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Initializing the weights in multiplayer network 

with quadratic sigmoid function 

Abstract – A new method of initializing the weights in back propagation networks 
using the quadratic threshold activation function with one hidden layer is developed. 
The weights can be directly obtained even without further learning. This method relies 
on general position assumption of the distribution of the patterns. This method can be 
applied to many pattern recognition tasks. Finally, simulation results are presented, 
showing that this initializing technique generally results in drastic reduction in 
training time and the number of hidden neurons. 
 

1 Introduction 

Using neural networks for pattern recognition applications is more and more 
attractive. The main advantages of using neural networks are their massive parallelism, 
adaptability, and noise tolerance, etc (B. Widrow, and R. Winter, 1988)( J. J. Hopfield, 
1982)( T. J. Sejnowski, and C. R. Rosenberg, 1986). One of the most popular neural 
networks is the back propagation (BP) or multilayer perceptron (MLP) neural network. 
The most commonly used activation function of BP is the hard \-limited threshold 
function and sigmoid function. 

Using the hard-limited activation function in every neuron, the upper bound of 
the number of hidden neurons in a single-hidden layer network required for solving a 

general-position two-class classification problem is ⎥⎥
⎤

⎢⎢
⎡

n
K , where K is the number of 

patterns, n is the input dimension. If without the general-position constraint, the upper 
bound of the number of the hidden neurons is K – 1. 

Recently, a new quadratic threshold activation function is proposed (C. C. 
Chiang, 1993). By using it in each neuron, it is shown that the upper bound of the 
number of hidden neurons required for solving a given two-class classification 
problem can be reduced by one half compared with the conventional multilayer 
perceptrons which use the hard-limited threshold function, The results are given in 
table 1. Since the quadratic function is a little bit more complicated than the 
hard-limited threshold function, the learning is much difficult for the BP network with 
the quadratic function. Both the learning period and convergence properties are not 
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good enough to obtain effective results and can be observed in typical simulations. To 
relieve this learning difficulty, a new method for initializing weights in BP networks 
using the quadratic threshold activation function with one hidden layer is presented. 
The method based on the use of Gauss elimination; it is applicable to many 
classification tasks. The paper is organized as follows: the basic quadratic threshold 
function is described in section 2; this new initialization method is addressed in 
section 3; and finally, simulation results are shown in section 4. 
 

     
         Problem 
Activation 
 Function 

General-position Not general-position 

Hard-limited ⎥⎥
⎤

⎢⎢
⎡

n
K  K-1 

QTF ⎥⎥
⎤

⎢⎢
⎡

n
K
2

 ⎥⎥
⎤

⎢⎢
⎡

2
K  

 
 Table 1. Number of hidden neurons required 

 
 

2 Quadratic Threshold Function 

The quadratic threshold function (QTF) is defined as (C. C. Chiang, 1993) 
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In (C. C. Chiang, 1993), an upper bound on the number of hidden neurons 
required for implementing arbitrary dichotomy on a K-element set S in En is derived 
under the constraint that S is in general position. 

Definition 1 A K-element set S in En is in general position if no (j+1) elements in 
S in a (j-1)-dimensional linear variety for any j where 2 ≤ j ≤ n. 
 
Proposition 1 (S. C. Huang, and Y. F. Huang, 1991, Proposition 1) Let S be a 
finite set in En and S is in general position. Then, for any J-element subset S1 of S, 
where 1 ≤ J ≤ n, there is a hyperplane, which is an (n-1)-dimensional linear 
variety of En and no other elements of S. 
 
In (E. B. Baum), Baum proved that if all the elements of a K-element set S in En 

is in general position, then a single-hidden-layer MLP with ⎥⎥
⎤

⎢⎢
⎡

n
K  hidden neurons 

using the hard-limited threshold function can implement arbitrary dichotomies defined 
on S. In (C. C. Chiang, 1993), it is proved that a two-layered (one hidden layer) MLP 

with at most ⎥⎥
⎤

⎢⎢
⎡

n
K
2

 hidden neurons, which use the QTF, is capable of implementing 

arbitrary dichotomies of a K-element set S in En if S is in general position. 
Since the quadratic threshold function is non-differentiable. To ease the 

derivation, we use the quadratic sigmoid function (QSF) as follows:  

 Quadratic Sigmoid Function:  
)exp(1

1),( 2 θ
θ

−+
=

net
netf  

 

3 Description of this Method 

Consider a classification problem consisting in assigning K vectors of Rn to 2 
predetermined classes. Let the given training set H = {x1, x2, …, xK} = {H0, H1} is 
partitioned into K0 ≤ K training vectors in subset H0 corresponding to class 0, and K1 ≤ 
K training vectors in set H1 corresponding to class 1, where K0 + K1 = K. And H0 = 
{p1, p2, …, pK0}, H1 = {q1, q2, …, qK1}. The classification can be implemented within 
a two-layer neural network with N0 + 1 input units, N1 + 1 hidden neurons, and N2 

output units, as illustrated in Figure 1. (N0 = n, N1 = ⎥⎥
⎤

⎢⎢
⎡

n
K
2

, N2 = 1). 
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According to Proposition 1, for any n-element subset S’1 of S1, which contains 
elements belong to for example class 1, there is a hyperplane which is a 
(n-1)-dimensional linear variety of En containing S’1 and no other elements of S. We 
can use the Gauss elimination to solve the linear equations of the hyperplane that the n 
patterns of class 1 lie on. 

