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Abstract— An unsupervised classification method provides the
interpretation, feature extraction and endmember estimation for
the remote sensing image data without any prior knowledge of
the ground truth. We explore such method and construct an
algorithm based on the non-negative matrix factorization (NMF).
The use of the NMF is to match the non-negative property
in sensing spectrum data. The data dimensionality is estimated
by using the partitioned noise-adjusted principlal component
analysis (PNAPCA). The initial matrix used to start the NMF
is obtained by using the fuzzy c-mean (FCM). This algorithm
is capable to produce a region- or part-based representation of
objects in images. Both simulated and real sensing data are used
to test the algorithm.

I. INTRODUCTION

In recent years, remote sensing images are widely used in
many fields, including agriculture, geology, military intelli-
gence etc. With the development of hyper-spectral sensors,
hundreds bands of high resolution data of the same area can
be acquired at the same time. Therefore hyper-spectral imagery
analysis has become one of the most powerful and fastest
growing technologies in remote sensing. In remote sensing,
multi-spectral and hyper-spectral sensors acquire huge amount
of data without knowing ground quality in advance. People
need unsupervised methods to analyze the imagery. Principal
components analysis (PCA) is the one applied in many analy-
sis. PCA calculates the first and second order statistics from
the data and removes the correlation redundancy by finding
a rotated orthogonal coordinate system. Thus PCA finds a
set of orthonormal bases and projects images arranged in
order of decreasing variance. Independent component analysis
(ICA) [2] tries to find a set of hidden variables as statistical
independent as possible in the sense of maximizing a certain
function that measures independency. The motivation to use
NMF is because the remote sensing model is positively defined
and NMF is based on positive restrictions. That is, in stead
of assuming statistical independence like PCA and ICA, NMF
[8] [9] assumes that the hidden variables and the features are
non-negative. Therefore the resultant matrixes will be more
intuitive and interpretable.

With different initial conditions, NMF may lead to different
local optima. In order to obtain a satisfactory result, initial-
ization is crucial and needs to setup properly. The parameters
needed to be determined in NMF algorithm include : 1) The
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intrinsic dimensionality. In remote sensing, that’s the number
of endmembers appear in the imagery. 2) The signature matrix.
Each column of the matrix represents the normalized spectral
reflectance of the material. 3) The membership matrix. Each
column represents the proportion of each endmember within
the pixel.

To determine the number of endmembers in remote sensing
data, observing the eigenvalues derived from PCA is an option.
The drawback is that it needs a subjective judgement for
the threshold. If the noise covariance can be estimated in
advance, the minimum noise fraction (MNF) [7] can effec-
tively solve the inherent dimensionality problem. Lee et al.
further interpreted this transform as noise-adjusted principal
component analysis (NAPCA) [4]. However, inaccuracy of the
noise estimation will degrade NAPCA’s ability to estimate
the intrinsic dimensionality. Tu et al. proposed partitioned
noise-adjusted principal component analysis (PNAPCA) [11]
to resolve inaccurate estimation of noise in NAPCA and
effectively resolve the dimensionality problem.

To initial the feature matrix, Stefan [10] proposed to use
Spherical K-Means to estimate the initial the cluster centroids.
However Spherical K-Means can’t describe the fuzzy boundry
between clusters very well because it assigns each data vector
to a certain cluster with the membership equal to 1. Thus it
can’t provide a good estimation of the membership matrix
because of the multiplicative update characteristics of NMF.
Instead, Fuzzy C-Means(FCM) relax the constraint and allows
each data vector belongs to a certain cluster to some degree.
Therefore FCM is capable to provide more accurate initial
cluster centroids and the membership matrix simultaneously.
The drawback is it takes longer computation time compared
with Spherical K-Means.

The rest of the paper is organized as follows. Section II
formulates the images as a linear spectral mixture model. Sec-
tion III reviews NMF algorithm and explore the relationship
between the image model. In section IV, the initialization
and evaluation approaches are briefly introduced. Section V
presents two experiments with simulated and real remote
sensing data respectively, and the results of FCM and NMF
with random or FCM initialization will also be compared.
Concluding remarks are finally made in Section VI.

