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Abstract. This paper presents an automatic acquisition process to ac-
quire the semantic meaning for the words. This process obtains the repre-
sentation vectors for stemmed words by iteratively improving the vectors,
using a trained Elman network [4]. Experiments performed on a corpus
composed of Shakespeare’s writings show its linguistic analysis and cat-
egorization abilities.

Index Terms: word perception, authorship, categorization, semantic
search, Elman network, linguistic analysis, personalized code, content
addressable memory.

1 Introduction

The semantic meaning of a word or a word sequence is often non-quantifiable.
A central problem in the analysis of such a sequence is determining how to
effectively encoding and extracting its contents. Existing analyses are primar-
ily based on certain statistical linguistic features [2], [7], [20], [21], [22]. The
semantic search [23] constructs a mathematical model that analyzes semantic
features and creates a semantic operation space. It sorts data according to the
semantic meaning of the devolved requests. Nevertheless, there are difficulties
in implementing the model. The task of constructing a prime semantic space
is extremely expensive and complex, because experienced linguists are needed
to analyze huge numbers of words. This paper presents an automatic encoding
process to accomplish this task.

Both the frequencies and the temporal sequence of words carry semantic
meaning. When one listens to a talk or reads an article, one should get infor-
mation from both isolated words and their sequences. Complying with temporal
information, the process employs the Elman network [3][4], which works well with
temporal sequences, as an encoding mechanism. This network can extract and
accommodate the rich syntax grammars associated with each word in sentence
sequences [9].

The automatic encoding method will be presented in the second section. The
semantic search [23] and its notations will be reviewed in this section. Applica-
tions to literary works will be presented in the third section.
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2 Encoding Method

Semantic meaning comes from a sequence of words. It is sequential and temporal.
We employ the Elman network to extract the meaning from sentence sequences.

Elman Network
The network is a single recursive network that has a context layer as an inside
self-referenced layer, see Fig. 1. During operation, both current input from the
input layer and previous state of the hidden layer saved in the context layer
activate the hidden layer. Its energy function associated with the hidden layer,
context layer, and input layer is given in the hairy model [14][15]. With successive
training, the connection weights can load the temporal relations in the training
word sequences.

The context layer carries the memory. The hidden layer activates the output
layer and refreshes the context layer with the current state of the hidden layer.
The back-propagation learning algorithm [18] is commonly employed to train
the weights in order to reduce the difference between the output of the output
layer and its desired output. Note that in this paper, the threshold value of every
neuron in the network is set to zero. Let Lo, Lh, Lc, and Li be the number of
neurons in the output layer, the hidden layer, the context layer, and the input
layer, respectively. In the Elman network, Lh is equal to Lc, that is, Lh = Lc. In
this paper, the number of neurons in the input layer is equal to that in the output
layer and is also equal to the number of total features, that is, R = Lo = Li.

Let {wn, n = 1 ∼ N} be the code set of different words in a corpus. The
corpus, D, contains a collection of all given sentences. During training, a sentence
is randomly selected from the corpus and fed to the network sequentially, word by
word, starting from the first word of the sentence. Let |D| be the total length of
all the sentences in the corpus, D. |D| is the total number of words in D. Usually,
|D| is several times the number of different words in the corpus. Initially, t = 0,
all weights are set to small random numbers. Let w(t) be the current word in a
selected sentence at time t, i.e.,

w(t) ∈ D, w(t) ∈ {wn, n = 1 ∼ N}, t = 1 ∼ T , (1)

where w(T ) is the last word of a training epoch. In this paper, we set T = 4|D|
in one epoch. This means that in each epoch, we use all the sentences in the
corpus to train the Elman network four times. Let the three weight matrices
between layers be Uoh, Uhc, and Uhi, where Uoh is an Lh by Lo matrix, Uhc is an
Lc by Lh matrix, and Uhi is an Li by Lh matrix, as shown in Fig. 1. The output
vector of the hidden layer is denoted as H(w(t)) when w(t) is fed to the input
layer. H(w(t)) is an Lh by 1 column vector with Lh elements. Let E(w(t + 1))
be the output vector of the output layer when w(t) is fed to the input layer.
E(w(t + 1)) is an Lo by 1 column vector.

The function of the network is

H(w(t)) = ϕ(Uhiw(t) + UhcH(w(t − 1)) , (2)
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Fig. 1. The Elman Network

where ϕ is a sigmoid activation function that operates on each element of a
vector [18]. We use the sigmoid function ϕ(x) = 1.7159 ∗ tanh(x ∗ 2/3) for all
neurons in the network. This function gives a value roughly between +1.7159
and −1.7159. In Elman’s experiment, the first step is to update the weights,
Uhi, Uhc and Uoh, through training. The second step is to encode words with a
tree structure. All the attempts are aimed at minimizing the error between the
network outputs and the desired outputs to satisfy the prediction

w(t + 1) ≈ E(w(t + 1)) = ϕ(UohH(w(t))) . (3)