Let us now describe the initialization scheme more formally. Let the input and 
hidden layers have each a bias unit with constant input activation value of 1, and the 
matrices of weights W(1) and W(2) are between the input and the hidden layer, and 
between the hidden and the output layer, respectively. 
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Where )1(
,ijW  represents the connection from the i-th input unit to the j-th hidden 

neuron, for j = 1, 2, …, N1, i = 0, 1, …, n; )2(
,1 jW  represents the connection from the 

j-th hidden unit to the output neuron, where j = 0, 1, 2, …, N1; 
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Let θ(1), θ(2) be the vector of θs values of the hidden and output layer, respectively. 

)1(
jθ  and )2(

1θ  represent the θ value of the j-th hidden neuron j = 1, 2, …, N1 and of 

the output neuron, respectively. 
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 If K0 ≥ K1, we use the set of patterns in set H1 corresponding to class 1 to obtain 

the weights values for the ⎥⎥
⎤

⎢⎢
⎡

n
K1  hidden neuron, so the number of the hidden neurons 

},,2,1{,},,2,1{.
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⎡= , let 

  )1(
0,jW   = 1   (1) 

  )2(
,1 jW  = 1   (2) 

  )2(
0,1W  = -1   (3) 
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  )1(
jθ   = β   (4) 

  )2(
1θ   = β   (5) 

where 0 <β < 1 is a very small positive number. 
 In order for each j-th hidden neuron represents a different set of n input patterns, 

we solve the following equations to get )1(
,ijW , for each j = 1, 2, …, ⎥⎦

⎥
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n
K1 , i = 1, 2, …, 
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If 
n

K1  is a integer (i.e. ⎥⎦
⎥

⎢⎣
⎢

n
K1  = ⎥⎥

⎤
⎢⎢
⎡

n
K1  = N1), here we done. If 

n
K1  is not a 

integer (i.e. ⎥⎦
⎥

⎢⎣
⎢

n
K1  = ⎥⎥

⎤
⎢⎢
⎡

n
K1  - 1 = N1 – 1), the rest K1 – n ×  ⎥⎦

⎥
⎢⎣
⎢

n
K1  patterns are 

then represented by the N1-th hidden neuron using the following formula. For j = N1, i 

= 1, 2, …, K1 – n ×  ⎥⎦
⎥

⎢⎣
⎢

n
K1 . 
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The equations can solve )1(
,1 iNW  for i = 1, 2, …, K1 – n ×  ⎥⎦

⎥
⎢⎣
⎢

n
K1 . Let the other n - K1 

+ n ×  ⎥⎦
⎥

⎢⎣
⎢

n
K1  weights connects to the N1-th hidden neuron be zero. 

 If K0 < K1, we use the set of patterns in set H0 corresponding to class 0 to obtain 

the weights values for the ⎥⎥
⎤

⎢⎢
⎡

n
K1  hidden neuron, so the number of the hidden neurons 
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N1 = ⎥⎥
⎤
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. Everything is the same except that let 
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and q is replaced by p. We now solve the following equations to get )1(
,ijW , for each j 

= 1, 2, …, ⎥⎦
⎥

⎢⎣
⎢

n
Kn , i = 1, 2, …, n. 

  

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=+

=+

=+

∑

∑

∑

=

+−

=

+−

=

+−

n

i
j

nnj
iij

n

i
j

nj
iij

n

i
j

nj
iij

WpW

WpW

WpW

1

)1(
0,

)1()1(
,

1

)1(
0,

2)1()1(
,

1

)1(
0,

1)1()1(
,

0

0

0

LLLLLLLLLLL

     (9) 

If 
n

K 0  is not a integer, the weights connects inputs and the N1-th hidden neuron can 

be obtained the same way as for the case K0 ≥ K1. 
 To test the results, when K0 ≥ K1, with these initial values of the weights, an input 
x ∈  H1 such: 

  0)1(
0,

)1( =+⋅ jj WxW  

means x lies on the hyperplane that the j-th hidden neuron represents. This input will 
cause only the j-th hidden unit to have an activation value close to 1, since 

  0)1(
0,

)1()1( =+⋅= jjj WxWnet , 

where, )1(
jnet  represent the net input magnitude of the j-th hidden neuron. And 

  ββ <=<− 0)1(
jnet  

The other hidden neurons t ≠ j will not get activated because 
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Consequently, provided the activation of the activation of the j-th hidden neuron is 
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close to 1 with a QSF and all other neurons are 0, the output neuron will also get 
activated, since 

  011)2(
0,1

)2(
1

)2(
1 =−∗=+⋅= iyWyWnet , 

  ββ <=<− 0)2(
1net  

where y represent the output vector of the hidden layer, )2(
1net  represent the net input 

magnitude of the output neuron. If K0 < K1, there is a similar situation. 
 