II. PROBLEM STATEMENT AND SIGNAL MODEL

Linear Spectral Unmixing assumes that the reflectance
spectrum of pixels is the result of linear combinations of the



endmembers’ spectra within the pixel, and the weight is the
percentage of each endmember in the area covered by the
pixel. A linear mixed model with noise for a hyper-spectral
image pixel can be described by Eq. (1):

x = As + n (1)

where x is a m × 1 column vector represents the reflectance
spectrum and m is the number of bands. Reflectance matrix
A is a m×r matrix denoted by (a1,a2, . . . ,ar) where ai is a
m∗1 column vector represents the reflectance spectrum of the
ith endmember and m represents the number of endmembers.
Abundance vector s is a r× 1 vector and denotes the fraction
of the r endmembers present in x. n is an m-dimensional
random vector that describes additive noise. The correlation
matrix of x becomes

Rx = E{xxT } = E{(As + n)(As + n)T }
= AE{ssT }AT + AE{snT }+ E{nsT }AT + E{nnT }
= ARsAT + ARsn + RnsAT + Rn

Noise vector n is assumed to have zero mean and uncorrelated
with the vector s. Then the cross correlation term Rns and Rns
both equal to zero. The correlation matrix Rx becomes

Rx = ARsAT + Rn = Rα + Rn (2)

where Rα is the signal correlation matrix and its rank equals
to r.

III. NONNEGATIVE MATRIX FACTORIZATION

NMF, proposed by Lee and Seung [8], is a matrix factor-
ization algorithm under the non-negativity constraints. Given
a m × n non-negative matrix X, NMF tries to find a non-
negative m× r matrix W and a non-negative r×n matrix H
such that X ≈ WH. The parameter r is the desired rank of
matrix W and usually chosen to be smaller than n and m. The
size will be reduced from m × n to r × (m + n). Therefore
the product WH can be regarded as a compressed form of
the data in X.

NMF does not allow negative elements in the matrix factors
W and H. To represent the data vector xj , NMF combines
non-negative multiple basis wi such that

xj =
r∑

i=1

wi ∗ hij , 1 ≤ j ≤ n (3)

, but no subtractions can occur because hij is also non-
negative. In short, the entries of H combine these basis wi to
generate a whole. Thus W will be part-based representation
of X. That is how non-negativity constraint learns a parts-
based representation and combines parts to form a whole.
Also, compare Eq. (2) and (3), we find that NMF can be used
to model the generation of image data, i.e.

x = As + n ≈ Wh. (4)

Thus we may apply NMF to the unmixing problem of remote
sensing imagery.

NMF is very easy to use and implement. In [9], two different
multiplicative update algorithms are analyzed and proved to
monotonically decrease the objective function.

IV. INITIALIZATION AND EVALUATION APPROACHES

A. Initialization Approaches

For hyper-spectral imagery, it is reasonable to assume that
the number of the endmembers is much less than the number
of image bands. Therefore the number of endmembers should
be estimated first then dimension reduction can be carried out
to release the burden of computation. The risk is that to reduce
the dimension too much, some components will be excluded
from the reduced data.

Tu et al. [11] proposed partitioned noise-adjusted principal
components analysis (PNAPCA) to solve the intrinsic dimen-
sionality of remote sensing data. PNAPCA is a partitioned
version of NAPCA. It partitions the original data space into
two distinct subspaces by a simultaneous transform. In addi-
tion, it applies a simple union-intersection margin test (UIMT)
which is able to estimate the endmember accurately.

After the number of endmembers is estimated, Fuzzy C-
Means is suggested to initialize the signature and member
matrix of NMF. Fuzzy C-Means was developed by Dunn [5] in
1973 and improved by Bezdek [6] in 1981. Assuming that we
want to partition data vectors x1,x2, . . . ,xn into k disjoint
clusters π1, π2, . . . , πk, the objective function of Fuzzy C-
Means can be defined as:

J =
k∑

i=1

Ji =
k∑

i=1

n∑

j=1

um
ij dji, (5)

represents the distance from any given data point to a cluster
center weighted by the data point’s membership degree. The
fuzzy parameter f ∈ [1,∞) is used to define membership
fuzziness. Higher value of f will make the clustering result
fuzzier. Notably, if f is set to 1, Fuzzy C-Means becomes
exactly K-means algorithm.