From a trained network, Elman uses a measure to locate the relationships among
words and construct a word tree. Before training, he prepares a list of words
without inflections or rules. We will follow his preparation on words. All words
are coded with certain given lexical codes. The available semantic combination is
a fixed syntax, (Noun +Verb + Noun). Elman generates sentences and temporal
word sequences with this syntax grammar and collects all the sentences in a
training corpus, D, for training a network [4]. The network has equal numbers
of neuron units in its four layers. This network is trained sequentially by using the
generated sentences. Elman defines the desired outputs as the sufficient words.
For example, when the first word ‘man’ in a generated sentence ‘men sleep’ is
used as the input, the sufficient word ‘sleep’ is its desired output. The network
is trained to predict the following word. This training process continues until
the variation of weights cannot be reduced. After training, Elman inputs the
generated sentences again and collects all the output vectors of the hidden layer
corresponding to each individual word in a separate set, sE

n = {H(w(t)) | w(t) =
wn}. Then he obtains new code, wE

n , for the nth word by averaging all vectors
in set sE

n :

wE
n =

1
|sE

n |
∑

w(t)=wn

w(t)∈D

H(w(t)), n = 1 ∼ N , (4)
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where |sE
n | is the total number of vectors inside the set sE

n . Then, he constructs
a word tree based on their new codes, wE

n , to explore the relationships among
the words.

Note that there exist extra temporal relations in the generated sentences with
the simple fixed syntax Noun +Verb + Noun. For example, when w(t) is a noun,
w(t + 2) is most likely a noun, and when w(t) is a verb, w(t + 3) is most likely a
verb. These extra relations are additive to resolve the dichotomous classification
between the verb and noun. A compound sentence may not possess such extra
relations, and may not have additive resolutions.

Preparation of the Word Corpus
The words were prepared according to Elman’s approach. We removed the func-
tional words, such as articles, conjunctions, be-verbs, and even some words like
‘take,’ ‘get,’ ‘you,’ ‘I,’ etc. Because they cause noises across different semantic
categories. We then stemmed [6][17] each word as deep as possible to expose
clean relations among words. Note that the degree of stemming is a much dis-
cussed lexical issue. For example, it is not clear whether to stem the structure:
‘-ness,’ ‘-able,’ ‘-tion’.

The Semantic Search
The semantic search [23] constructs a semantic model and a semantic measure.
A manually designed semantic code set is used in the model. It assumes that
the encoding task will be assigned to linguistics experts. It is hypothesized in
advance that one can build a raw semantic matrix, W , as

WR×N ≡ [w1 w2 ... wN ]R×N , (5)

where wn, n = 1 ∼ N , denotes the code of the nth stemmed word and N denotes
the total number of different words. A code of a word is a column vector with
R features as its elements:

wn ≡ [w1n, w2n,...,wRn]T . (6)

To manage abstract features, one may use the orthogonal space configured by
the characteristic decomposition of the matrix, WWT :

WR×NWT
R×N = FT

R×R

⎡

⎢⎢⎣

λ1 0 · 0
0 λ2 0 ·
· 0 · 0
0 · 0 λR

⎤

⎥⎥⎦

R×R

FR×R , (7)

where

FR×R ≡ [f1, f2, ..., fR]R×R, ‖fr‖ = 1, and λr ≥ λr+1, r = 1 ∼ R . (8)

Since WWT is a symmetric matrix, all its eigenvalues are real and nonnegative
numbers. Each eigenvalue λi equals the variance of the N projections of the

codes on the ith eigenvector, fi, that is, λi =
N∑

n=1
(< wn · fi >)2.
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Multidimensional Scaling (MDS) Space
We select a set of Rs eigenvectors, {fr, r = 1 ∼ Rs}, from all R eigenvectors to
build a reduced feature space:

F s
R×Rs ≡ [f1, f2, ..., fRs ]R×Rs . (9)

This selection is based on the distribution of the projections of the codes on each
eigenvector. An ideal distribution is an even distribution with large variance.
We select those eigenvectors, {fr, r = 1 ∼ Rs}, that have large eigenvalues. The
MDS space is

MDS ≡ span(F s) . (10)

These selected features are independent and significant. The new code of each
word in this space is

ws
n = F sT

wn (11)

or
W s

R×N = F sT

WR×N . (12)

Representative Vector of a Whole Document
A document, denoted as D, usually contains more than one word. A represen-
tative vector should contain the semantic meaning of the whole document. Two
such measures are defined [23]. They are the peak-preferred measure,

νa
D = [wa

1 , wa
2 , ..., wa

R]T ; where wa
r = max

ws
n∈D

|ws
rn| , r = 1 ∼ R,

and the average-preferred measure,

νb
D =

∑

ws
n∈D

ws
n = [wb

1, w
b
2, ..., w

b
R]T ; where wb

r =
∑

ws
n∈D

ws
rn, r = 1 ∼ R . (13)

The magnitude is normalized as follows:

vD =
∥∥vb

D

∥∥−1
vb

D . (14)

The normalized measure, vD, is used here to represent the whole document. A
representative vector, vQ, for a whole query can be obtained similarly by using
equations (13) and (14).

