolog-
ical complex consisting of quadrilaterals. The mesh 1s
formulated with a Hopfield network and is further con-
trolled by a Potts type network (Wu 1982) to tension the
mesh smoothly, collectively, and distributively. The en-
ergy of the network 1s proportional to the surface area.

When the minimun 1s reached, the minimal surface 1is
obtained. Note that Brakke (1992) proposes a Surface

Evolver which represents a soap film surface as a sim-
plicial complex consisting of vertices, edges and facets.
The Surface Evolver uses a finite-element method to ob-
tain the minimal surface which works 1n a way of global
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descent of total strain energy. Our method is rather col-
lective and distributive which follows the behaviour of

soap films. The mesh (Liou 96, & 97) can shrink success-

fully to a Steiner tree with two Steiner points when we
nall down the four corners of a square mesh and release
the rest of the mesh. To our knowledge, this success has
not been reported from using other elegant elastic surface
methods or finite-element based methods to emulate the

soap film. We now extend this mesh to 3D and test its
behaviour 1n reaching minimal surface.

Suppose that a surface i1s discretized and has many
nonoverlapping quadrilateral units. The area of the sur-
face can be approximated by summing all unit areas.
Consider a square unit with side length x. The area of a
square unit is z*. If the boundary sides of this unit are
taken as springs and the natural lengths of these springs
are zero, then the strain energy of these four springs is

Esprmg = 4 % (%—a:cQ) — 20,':82 X :82

.« 18 the spring constant

We can see that the energy i1s proportional to the umt

area, which s also the case for soap film.When we min-
mize the energy, we minimize the area at the same time.

In fact, the springs state that each unit resembles a closed
snake (Kass et al. 1987). We will use the snake model
for each unit and build the mesh. Note that for a rectan-
gular soap film the total surface tension along one side of
its boundary 1s proportional to the length of the side and
normal to the side. The net forces exert by this unit on
its neighbors can be properly represented by these four
springs when these units are dense enough.

2 The units of mesh

Each unit of the mesh 1s taken as a snake. The shape of a
snake is controlled by internal forces and external forces.If
we represent the position of a snake parametrically by
p(c) = (x(c),y(c), z(c)), the spring energy function can
be written as
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where a(c) is spring constant. We discretize this energy
function

snake z sz — Pi-1 |2 (2)
where n 1s the number of snake points (or nodes), and p;
1s the position of the ith snake point. Note that the snake
in our model 1s a closed curve, and the 4 edges connecting
the 4 points enclose a square area roughly.

Basing on the techniques presented in (Tsai et al.
1993; Williams and Shah 1992), we design a Potts neural
network to minimize this discretized energy. The network
consists of n mutually interconnected neurons, where n
1s the number of snake points. Each neuron corresponds
to a snake point, and has m states which corresponds to
m positions along m directions of the movements of this
snake point (Figure 1). Note m = 27 in this 3D case.
The energy function 1s computed at p; and each of its
26 neighbors. The position (along a direction) having the
smallest value of energy 1s chosen as the new position of p;
(Figure 1). This computation 1s accomplished implicitly
by the Potts network. The output (state) of ith Potts
neuron 1s indicated by a unit vector 1n a m-dimension
vector space, s; = (0, ... O)m*l FEach component of
1t 1s denoted as s; ,, (sz,p = O or 1). For the #th vector,
the component s;, with firing state 1 (s;, = 1) indi-
cates the new position for the 1th snake point with lowest
energy. The Potts neuron must automatically satisfy the

constraint ), —; sip = 1. Under this constraint, the snake
energy functlon with Potts neural network 1s formulated
as

Esnake

n m I
— Z{’wl[(z L pSip — 237?:—-1,;)31:-—1,}9)2
1=1 p=1 p=1

™m m
p=1 ik

Note that a; In (1) 1s taken as constant for homogeneous
snakes and 1s included 1n a new constant wq. w; 1s a scale
factor and can be discarded.

3 The mesh

The homogeneous mesh 1s composed of many quadrilat-
eral units (Figure 2). Thus, if we have N = row * col
nodes in the mesh, we’ll have Sn = (row — 1) * (col — 1)

snakes. In the mesh model, we use "node”, instead of

using ’snake point”, to represent the configuration of the
mesh. Each unit (snake) will shrink to a point 1f there 1s
no constraint imposed upon 1t.