Fuzzy C-Means algorithm based on cosine similarity has
been named Hyper-spherical Fuzzy C-Means (H-FCM). It’s
because it works on normalized high dimensional data vectors
that lie in hyper-sphere of unit radius. Thus we normalize the
data vector and define the dissimilarity function dji in Eq. (5)
as dji = 1 − sji where sji = xT

j ci is the cosine similarity
between the data vector xj and the cluster centroid ci.

By minimizing the constrained objective function (5), we
can obtain the update equations (6) for cluster centroid ci and
(7) for membership uij respectively:

ci =
n∑

j=1

uf
ijxj




k∑
α=1




n∑

j=1

uf
ijxjα




2



(−1/2)

(6)

uij =
k∑

β=1

(
dji

dβi
)−

1
(f−1) =

k∑

β=1

(
1− xT

j ci

1− xT
j cβ

)−
1

(f−1) (7)

To sum up, the steps we propose to initialize NMF include to
estimate the cluster number with PNAPCA first, then initialize
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Fig. 1. Signatures of soil, building, and vegetation extracted from Aviris
data are used to generate the simulated data.

the signature and membership matrix with the clustering result
of H-FCM.

B. Evaluate Clustering Results With Xie-Beni Index

To evaluate the clustering result, Xie [1] proposed the
compactness and separation index S defined as:

S =
κ

s
. (8)

The compactness κ is defined as the ratio of the total variation
σ to the size n of the dataset, that is, κ = σ

n . Smaller κ
indicates the clusters are more compacted. The separation s is
defined as the minimum distance between the cluster centroids
and formulated as s = d2

min. Larger s indicates the clusters are
more separated. According to Eq. (8), a smaller S represents
a better partitioning because the clusters are compacted and
separated to each other.

V. EXPERIMENTAL ANALYSIS

A. Evaluation with Simulated Data

Fig. 1 shows the reflectance spectra of soil, building and
vegetation extracted from a Aviris image scene of the Moffett
Field [3]. The bands corresponding to the water absorption
regions and with negative values are removed before process-
ing and kept the other 187 bands in this study. These three
endmembers are used to generate a 60 × 60-pixel hyper-
spectral image cube. Each image is formed by twelve stripes
of five-pixels wide. Each strip is the linear mixture of the re-
flectance spectra of the three endmembers. The corresponding
membership assignment is listed in table I. Fig. 2 shows the
membership plots for each endmember. White Gaussian Noise
is added to each image to generate SNR of 30:1. In the end,
we create a 60×60×187 image scenes. Fig. 3 shows the first
three images of the simulated data.

Table II lists the initial condition of H-FCM, NMF with
random and with H-FCM initialization. Note that the fuzzy
parameter f of H-FCM is setup empirically. Table VII lists the
clustering results compared with Xie-Beni Index. We find that
H-FCM finds the most compacted clusters with less separated
signatures. On the contrary NMF finds the most separated

TABLE I
MEMBERSHIP ASSIGNMENT FOR STRIPES IN SIMULATED DATA

Stripe 1 2 3 4 5 6 7 8 9 10 11 12
Soil 1 0 0 0.8 0 0.2 0.6 0.1 0.3 0.5 0.2 0.3

Buliding 0 1 0 0.2 0.8 0 0.3 0.6 0.1 0.3 0.5 0.2
Vegetation 0 0 1 0 0.2 0.8 0.1 0.3 0.6 0.2 0.3 0.5
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Fig. 2. The real membership plots of soil, building and vegetation in the
simulation.

signatures with less compacted clusters. However, NMF with
H-FCM initialization provides better clustering result of the
three techniques according to the index.

