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Abstract. This paper presents a method to construct a smooth seamless
conformal surface for the genus-0 manifold. The method is developed for
the conformal self-organizing map [10]. The constructed surface is both
piecewise smooth and continuous. The mapping between the model sur-
face and the sphere surface is one-to-one and onto. We show experiments
in surface reconstruction and texture mapping.

1 Introduction

The goal of surface reconstruction is to obtain a continuous surface that can
represent a cloud of pattern points [2]. These cloud patterns are usually ob-
tained from 3D laser scanners and medical scanners. These patterns may also
be collected by various vision techniques, such as correlated viewpoints, voxel
carving, stereo range images. Let X denote the set that contains all point pat-
terns, X = {(xl, yl, zl)T , l = 1, .., P}. The conformal self-organizing map (CSM)
[9][10] derives a continuous surface for the cloud patterns using a collection of
connected simplices including points, edges, and triangles. It is a kind of self-
organizing map [7] with conformal contents [8]. Since these triangles are flat,
the surface constructed by these flat triangles is a continuous surface but not a
smoothly curved one. Besides, the flat triangle surface in 3D [10] has ambiguous
mapping correspondence on the triangle edges. In this paper we show how to
construct a piecewise smooth seamless surface with unique correspondence based
on the derived surface by the CSM.

Basic terminology
Let the collection of all triangles inside a unit sphere be SΔ = {Δr

n, r = 1, ..., R}
as illustrated in Fig. 1(b). Let the collection of all vertices (nodes) be N =
{ni, i = 1, ..., N}, where ni is a 3D column vector in the network space and
contains the position of the ith mesh vertex on the unit sphere surface. Each
triangle is a mesh hole that can be represented by its three vertices, that is,
Δr

n ≡ [nr
i , n

r
j , n

r
k]. The mesh of SΔ can be generated by geodesic dome [6].

Review the CSM
In the CSM, the sampled 3D patterns are the training patterns and the mesh is
configured by neurons. These neurons are the vertices of the mesh. Each neuron
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Fig. 1. Illustration of the pattern space X and the network space in the CSM. (a) The
model surface. (b) The neurons’ position vectors. The curved domes are shown with
blue arcs.

has two vectors, one is the weight vector, wi, in the pattern space and the other
is the position vector, ni, in the network space. The weight vectors contain the
locations of the mesh vertices in the pattern space. The position vectors contain
the locations of the neurons on the sphere surface. Fig. 1 shows the relationship
of these two vectors. In the CSM, wi is evolved to match its corresponding
pattern and ni is fixed to preserve the sphere topology.

The CSM constructs a mapping from SΔ to MΔ [10], where MΔ is the man-
ifold of the sample points. MΔ is the constructed model surface or the manifold
surface to represent the cloud X . MΔ is the surface formed by a collection of
the flat triangles, MΔ = {Δr

w, r = 1, ..., R}. By using the CSM, each equilat-
eral triangle Δr

n is mapped to its corresponding triangle Δr
w. Δr

w is an irregular
triangle and a mesh hole that can be represented by its three vertices, that is,
Δr

w = [wr
i , wr

j , w
r
k], where wr

i is a 3D column weight vector in the pattern space
and contains the position of the ith mesh vertex in MΔ, see Fig. 1(a). The vertex
wr

i is mapped to the vertex nr
i . Both Δr

w and Δr
n are flat triangles. In the CSM,

the parameterization domain is the surface SΔ which is suitable for the genus
zero manifold. The set N contains all joint points shared by SΔ and the unit
sphere surface, S.

There are ways to construct a smooth dome over the Δr
w, such as fitting a

triangular surface spline[3][4]. Since the sphere surface is both continuous and
smooth, these fine properties are useful in building other surface. We show how
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to map (borrow) the sphere surface, S, to its corresponding model surface based
on the derived MΔ. The detailed method is in the next section. Results are given
in the Section 3.

