
A comprehensive survey on two associative
memory models

Cheng-Yuan Liou†, Jiun-Wei Liou, Yng-Kae Tzeng
Department of Computer Science and Information Engineering, National Taiwan University

Abstract— This paper surveys two advanced associative mem-
ory models[8][5]. The first model was derived from the projec-
tion on a closed convex set spanned by patterns. The second
model was derived from training weights to improve the error
tolerance of the Hopfield network. Both models are designed
to resolve the insufficiencies of the Hopfield network. These
insufficiencies are loading capacity, limit cycles, and stability
with respect to noisy patterns.

Index Terms— Neural network, Hopfield model, associative
memory, recurrent network

I. INTRODUCTION

Associative memory(AM) is a mechanism to store patterns.
The pattern stored in the memory can be recalled even if a
portion of this pattern is corrupted. We will discuss binary
patterns only. The Hopfield model[2], was designed to realize
associative memory collectively. This model carries very rich
meaning in both biology and physics. But it has insuffi-
ciencies in loading capacity, limit cycles, and stability with
respect to noisy patterns. Its capacity is roughly 0.14m, here
m is the total number of bits of the pattern. The projection
learning rule[6] was proposed to increase the capacity of the
associative memory to m. This rule stores patterns as equi-
librium points (or states), but an equilibrium state may not be
asymptotically stable. The eigenstructure method[3] was later
proposed to store the patterns as asymptotically stable states,
but this method produced extra asymptotically stable states.
These extra states which are not patterns are called spurious
asymptotically stable states. Tao’s AM[8] was designed to
realize the associative memory without the drawbacks of the
projection learning rule and the eigenstructure method. This
AM was further improved to serve as a BSB model[10] with
much reduced computation.

Tao’s AM applied the projection[6] of a continuous-time
system[11] on a closed convex set[7]. This set is spanned by
all patterns. Tao’s AM is governed by an energy function[8].
Those stored patterns have local minimal values of this
function.

The Hopfield model is a fully connected network with
m neurons and m × m connection weights. This model
can be viewed as an m-D hypercube with m hyperplanes.

This research was supported by National Science Council under project
number NSC 93-2213-E-002-081.

†Correspondent, cyliou@csie.ntu.edu.tw, Dept. of CSIE, NTU, Taipei,
Taiwan, 106, ROC.

The weights and threshold of each neuron configure the
hyperplane. All binary patterns are stored on certain corners
of the hypercube. The weight matrix of the model is a
symmetric matrix with 0 values in all diagonal elements,
and the threshold of each neuron is also 0. This means
that the hyperplane passes the origin. Since its loading
capacity is too low, this model may not store all patterns
correctly. The etAM (error tolerant associative memory)[5]
was proposed to improve its error tolerance and resolve the
three insufficiencies. The work[5] also proposed a modified
error correction rule (mECR) to improve the ECR model. We
review and compare Tao’s AM and the etAM in rest sections.

A. Tao’s AM
Tao’s AM is based on an energy function and a projection

learning rule. It starts with setting closed convex on the
projection space. Let p1, p2, . . . , pn ∈ Rm be the n patterns
(column vectors) that we plan to store in the AM. Let Q
be the smallest closed convex set containing all n patterns.
Denote k·k as the Euclid norm, and inf as the lower bound
of a value. Set a quadratic progamming problem⎧⎪⎨⎪⎩

x ∈ Q;

min f(x) = min(−1
2

mX
i=1

x2
i ).

(1)

It is obvious that the solutions of the equation (1) are
p1, p2, . . . , pn, which are precisely the patterns. After setting
the problem, we define the projection operator. For any x,
x = (x1, x2, . . . , xm)T ∈ Rm, there exists a point (or state)
P (x) ∈ Q such that

kx− P (x)k = inf
y∈Q

kx− yk .