4 Simulations 

This section provides the results of applying the above method for the 
initialization of three simple problems. The first is the XOR problem, the second is 
the parity problem, and the third is the gray-zone problem. They are trained with this 
algorithm using a two-layer neural network. All the simulations have been performed 
using BP with a momentum term. In this algorithm, the weights and θs are updated 
after a training pattern, according to the following equations (C. C. Chiang, 1993): 
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where j = 0, 1, 2, …, N1; i = 0, 1, …, n; E = 2)(
2
1 do − ; o = the actual output; d = the 

desired output; t = a discrete time index; α1 = the momentum coefficient for weights; 
α2 = the momentum coefficient for θs; µ1 = the learning rate for weights; µ2 = the 
learning rate for θs. 
 The exclusive-or (XOR) function has been widely used as a benchmark example 
to test the neural network’s learning ability. Figure 2 depicts the learning curves of the 
XOR problem for our method, random QSF BP, and random Sigmoid BP. The 
learning curves of the random QSF BP and the random sigmoid BP are the average 
results of 50 times training using 50 different sets of initial random weights all 
between –0.1 and +0.1 to relieve the effect of different initial weights. In the 
simulations, the parameter were chosen as follows: µ1 = 0.3, µ2 = 2.0, α1 = 0.3, α2 = 
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0.005, β = 0.09. This figure shows that the evaluated mean squared error decreasing 
with the epoch number. An “epoch” means the presentations of the whole training set. 
As shown in Figure 2, our learning speed is far superior to the learning speed of the 
QSF BP and the random Sigmoid BP with the same learning rate and even though we 
use less number of hidden neurons. 

 
 
 The parity problem contains 32 8-dimensional binary training patterns. If the 
sum of every bit of the input pattern is odd, the output is 1, otherwise 0. For example, 
presentation of 00001111 should result in an output of ‘0’ and presentation of 
01000110 should result in an output of ‘1’. Figure 3 shows the learning curves of the 
parity problem for our method, random QSF BP, and conventional BP. In the same 
way, the learning curves of the random QSF BP and conventional BP are the average 
results of 50 times training using 50 different sets of initial random weights all 
between –0.1 and +0.1. In the simulations, the parameter were chosen as follows: µ1 = 
0.01, µ2 = 2.0, α1 = 0.001, α2 = 0.005, β = 0.09. With the same learning rate and less 
number of hidden neurons, our learning speed is far superior to the others. 
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 Figure 4 is the distribution of the training patterns of the gray-zone problem on 
the 2-dimension plane. Circle and cross present class 0 and class 1, respectively. 
Figure 5 is the learning curves for our method, random QSF BP, and random sigmoid 
BP (µ1 = 0.2, µ2 = 0.9, α1 = 0.02, α2 = 0.005, β = 0.04). Figure 6 is the result of using 
our method after 200 epoches. The white zone is class 0 (i.e. the output is smaller than 
0.2), while the black zone is class 1 (i.e., the output is larger than 0.8). Some data is 
included in neither class 0 nor class 1 (i.e., the output is between 0.2 and 0.8), as 
shown in the gray zone. Therefore in such training patterns as figure 4, the ambiguous 
ones will be grouped to the gray zone. So our method can solve the ambiguous 
problem of the training patterns. 
 

5 Conclusion 

In this paper, we propose a new method to initialize the weights of QSF BP 
neural networks. According to the theoretical results, the upper bound on the number 
of the hidden neurons is reduced to be a half of the single-hidden-layer MLP used. 
According to the simulation results, the initialized neural network is far superior to the 
conventional BP and random QSF BP both in learning speed and network size. 
 
 
 
 



526 U1180 neural networks    49 

 
 
 
 

Exercises 

3.1 Note that the MLP networks using the quadratic threshold activation function 
defined as 
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can implement dichotomy problems. The patterns as shown in Figure P1 have to 
be classified in two categories using a layered network. Figure P2 is the 
two-layer classifier using the quadratic threshold activation function. The values 
in the circles are the values of θ corresponding to the neurons. Figure P3 is the 
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logic equivalent diagram. (1)~(5) Fill in the appropriate weights in the Figure P2. 
(6) Fill in the appropriate value of θ in the Figure P2. (7) Write down the correct 
interpretation of the logic gate in Figure P3. (8) Sketch the partitioning of the 
pattern space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(0, 1) 

(0.5, 0.5)

(1, 0) 

(-0.5, 0.5) 

(-1, 0) 

(-0.5, -0.5) 
(0.5, -0.5) 

(0, -1) 

  : class 1 
 
  : class 0 

Figure P1. 
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