2 Smooth Seamless Surface Parameterization

By using the CSM [10], we can derive the MΔ and obtain the mapping between
each triangle Δr

n and its corresponding triangle Δr
w. Let the portion of the sphere

surface right above the flat triangle, Δr
n, be

�

Δr
n, see Fig. 1(b). The triangular

dome
�

Δr
n can be obtained by cutting the three arc curves, {

�
nr

i n
r
j ,

�
nr

jn
r
k,

�
nr

i n
r
k},

on the sphere surface right above the three edges, {nr
i n

r
j , nr

jn
r
k, nr

i n
r
k}, of the

triangle Δr
n. Each arc point is the intersection of the sphere surface and the line

that passes through the sphere center, c = (0, 0, 0)T , and an edge point. The arc
�

nr
i n

r
j , edge nr

i n
r
j , and center c are in the same plane.

�

Δr
n is the geodesic dome

of Δr
n and has a triangular tent shape. The sphere surface, S, is the collection

of every
�

Δr
n, S = {

�

Δr
n, r = 1, ..., R}. Since the dome

�

Δr
n is beautiful that is

both smooth and continuous, we want to borrow and fit (deform) the dome to
construct a smooth model surface for the cloud X . In the following algorithm, we

show how to map each
�

Δr
n to its corresponding dome,

�

Δr
w, to obtain a smooth

model surface, M , where M = {
�

Δr
w, r = 1, ..., R}.

The algorithm to accomplish the
�

Δr
w is in below.

Smooth Algorithm
Input: new dense mesh N

new, sphere mesh SΔ, model mesh MΔ.
Output: smooth surface M .

1. For each triangle Δr
n, Δr

n ∈ SΔ, find the center cr
n of the triangle Δr

n and
its conformal mapping point, cr

w, in Δr
w, see Fig. 2.

2. Separate Δr
w, Δr

w ∈ MΔ, into three subtriangles, {[cr
w, wr

i , wr
j ], [cr

w, wr
j , w

r
k],

[cr
w, wr

i , wr
k]}, by using the three line sections, {cr

wwr
i , cr

wwr
j , cr

wwr
k}, and the

three edges, {wr
i w

r
j , wr

j wr
k, wr

i w
r
k}.

3. Calculate the unit normal vector of the triangle plane Δr
w (Fig. 3):

n̂r
w =

(

wr
j − wr

i

)

× (wr
k − wr

i )
∣

∣

(

wr
j − wr

i

)

× (wr
k − wr

i )
∣

∣

. (1)

4. Let the triangle next to Δr
w in MΔ that shares the edge wr

i wr
j is Δr1

w , that
shares the edge wr

j wr
k is Δr2

w , that shares the edge wr
i wr

k is Δr3

w . Calculate
the unit normal vectors of the three adjacent triangles, Δr1

w , Δr2

w , Δr3

w , by
using the same equation in the above step. Let the obtained normal vectors
be n̂r1

w , n̂r2

w , and n̂r3

w respectively (Fig. 3).



Smooth Seamless Surface Construction Based on CSM 1015

Fig. 2. onformal mapping between the two triangles Δr
n and Δr

w. Each traingle in 3D is
translated to the complex plane. Then their conformal mappings to a unit disk can be
computed by the Schwarz–Christoffel method [11] to build the point correspondence.

5. Calculate the unit normal vectors of the edges, wr
i wr

j , wr
jw

r
k, and wr

i w
r
k:

êr1

w =
n̂r

w + n̂r1

w
∣

∣n̂r
w + n̂r1

w

∣

∣

, êr2

w =
n̂r

w + n̂r2

w
∣

∣n̂r
w + n̂r2

w

∣

∣

, and êr3

w =
n̂r

w + n̂r3

w
∣

∣n̂r
w + n̂r3

w

∣

∣

. (2)

Note that êr1

w ⊥ wr
i wr

j , êr2

w ⊥ wr
jw

r
k, and êr3

w ⊥ wr
i wr

k (Fig. 3).

6. Select a point p on
�

Δr
n, p ∈ N

new. Find its projection, p′, on the flat triangle
Δr

n:
p′ ≡ pc ∩ Δr

n. (3)

Here c = (0, 0, 0)T is the center of the unit sphere and p′ is the intersection

point of the line pc and Δr
n, as shown in Fig. 4(a).