Relation Comparison
The relation score is defined as follows:

RSQ(D) =
< vD, vQ >

‖vD‖ × ‖vQ‖ =< vD, vQ > . (15)

Iterative Re-Encoding
Since Elman method for the sentences generated with simple fixed syntax, Noun
+Verb + Noun, cannot be applied appropriately to more complex sentences, we
modified his method. In our approach, each word initially has a random lexical
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code, wj=0
n = [wn1, wn2,...,wnR]T . After the jth training epoch, a new raw code

is calculated as follows:

wraw
n =

1
|sn|

∑

w(t)=wn

w(t)∈D

ϕ(UohH(w(t − 1))), n = 1 ∼ N, (16)

where |sn| is the total number of words in a set, sn. This set contains all the pre-
dictions for the word, wn, based on all its precedent words, sn = {ϕ(UohH(w(t−
1))) | w(t) = wn, and w(t) ∈ D}. This equation has a form slightly different from
that in (4). Namely, we directly average all the prediction vectors for a specific
word. The hidden layer may have a flexible number of neurons in our modified
method. Note that there exist other promising methods to obtain an updated
code from the set sn, such as the self-organizing map [10], the multi-layer per-
ceptron [12]. After each epoch, all the codes are normalized with the following
two equations:

W ave
R×N = W raw

R×N − 1
N

W raw
R×N

⎡

⎢⎢⎣

1 ... 1
.
.

1
.
.

1 ... 1

⎤

⎥⎥⎦

N×N

, (17)

wj
n = wnom

n = ‖wave
n ‖−1 wave

n , where ‖wn‖ = (wT
n wn)0.5, n = 1 ∼ N . (18)

This normalization can prevent a diminished solution, {‖wn‖ ∼ 0, n = 1 ∼ N},
derived by the back-propagation algorithm.

In summary, the process starts with a set of random lexical codes for all of the
stemmed words in a specific corpus. In each epoch, we use all the sentences in the
corpus to train [12][13][14][15][18] an Elman network four times. We then compute
the new code, wj

n, for each word using equations (16), (17), and (18). The train-
ing phase is stopped (finished) at the J th epoch when there is no significant code
difference between two successive epochs. We expect that such iterative encoding
can extract certain salient features, in addition to word frequencies, in the sen-
tence sequence that contain the writing style of the author or work. This writing
behavior is unlikely to be consciously manipulated by the author and may serve
as a robust stylistic signature. The trained code after the J th epoch, wn = wJ

n =
[w1n, w2n, , , wRn]T , which is a vector with R features, is used in the semantic ma-
trix WR×N in (5) and the average-preferred measure (13). The normalization step
(14) and the relation score (15) are then calculated based on this vector.

3 Example of Literature Categorization

In this experiment, we test the ability to classify 36 plays written by William
Shakespeare. A trained code set was generated using a training corpus that con-
tained the 36 works. We considered each play as the query input and computed
the relation score between this query and one other play. Fig. 2 shows the relation
tree of the 36 plays.
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Fig. 2. Categorization of Shakespeare’s plays
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This tree was constructed by applying the methods in [5][8][19] to 630 scores
of pairs of two plays. We also include the genre of each play in the right column of
the figure, where ‘h’ denotes ‘history,’ ‘t’ denotes ‘tragedy,’ ‘c’ denotes ‘comedy,’
and ‘r’ denotes ‘romance.’ The categorization result is very consistent with the
genre [1][11][16][22]. In this example, we set Di = 1, ..36, Qi = 1, .., 36, N =
10, 000 (words with high frequencies of occurrence), Lh = Lc = 200, and Lo =
Li = RS = R = 64 (features). The numbers in the figure indicate the publication
years of the plays.

We provide a semantic search tool using the corpus of Shakespeare’s comedies
and tragedies at http://red.csie.ntu.edu.tw/literature/SAS.htm. Two search re-
sults are listed in Table 1. In this search, we set Di = 1, ..., 7777 (the 7, 777 longest
conversations in the 23 tragedies and comedies), N = 10000, Lo = Li = R = 100,
Lh = Lc = 200, and RS = 64. Each query indexed one conversation.

Table 1. Search results by semantic associative search

query search result
she loves kiss BENVOLIO: Tut, you saw her fair, none else being

by herself poised with herself in either eye; but in that
crystal scales let there be weigh’d. Your lady’s love
against some other maid that I will show you shining at
this feast, and she shall scant show well that now shows
best. – Romeo and Juliet

Armies die in blood MARCUS AND RONICUS: Which of your hands
hath not defended Rome, and rear’d aloft the bloody
battle-axe, writing destruction on the enemy’s castle?
O, none of both but are of high desert my hand hath
been but idle; let it serve. To ransom my two nephews
from their death; then have I kept it to a worthy end.
– Titus Andronicus

Summary
In summary, we have explored the concept of semantic addressable encoding
and completed a design for it that includes automatic encoding methods. We
have applied the methods to study literary works, and we have presented the
results. The trained semantic codes can facilitate other research, such as studies
on personalized codes, linguistic analysis, authorship identity, categorization,
etc. This encoding process can be modified for polysemous words that resolves
multiple meaning of a single word.
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