P (x) is defined as the projection of x on Q. A dynamical
system is giving as

dx

dt
= P (x− f 0(x))− x. (2)

Let Dm be the space, Dm = {x|1 = xi = −1,∀i =
1, 2, ...,m}. The energy function E(x) : Dm → R is defined
as

E(x) =

½
f(x), 2x ∈ Q;

1
4 kP (2x)− 2xk2 − 1

2 kxk2
, otherwise. (3)



E(x) is continuous and differentiable. The evolution of E(x)
with respect to time t is

dE(x(t))

dt
≤ − kP (2x(t))− x(t)k2 ≤ 0.

So, E(x) is a Lyapunov function of the system (2) on Q and
this system is globally stable in Dm.

The projection function P (p0), p0 ∈ Rm an arbitrary
initial state p0 in Rm, is a solution of the quadratic pro-
gramming problem

min
1

2

°°°°°p0 −
mX
i=1

λipi

°°°°°
2

,
nX
i=1

λi = 1, 1 ≥ λi ≥ 0. (4)

This problem (4) can be solved by a globally evolving
network as⎧⎨⎩

dr
dt = −(I + A0A

T
0 )[r − P0(r −DT

0 s−A0A
T
0 r + A0p0)]

−DT
0 (D0r − 1)

ds
dt = −D0P0(r −DT

0 s−A0A
T
0 r + A0p0) + 1

,

(5)
where P0 is the projection function on an unit hypercube
Q0, D0 is an n×1 matrix with all the elements being 1, and
A0 = (p1, p2, . . . , pn)T . r(t) is a column vector contains
λi(t) as its ith element. Solution λi = λi(∞), P (p0) =
r(∞), can be obtained when dr

dt ≈ 0 after many evolutions.
P (p0) = r(∞). The system (2) is shown in Fig. 1.

Fig. 1. The block diagram for the dynamical system (2).

An improved AM based on this quadratic programming
problem (1) was proposed[9] to serve as a BSB model. The
system equation of the state is improved[10] as

xt+1 = P (2xt). (6)

Accordingly[9], the iteration(5) is rewritten as½
dr
dt = P0(r −DT

0 s−A0A
T
0 r + A0p0)− r,

ds
dt = −D0P0(r −DT

0 s−A0A
T
0 r + A0p0) + 1.

(7)

We plot two simulations to depict the evolution of Tao’s
AM. To simplify notations, each pattern is encoded into a
simple form by successive transformations. As an example,

the two patterns with three binary bits in each pattern, {p1 =
(1,−1,−1), p2 = (−1, 1,−1)}, can be encoded as

{(1,−1,−1), (−1, 1,−1)},
⇔ {(1, 0, 0), (0, 1, 0)},
⇔ {001, 010},
⇔ (1, 2)3.

(8)

The following simulations are for the cases (0, 3)2 in 2D
and (0, 3, 5)3 in 3D. According to (2), we record the states
during the system evolution. The closed convex set of (0, 3)2

is a line as shown in Fig. 2, and several evolution traces with
different initial states, denoted by small circles ’◦’, are plotted
in Fig. 3.

-2 -1 0 1 2
-2

-1

0

1

2

x
1

x 2

Fig. 2. The closed convex set of the case (0, 3)2.

-2 -1 0 1 2
-2

-1

0

1

2

x
1

x 2

Fig. 3. The system traces with different initial states for the case (0, 3)2.

From these evolution traces, we see that there are 3
equilibrium states. These states are the two patterns and an
extra state (or an unrecognizable state). This unrecognizable
state is in the mid-point of the line connected the two
patterns. When an initial state has equal distance from both
patterns, the system will evolve to this unrecognizable state.



The convex set of (0, 3, 5)3 is an equidistant triangle as in
Fig. 4, and several evolution curves are recorder in Figs. 5
and 6.

-1
0

1

-1
0

1
-1

0

1

x1
x2

x 3

Fig. 4. The convex set of the case (0, 3, 5)3.

-1
0

1

-1

0

1
-1

0

1

x1
x2

x 3

Fig. 5. Evolution curves with different initial states of the case (0, 3, 5)3.