Since we already know the real membership matrix listed in
table I, matrix approximation can also be evaluated by sum-
ming up the Frobenius error between the resultant membership
matrix and the real matrix. The result is listed in table IV and
the better one is presented in bold face. We find that NMF
with H-FCM initialization provides better estimation of the
membership matrix H. Fig. 4 shows the comparison of the
membership plots. The cosine similarity values between the
real and the estimated signatures are listed in table V. The
highest similarity of each signature is presented using bold
face. Notably, all the signatures acquired by NMF with H-
FCM initialization are most similar to the real signatures. Fig.
5 shows the comparison between the real signatures and the
signatures acquired with different techniques.

In this section, three different techniques are implemented
on the simulated data and the clustering results are evaluated.
We observe that H-FCM did provide better initialization so
that NMF can find more accurate signatures and membership
plots. In the next section, the proposed algorithm will be
implemented on real data.

Fig. 3. The first three bands of the simulated data.

TABLE II
INITIAL CONDITION SETUP

HFCM NMF(Random) NMF(H-FCM)
C 3 3 3
f 1.6 N/A N/A

W random random H-FCM
H random random H-FCM



TABLE III
EVALUATE CLUSTERING RESULT WITH XIE-BENI INDEX

H-FCM NMF(Random) NMF(H-FCM)
Compactness κ 0.0074 0.0722 0.0128

Separation s 0.0733 0.3038 0.1869
S = κ

s
0.1004 0.2375 0.0683

TABLE IV
MEMBERSHIP MATRIX APPROXIMATION OF DIFFERENT CLUSTERING

APPROACHES

H-FCM NMF(Random) NMF(H-FCM)
Frobenius error 26.31 22.43 15.14

B. Evaluation with AVIRIS Data

AVIRIS remote sensing data is now used as the test imagery,
and the test area is Cuprite, NV [3]. For computation consid-
eration, we subset a 200 by 200 pixel square area from the
Cuprite imagery. Fig. 6 is the subset area image composed by
band 27, band 17, and band 7. Some bands effected seriously
by water absorption or with low SNR are removed. In the end,
we have 192*40000 band by pixel data matrix X . The data is
divided by 10000 to retrieve the original reflectance value and
normalized to unit length. Since the resolution of Aviris sensor
is 20 meter, our goal is to improve the resolution by sub-pixel
extraction. That is, to extract the spectral signatures from the
imagery and determine the proportion of each endmembers
within each pixel.

At first, PNAPCA is applied to estimate the number of
the endmembers appeared within the AVIRIS dataset. Table
VI shows the values of PNAPCA sorted in descending order.
For clarity, only the first ten significant values are listed. By
counting the number of value larger than 1, PNAPCA can
clearly estimate the number of endmembers appear in the
scene should be eight.

Fig. 4. Comparison of the membership plots with different clustering
approaches. The first row is the real membership plots, the second row is
acquired by NMF, the third row is acquire with H-FCM, and the last row is
acquired by NMF with H-FCM initialization.

TABLE V
THE COSINE SIMILARITY BETWEEN THE REAL SIGNATURES AND THE

ESTIMATED SIGNATURES

H-FCM NMF(Random) NMF(H-FCM)
Soil 0.9964 0.9095 0.9998

Building 0.9957 0.9282 0.9999
Vegetation 0.9883 0.9946 0.9988
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Fig. 5. Comparison of the resultant NMF signatures with different initializa-
tion. In each plot, the real signature is drawn in black solid line. The signatures
of NMF are in green. The signatures of H-FCM are in red. Signatures of NMF
with H-FCM initialization are drawn in blue. Only fifty bands are selected
for clarity reason.

After the number of endmembers is estimate, we may now
proceed to cluster the data. In the initial condition, we set the
cluster number as eight, randomly choose eight samples in the
data set as the initial centroids of each cluster, and randomly
initialize the membership matrix for H-FCM. Owing to a
variety of unknown noises appeared in the real remote sensing
data, we need to setup the fuzzy parameter f properly. Xie-
Beni index is now used to estimate suitable fuzzy parameter
f . Fig. 7 shows Xie-Beni index of different fuzzy parameter
values. We observe that 1.3 should be a better estimation for
the fuzzy parameter f .

Fig. 6. 200*200 color image of the Cuprite, NV region [3].