7. For the point p′, calculate its conformal mapping point q′ in Δr
w,

q′ = MΔr
w

Δr
n
(p′), (4)

where MΔr
w

Δr
n

is the conformal mapping [10] from the flat triangle Δr
n to the

flat triangle Δr
w, see Fig. 4(b). q′ may fall in any one of the three subtriangles.

Suppose q′ is in the subtriangle [cr
w, wr

i , wr
j ].

8. Calculate the projection point bq′ of q′ on the line section wr
i wr

j . This means
that wr

i wr
j ⊥ bq′q′. Calculate the intersection point aq′ of the line bq′q′ and

one of the other two edges of the subtriangle [cr
w, wr

i , w
r
j ]. The locations of

aq′ and bq′ are shown in Fig. 3.
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9. Calculate the unit direction n̂q′ at the point q′ :

n̂q′ =
−→n q′

|−→n q′ | ,

−→n q′ =
|q′ − aq′ |
|bq′ − aq′ |

(

êr1

w − n̂r
w

)

+ n̂r
w. (5)

Note that q′, aq′ , bq′ , and n̂q′ are in the same plane. The two vectors êr1

w

and n̂r
w in Fig. 3 which pass the points bq′ and aq′ separately are also in this

plane.
10. In this step we plan to determine a point q ∈ M , for the dome

�

Δr
w that

is correspond to p. q is obtained from the dome height |p − p′| and the unit
direction n̂q′ . q can be obtained by

q = q′ + |p − p′| n̂q′ . (6)

The whole construction is shown in Figs. 4 and 3.
11. Repeat step 6 and select another point, p ∈ N

new , iteratively.

Fig. 3. Illustration of the relations between the points p and q

We operate this algorithm on all R triangles. We may map any number of
surface points for each triangle dome. This mapping is bijection which maps

from the triangular sphere surface
�

Δr
n to the triangular geodesic model surface

�

Δr
w. The surface border of

�

Δr
w along the three boundary arc curves,

�

{wr
i w

r
j ,

�
wr

jw
r
k,

�

wr
i wr

k}, is perfectly seamless and continuous but may not be smooth. To
our knowledge, this is the only seamless arc connecting two triangular domes.
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Fig. 4. Illustration of the relations among the points p, p′, q′ and c

In all experiments, the surface point p on
�

Δr
n is a vertex of a new denser mesh

N
new, where Nnew > N . N

new may be an icosahedron with more vertices. N
new

may have dense vertices in an area with fine texture.

We assert, without proof, that the mapping of each
�

Δr
n to its corresponding

dome,
�

Δr
w, is bijection, Lemma 1. fp : p → p′ is bijective; Lemma 2. MΔr

w

Δr
n

:
p′ → q′ is bijective; Lemma 3. fq : q′ → q is bijective. This mapping is from the
triangular sphere surface Δr

n to the triangular geodesic model surface Δr
w. We

also assert, without proof, that the mapping of each subtriangular dome
�

Δri

n to

its corresponding dome,
�

Δri

w , is smooth.

3 Implementation and Results

The goal of this smooth seamless surface (SSS) construction is to accomplish a
surface of a real object than a triangular mesh. To verify it, we prepare two sets
of sampled points of a same object. One has fewer points, denoted as Xfew, and
the other has more points, denoted as Xmore. Let CSM compute the conformal
mapping using the fewer one. We then apply SSS to improve it and obtain the
model surface M . The performance is evaluated by the mean square error. The
error is named as mismatch error, Emis. It is

Emis =
1

# (Xmore)

∑

x∈Xmore

dist (x, M)2 . (7)

The distance from point x to surface M , dist (x, M), is the projection distance
from x to M .

In certain case, such as the bunny model has long extrude parts, the ears, it
is difficult for the CSM to learn those concave ear shapes. An edge swap with
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multi-resolution learning [12] and a growing neural mesh [5] may be used to
overcome this difficulty. However, since they change the regular mesh connection,
we will not use them in the CSM. We solve this difficult learning by giving the
priority to those extrude parts during the CSM learning. This priority can resolve
those parts and keep the regular connection.

There are two models used in experiments including the Stanford bunny [14]
and the Igea head [13]. The mesh size of these models is listed in Table 1 below.