We can define the energy function for the mesh as

Eesh = Zf;l Enake(i), Wwhere Sn 1s the total number of

snakes in the mesh and E;, k(i) 1s defined 1n (3).
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Figure 1. Each node of the mesh has 27 directions of move-
ment.

E,espn 1s minimized using the Potts neural network.
When the network convergs, the minimal surface is found.
To avoid getting stuck, keeping away from folding of the
mesh, in local minima, the mean field theory (MFT) tech-
nique i1s applied. The discrete variable s; , (or s; 1n vec-

tor form) will be replaced by the corresponding contin-
uous MFT variable v; , (or v; in vector form). That 1s
v, =< s; >1, where < s; >7 denotes the average (mean)
of s; at temperature 7. The Potts MFT equations for the

mesh model 1s

1 aEmeeh
T Ov; '

u, — —

v = Fy(u;) (4)

where T corresponds to the temperature 1n statistical
mechanics. The vector-valued function Fpy(u;) can be
obtained using the saddle point method (Peterson and

Soderberg 1989)

Zs s
)_g €l®

Writing 1t out 1n components, we have

FN(U,;) —

pUi,p
Zb e

It is obvious that this expression automatically satisfies
the constraint ) Fy(u;) = 1. Thus v; automatically
lies in the subspace Z vi » = 1. From (4), we get

Fy(u) =

OEmes
U p = ; gvz}ph = Z }: i,pij,aV5,q)

Wi i ¢ 18 derived as:
Wi,p;j,q — (W(l) + W'(z)) * (‘Bi,pf”j,q + yi,pyj,q)

where

W = 5 [—2wiaq ki (i, k)
(2 = B(2)(k))](2 = 6p,q)0i ;
W2 = dwya; j¢1(1,5)[2 — B(i) B(j)]
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where 0; ; 1s the Kronecker delta function. ¢:(z,7) and
B(z) are defined as:
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1,1 1 and j are parallel
[$1(2,7) = ¢ neighborhood (Fig. 2).

0,otherwise
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1,1f node 7 1s a boundary node.
0,otherwise
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Figure 3. (a) The mesh is initialized to fit the boundary of
The matrix, W;,.;,, depends on the configuration the surface. (b) The final result.

of the mesh, and 1s recomputed at each iteration stage.
All nodes are moved to new positions according to the
converged states of the neurons within each stage. The
paremeter wi; 1s set to be a constant for homogeneous
mesh during the evolution of the mesh. The temperature
1" starts from high temperature 7};,, and then reduces
gradually to low termperature T;,, within each stage.

That 1s ﬁl’f — — 'Rl';' Taking Figure 3(b) as an example,
we measure 1ts two principal curvatures at each node.
As we can see in Figure 7(a) and (b), R; and Ry own
the similar variations. Note that these two curvatures
are orthogonal mutually. The collective and distributive
operations of the network are of much benifit to the em-
. ulation of the soap film. The initialization of the mesh
1s skillfully, and will be technical for dificult boundaries.
Hopfield model can also be applied in this method by

omitting MF'T procedure.
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. * parallel neighborhood

Figure 2. The mesh is composed of connected snakes. Each
snake has four nodes in it. |
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4 Simulations & discussions
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We now show how the mesh can be used to approach the

minimal surface problem. The mesh 1s 1nitialized skill-
fully to fit the fixed curves (boundaries) of the surface

as shown in Figure 3(a). Then, the mesh will evolve
to reach the minimal surface via the Potts neural net-
work. During the evolution, the boundary of the mesh

1s fixed. Figure 3(b) shows the converged result of the
mesh. Besides, converged shapes for four variations of

the boundaries are provided 1in Figure 4.
kixcept for the plane, the helicoid 1s the only ruled
minimal surface. It 1s a complete embedded minimal [Brakke 92] Brakke, K. A., The Surface Evolver, Ezperi-

surface with finite topology and infinite total curvature mental Mathematics, vol. 1, no. 2, pp. 141-165, 1992.
(Hoffman and Wei 1993). The helicoid 1s the conjugate

surface to the catenoid, hence locally i1sometric to the
catenold. It 1s deformable to a plane. Figure 5 show 1ts
configuration.

Figure 4. Four variations of the catenoid.
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;Flgure h. The helicoid. Left picture shows its top view, right 15 Column

E picture shows its side view. A type of screw surface.

Figure 7. (a)(b) The variations of the two principal curva-
tures of Figure 3(b).
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