The number of equilibrium states is 7 in this case (0, 3, 5)3

whose convex set is an equidistant triangle. The square
points in Figs. 5 and 6 are the equilibrium states which are
unstable and are those unrecognizable states. These states
can be monitored by inspecting broken binaries. Whenever
the system evolves to such state, one can further evolve the
system by perturbing this state to reach all those binary states
which underlie this state.

Three typical system evolution curves (3) for the case
(0, 3, 5)3 are recorded in Fig. 7. These curves evolve from
three different initial states and reach three different states
which are a pattern, denoted by 1st, a mid-point between
any two patterns, denoted by 2nd, center of the three patterns,
denoted by 3rd.

-1
0

1 -1
0

1

-1

0

1

x2x1

x 3

Fig. 6. Several other evolution curves of the case (0, 3, 5)3.

0 20 40 60 80 100
-1

-0.5

0

0.5

1

1st↓

Iterations

E 
va

lu
e

2nd↑

3rd↓

Fig. 7. The energy value E is decreased during all three kinds of evolution.

B. The etAM

The weight matrix of the Hopfield model is

wji =

⎧⎪⎨⎪⎩
1
n

nX
k=1

pk,jpk,i, j 6= i,

0, j = i

.

The model will iterate with an input noisy pattern v(0)
according to the equation below

vj(t + 1) = sgn(
mX
i=1

wjivi(t)), j = 1, . . . ,m. (9)

The iteration will stop when all vj(t) are evolved to certain
fixed values. Here the sgn function gives a value −1 when
the value in the bracket is smaller than 0, gives 1 when the
value in the bracket is smaller than 0, and vi(t) when the
value in the bracket is exactly 0.

In the etAM the ith neuron’s weights, Wi =
(wi1, wi2, wi3, . . . , wim)T , and threshold, θi, configure the
ith hyperplane. This hyperplane is given by the solution space



of v of the equation

wi1v1 + wi2v2 + wi3v3 + . . . + wimvm − θi

= Wiv − θi = 0, i = 1, . . . ,m.

The weight vector Wi = (wi1, wi2, wi3, . . . , wim)T is a
normalized column vector with length 1. Wi is the unit
direction of the ith hyperplane. This hyperplane separate the
hypercube into a positive section, where Wiv > θi, and a
negative section, where Wiv < θi. Each pattern is located in
one section according to the sign of the ith bit of this pattern.
That is a pattern with a positive ith bit is in the positive
section and a pattern with a negative ithbit is in the negative
section. The etAM trains the weight vector and threhold
to maximize the minimum distance among all patterns in
both sections and the hyperplane, that is we maximize the
distance between the two closest patterns in two sections to
the hyperplane. The algorithm for tuning the hyperplane is
in below.

1) Initialize the weights according to the Hopfield model:

wji(0) =
nX

k=1

pk,jpk,i, i, j = 1, . . . ,m;

θi(0) = 0, i = 1, . . . ,m.

(10)

Then normalize Wi, i = 1, . . . ,m, and initialize q to
1. wij(t) is the weight between the ith neuron and the
jth neuron at training time step t.

2) For the qth neuron, calculate the distances from all
patterns to the hyperplane and find the two patterns,
pa and pb, from both sections which have minimal
distances that is,⎧⎪⎪⎨⎪⎪⎩

dkq =
mP
j=1

wqjpk,j − θq, k = 1, . . . , n;

daq = min{dkq | pk,q = 1, k = 1, . . . , n},
dbq = max{dkq | pk,q = −1, k = 1, . . . , n}.

(11)

3) If all the patterns have pk,q = 1, then set θq to a value
less than −√m, increase q by 1, and goto 2. If all the
patterns have pk,q = −1, then set θq to a value greater
than

√
m, increase q by 1, and goto 2. In this step, we

move the hyperplane outside of the hypercube. Note
that the distance between each corner and the origin is√
m.