Table 1. Model parameters

Igea model bunny model
vertices faces vertices faces

Xfew 12,963 25,922 12,963 25,921
Xmore 134,345 268,686 35,947 69,451
CSM 12,962 25,920 12,962 25,920
dense mesh N

new 64,002 128,000 64,002 128,000

In the CSM learning phase, we set the number of training epoch be epoch =
80.In each epoch, 8000 random sample patterns are used in the learning. The
parameters for the neighborhood variance are set as σ0 = 0.4 and τ1 = 20. The
parameters for the learning rate are set as α0 ← 0.01 and τ2 ← 60. The training
parameters epoch, σ0, τ1, α0, and τ2 are defined in [10]. The mismatch error
Emis of SSS is listed in Table 2. The SSS results are shown in Fig. 5.

Table 2. Mismatch error

Igea model
Emis

SSS 1.4169 × 10−5

mesh of Xfew 8.0370 × 10−5

bunny model
Emis

SSS 5.2631 × 10−5

mesh of Xfew 1.0890 × 10−4

One of the reason for building the smooth surface is to facilitate the texture
mapping. So, one can trace the texture details equally on the smooth surface
without any ambiguous correspondence. The texture mapping of a genus zero
manifold is achieved in the following way. Suppose there are a texture image I,
model surface M , and sphere surface S. First we select a desired view point of
the model M and the north pole of sphere S based on the view point. Then
apply stereographic projection from image I to sphere S. Then map the image
I from the sphere S to the model surface M . We use this projection is because
it is a conformal mapping and is very regular near the point of tangency. Fig.
6(a) shows the result of a crocodile skin texture mapped on the bunny model. In
Fig. 6(b), the checkerboard texture is mapped on the surface. A facial makeup
of Chinese operas in Fig. 6(c) is mapped to the smooth surface in Fig. 6(d).

Fig. 7 shows two texture mapping cases. Fig. 7(a,b) show the checkerboard
texture on the smooth Igea surface in Fig. 5(c). A facial makeup in Chinese
opera in Fig. 7(c) is mapped on the smooth Igea surface, see Fig. 7(d).
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Fig. 5. (a-b) The original model mesh (c-d) The SSS surface from CSM

Fig. 6. (a) The model surface M by the smooth algorithm. (b) The checkerboard
texture mapping on M . (c) The 2D facial makeup in Chinese opera. (d) The facial
texture mapping on M .
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Fig. 7. Texture mapping on the Igea’s head. (a,b) The checkerboard texture mapping.
(c) The 2D facial makup in Chinese opera. (d) The facial makeup mapping on the
Igea’s head.

4 Discussion

The smooth algorithm accomplishes the curved smooth surface instead of the
flat triangle surface obtained from the CSM. The CSM by Liou and Tai in [7] was
designed, originally, to trace the system state which changes continuously and to
resolve various severe competitions among finite neurons in the self-organizing
map (SOM). The SOM with finite neurons cannot be used for monitoring the
continuous state. The folded mapping in SOM can be indicated and resolved by
the negative values of the Jacobian of the mapping function [8]. The CSM can
save and accommodate fine textures in the map. The CSM with flat triangle
surface in 3D [10] has ambiguous resolution on the triangle edges. So, the 3D
surfaces SΔ and MΔ are not suitable for tracing the continuous state. The
surfaces S and M will do. Note that the CSM [7] in 2D flat plane does not have
such ambiguous problem.

Instead of a surface with flat triangles, a curved smooth parameterization for
unorganized data patterns is accomplished for the model surface. This smooth
surface serves as a kind of interpolation for the CSM mesh. Since the sphere
surface possesses well behaved smooth properties, we expect the SSS can carry
the full extent of these beautiful properties to the model surface.
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Texture mapping is a direct application of the SSS. The proposed algorithm
can be additively applied to many triangular meshes obtained by existing meth-
ods. Potential applications are the brain-to-brain registration, consistent para-
meterization [1], facial expression synthesis, deformable object simulation and
computing geodesic path on a model surface. The parameterization for higher
genus is also under our study.
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