TABLE VI
THE FIRST TEN SIGNIFICANT VALUES OF PNAPCA.

PNAPCA 8.97e+7 6.29e+4 4.48e+4 3.24e+2 2.19e+2
1.24e+1 5.34 1.53 3.68e-1 2.83e-1

1.0 1.5 2.0
0.3

0.4

0.5

0.6

0.7

Fuzzy parameter

X
ie

−
B

en
i i

nd
ex

1.0 1.5 2.0
2

4

6

8
x 10

−4

Fuzzy parameter

C
om

pa
ct

ne
ss

1.0 1.5 2.0
0

0.5

1

1.5
x 10

−3

Fuzzy parameter	

S
ep

ar
at

io
n

Fig. 7. Compactness (left), Separation (middle) and The Xie-Beni Index
(right) of different fuzzy parameter from 1.0 to 2.0

Next, NMF is used to improve the cluster result. That is, to
initialize the matrix W and H with the resultant matrix of H-
FCM. NMF stops when the change of the objective function
is less than a threshold ε. Fig. 8 and 9 show the signatures and
the membership matrix of each class obtained by NMF. Note
that, in each membership plot, the brightness of the pixels
represents the proportion of the endmembers within the pixel.

To compare the consequence with random initialization,
Fig. 10 and 11 show the signatures and membership plots of
NMF with random initialization. From Fig. 10, we can observe
that the signatures with random initialized are discontinuous.
Instead, signatures with H-FCM initialization shown in Fig.
8 all have good and smooth continuity. In Fig. 11, all of the
membership plots look too noisy and hardly tell the feature
appearance. However, with H-FCM initialization, the appear-
ance of features shown in Fig. 9 are very clear. Therefore, we
may conclude that NMF with H-FCM initialization provides
better classification result than random initialization.

Table VII lists Xie-Beni index of the clustering results
of H-FCM, and NMF with random or H-FCM initialization.
Although the membership of NMF with H-FCM initialization
is less compacted than H-FCM and the signatures are less
separated than random initialization, Xie-Beni index shows
that NMF initialized by H-FCM provides better clustering
result of the three.
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Fig. 8. NMF centroids of clusters with H-FCM initialization.

Fig. 9. NMF membership plots of clusters with H-FCM initialization.
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Fig. 10. NMF centroids of clusters with random initialization.

VI. CONCLUSION

In this work, we have presented the result of spectral
unmixing of remote sensing data with NMF technique ini-
tialized with PNAPCA and H-FCM. In the initial condition,
we have to determine the data intrinsic dimensionality r,
the signature matrix W and the membership matrix H. To
determine r, most techniques like NAPCA, noise needs to be
estimate accurately. However, the variety of unknown noise
appeared in remote sensing data makes it hard to estimate
correctly. PNAPCA overcomes the noise estimation error by
a simultaneous transform of the partitioned data and applied
a simple hypothesis test UIMT to accurately estimate the
number of the endmembers. Since NMF is an iterative process
and promised to converged to a local optimun, the initial

Fig. 11. NMF membership plots of clusters with random initialization.



TABLE VII
XIE-BENI INDEX OF DIFFERENT CLUSTERING RESULTS.

H-FCM NMF NMF(H-FCM)
Compactness κ 5.27e− 4 2.16e-2 5.38e-4

Separation s 1.47e-3 5.32e− 2 1.73e-3
S = κ

s
0.3571 0.4067 0.3094

conditions of W and H will directly affect the consequence.
H-FCM, an iterative process like NMF, is suggested to initial-
ize W and H. H-FCM allows each data vector belongs to a
cluster to some degree. Though it is less efficient, it is more
stable and able to initialize both the signature matrix and the
membership matrix simultaneously. For real imagery data, the
fuzzy parameter of H-FCM is crucial and needs to be setup
properly according to the data characteristic. Xie-Beni index
provides a good indication according to the H-FCM clustering
result. In the experiments with simulated and real imagery
data, the proposed technique both provides satisfactory results.
We also found that NMF doesn’t take too many iterations with
good estimations of the initial conditions.
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