4) Shift the hyperplane to the middle of pattern a and b
to maximize the minimal distance as follows

θq(t + 1) = θq(t) +
(daq + dbq)

2
.

After adjusting, the minimal distance d∗q is (daq −
dbq) / 2.

5) Rotate the hyperplane to ffurther increase the distances
from patterns pa and pb to the hyperplane by

wqj(t+1) = wqj(t)+α(pa,qpa,j+pb,qpb,j), j = 1, . . . ,m,
(12)

where α is the learning rate, and then normalize Wq .

6) Repeat (11) to compute the new daq and dbq. If the new
(daq −dbq) / 2 is larger than the previous d∗q , go to 2. If
not, undo (12), increase q by 1, and if q is no greater
than m, go to 2, else stop.

After obtaining the weights and thresholds, they are then
used to restore noisy patterns.

C. mECR
In the ECR, the weights and thresholds are adjusted

according to the equations in below

wij(t + 1) = wij(t) + η(pk,i − vi(t))pk,j , (13)
θi(t + 1) = θi(t)− η(pk,i − vi(t)), (14)

vi(t) = sgn(
mX
j=1

wij(t)pk,j − θi(t)), (15)

where η is the learning rate, vi(t) is the value of the ith

neuron’s output at time t, pk,j is the jth bit of the kth

pattern used to train the weights and threshold. Since the
error tolerance of the ECR is weak, a modified ECR (mECR)
is introduced by replacing equation (15) with (16)

vi(t) = sgn(
mX
j=1

wij(t)pk,j − θi(t)− γpk,i). (16)

Here γ is a small positive number. The mECR utilizes the
extra term −γpk,i to further improve the error tolerance. This
term moves the hyperplane further away from the pattern to
ensure the error tolerance.

II. SUMMARY AND COMPARISON

In the following experiments, the projection function and
the system (2) are solved using the fourth order Runge-Kutta
method. For the projection function, the time step in the
Runge-Kutta method is set to 0.1 and the total simulation
time is set to 2000. For the system (2), the time step in the
Runge-Kutta method is set to 0.01.

The solved values will be rounded to 1 or −1 whenever
they are close to these binary values. In etAM, the learning
rate α is set to 0.005. In mECR, the learning rate η is
set to 0.2, and γ is set to 1. Since the trained weights
and thresholds are not the same for each execution of the
mECR, the results obtained by the mECR are averaged by 5
independent executions.

The three tables in the next page contain the results
obtained by Tao’s AM, etAM, and mECR. The explanation
for each column item of the tables is in below.
• SS denotes the total number of binary stable states.
• TS denotes the total number of unstable binary states

evolving to the binary stable states.
• TP denotes the total number of binary states evolving

to the patterns, TP= n.
• US denotes the total number of unrecognizable states

which can be reached from all binary states in Tao’s
AM. There may exist extra unrecognizable states which



can be reached from non-binary states. Note that an
unrecognizable state do not have all binary elements.

• TU denotes the total number of binary states evolving
to the unrecognizable states in Tao’s AM.

• C denotes the total number of limit cycles.
• TC denotes the total number of binary states evolving

to limit cycles.
• RP denotes the total number of noisy patterns with one

bit error that can be restored(/n∗). n∗ is the number of
one bit error patterns, n∗, where we will exclude those
patterns with one or two bit Hamming distances.

• Time denotes the total CPU time in seconds by the Tao’s
AM to obtain the results listed in a whole row. In the
last column, ’Time*’ denotes the time by the improved
Tao’s AM[10].

The bottom rows of the above three tables use the 10-bits
pattern example in [4]. From the Table, all three AMs can
store patterns correctly. There is no limit cycle found in Tao’s
AM and etAM. Tao’s AM generates no spurious states and
has good recovery capability. The etAM and mECR have
no unrecognizable state or equilibrium states. They generate
spurious stable states. These spurious states have no basin and
cannot withstand thermal noise perturbation. A large number
in TP roughly shows the basin size of a stored pattern. A
pattern with large basin can be recovered from noisy patterns
and can withstand thermal noise. All three models generate
pattern basins. This fact is shown by the large numbers under
iterms TS and RP. In several cases the mECR generates limit
cycles. The mECR is weak in error tolerance in most cases.

When an equilibrium state reached by using Tao’s AM
is not a stored pattern, this state has broken binaries. These
broken binaries can indicate such equilibrium state and can be
monitored during the system evolution. Whenever the system
evolves to such state, one can further evolve the system by
perturbing this state to reach all those binary states which
underlie this state.

Since Tao’s AM uses the Runge-Kutta method, the com-
putation time is roughly O(mn2+βn2), here mn2 is the cost
to calculate A0A

T
0 in equation (5) and β is a huge number,

20000 × 4 in our experiments. The computation time for
the improved Tao’s AM[10] is reduced to O(β0n2), β0 is
much smaller than β. The computation time for the etAM
and mECR is O(m2) in both training and restoring.

The memory spaces needed for the etAM and mECR are
O(m2 + mn) which contain the weight matrix, threshold
vector, inputs, and patterns. The spaces required for Tao’s
AM are O(mn + n2) which contain the patterns, the space
required for the Runge-Kutta method, and inputs.

As for parallel distributed processing, all three AMs can
be programmed parallelly. According to the block diagram in
Fig. 1, except the projection function, all other components
in Tao’s AM are obviously parallel. Since the projection
function is solved by using equation (5), all the operations
on matrices in this equation can be calculated parallelly.

As for the temporal associative memory, the etAM can be

modified[5] to accomplish temporal tasks. The mECR can
also be modified for the temporal associative memory as

wij(t + 1) = wij(t) + η(pk+1,i − vi(t))pk,j , (17)
θi(t + 1) = θi(t)− η(pk+1,i − vi(t)), (18)

vi(t) = sgn(
mX
j=1

wij(t)pk,j − θi(t) (19)

−γpk+1,i). (20)

Here, pk+1,i is the ith bit of the next pattern after pk. The
overall specification is shown in Table IV.

REFERENCES

[1] J. Bruck, “On the convergence properties of the Hopfield model,” Proc.
IEEE, vol. 78, pp.1579-1585, Oct. 1990.

[2] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Academy Sci., vol. 79,
pp. 2554-2558, Apr. 1982.

[3] J. Li, A. N. Michael, and W. Porod, “Qualitative analysis and synthesis
of a class of neural networks,” IEEE Trans. Circuits System, vol. 35,
pp. 976-986, Aug. 1988.

[4] W. E. Lillo, D. C. Miller, and S. H. Zak, “Synthesis of brain-state-
in-a-box(BSB) based on associative memory,” IEEE Trans. Neural
Networks, vol. 5, no. 5, pp. 730-737, Sep. 1994.

[5] C. Y. Liou, and S. K. Yuan, “Error tolerant associative memory,”
Biological Cybernetics, vol. 81, pp.331-342, 1999.

[6] L. Personnaz, I. Guyon, and G. Drefus, “Information storage and
retrieval in spin-glass like neural networks,” J. Phys. Lett., vol. 46,
pp. 359-366, Apr. 1985.

[7] Q. Tao and T. Fang, “The neural network based on constraint domain
and its applications” (in Chinese), Chinese Artificial Intell. Pattern
Recognition, vol. 11, no. 4, pp. 472-478, 1998.

[8] Q. Tao, T. Fang, and H. Qiao,“A novel continuous-time neural network
for realizing associative memory,” IEEE Trans. Neural Networks, vol.
12, no.2, pp. 418-423, Mar. 2001.

[9] Q. Tao, J. Cao, D. Sun, “A simple and high performance neural
network for quadratic programming problems”, Applied Mathematics
and Computation, vol.124, pp. 251–260, 2001.

[10] Q. Tao, J. Cao, and X. Liu, “The BSB neural network in the convex
body spanned by the prototype patterns for associative memory,”
Applied Mathematics and Computation, vol. 132, pp. 175-187, 2002.

[11] Y. Xia, “A new neural network for solving linear and quadratic
programming problems,” IEEE Trans. Neural Networks, vol. 7, no.
6, pp. 1544-1547, Nov. 1996.



TABLE I
SIMULATIONS OF TAO’S AM.

Tao’s AM SS US TS TP TU RP Time(s) Time*(s)
(0, 1, 2)5 3 1 21 24 8 9/9 1845 8.51
(0, 1, 6)5 3 1 21 24 8 9/9 1844 9.70
(0, 1, 14)5 3 1 23 26 6 13/13 1839 9.91
(0, 1, 30)5 3 1 23 26 6 13/13 1824 11.82
(0, 3, 5)5 3 4 9 12 20 6/6 1763 7.55
(0, 3, 12)5 3 3 11 14 18 7/7 1773 8.05
(0, 3, 13)5 3 1 21 24 8 11/11 1806 10.05
(0, 3, 28)5 3 1 21 24 8 11/11 1833 12.21
(0, 3, 29)5 3 4 12 15 17 11/11 1744 7.86
(0, 7, 25)5 3 1 23 26 6 15/15 1829 10.12

(62, 78, 235, 291, 473, 834)10 6 25 628 634 390 60/60 150900 1292

TABLE II
CONVERGENCE OF ETAM.

etAM SS US TS TP TU RP Time(s)
(0, 1, 2)5 4 0 28 24 0 9/9 0.007
(0, 1, 6)5 4 0 28 26 0 10/9 0.007
(0, 1, 14)5 4 0 28 24 0 12/13 0.007
(0, 1, 30)5 4 0 28 27 0 12/13 0.007
(0, 3, 5)5 8 0 24 9 0 6/6 0.007
(0, 3, 12)5 4 0 28 30 0 11/7 0.007
(0, 3, 13)5 7 0 25 16 0 9/11 0.007
(0, 3, 28)5 4 0 28 28 0 13/11 0.007
(0, 3, 29)5 7 0 25 13 0 9/11 0.007
(0, 7, 25)5 7 0 25 23 0 12/15 0.007

(62, 78, 235, 291, 473, 834)10 157 0 867 246 0 34/60 0.009

TABLE III
SIMULATIONS OF MECR.

mECR SS C TS TP TC RP Time(s)
(0, 1, 2)5 9 0.2 22.4 18.6 0.6 9/9 0.007
(0, 1, 6)5 10 0 22 26 0 7.8/9 0.007
(0, 1, 14)5 7 0 25 22.2 0 10/13 0.007
(0, 1, 30)5 5.4 0 26.6 25.8 0 11.2/13 0.007
(0, 3, 5)5 12 0 20 14.2 0 6/6 0.007
(0, 3, 12)5 9.4 0 22.6 18.2 0 6.4/7 0.007
(0, 3, 13)5 11 0.2 20.4 16.6 0.6 6.6/11 0.007
(0, 3, 28)5 5.8 0 26.2 23 0 10/11 0.007
(0, 3, 29)5 8 0.2 23.4 18.2 0.6 7.6/11 0.007
(0, 7, 25)5 8.6 0 23.4 19.8 0 7.8/15 0.007

(62, 78, 235, 291, 473, 834)10 161.8 0 862.2 106.6 0 16/60 0.009

TABLE IV
OVERALL COMPARISON

Tao’s AM Improved Tao’s AM etAM mECR
Temporal associative memory N/A N/A A A
Parallel distributed processing A A A A

Computation complexity O(mn2 + βn2) O(β0n2) O(m2) O(m2)
Memory complexity O(mn + n2) O(mn + n2) O(mn + m2) O(mn + m2)
Spurious stable states 0 0 (SS - n) in Table II (SS - n) in Table III
Unrecognizable states US in Table I US in Table I 0 0

Neuron Unclear Unclear A A
Synapse Unclear Unclear A A


