
Deformable Mesh
Tai-Hei Wu and Cheng-Yuan Liouy

Department of Computer Science and Information Engineering, National Taiwan University

Abstract�This paper uses Neural Mesh to model deformable
objects. The energy of Neural Mesh is minimized using a mod-
i�ed Hop�eld neural network. In order to model deformable
objects, the energy function of Neural Mesh is approximated
by a second-order Taylor series expansion. Experiment results
are given on �ying �ags.

I. INTRODUCTION
Snake[21] is originally used to retrieve information about

an image. Liou and Chang[7] extended the idea of snake
into meshed snake and used Hop�eld neural network to
solve the minimization problem. The meshed snake is then
called Neural Mesh and is used to solve other problems, such
as Steiner Tree Problem[8], Minimial Surface Problem[6].
In this work, a special application of Neural Mesh, the
deformable mesh, is developed. This deformable mesh can
be used to model deformable objects, such as �ying �ag. To
this goal, a modi�ed Hop�eld neural network that is more
suitable for this problem is proposed.

II. NEURAL MESH

Neural Mesh proposed by Liou and Chang[7] is a mesh
which can capture information of image in the process of
mesh evolution. The process of mesh evolution is driven
by process of energy minimization. The energy function of
Neural Mesh, which has a quadratic form, is de�ned by each
point of the mesh:

E =
X

(i;j)2M

(Pi � Pj)2; (1)

whereM is a mesh having n points, Pi is the ith point in the
mesh, and Li;j is an edge between Pi and Pj in the mesh (we
ignore the bending term in the original work for simplicity.)
To evole the mesh, Neural Mesh �nds a new con�guration

of points P
0

i = Pi + Di for the mesh which has smaller
energy value than the original con�guration:

argmin
D

�
(Pi +Di)� (Pj �Dj)

�2
; (2)

where D = [D1; D2; :::Dn] is the displacement matrix for
the mesh. Additional constraints may be imposed on D,
according to different designs.
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The quadratic property and the energy minimization prop-
erty let it possible to minimize the energy function of Neural
Mesh by Hop�eld neural network.
The energy function of Hop�eld neural network is de�ned

as:

EHopfield = �
1

2

X
i;j

Wi;jViVj �
X
i

IiVi: (3)

Let E = EHopfield by appropriately setting Wi and Ii,
the minimization of the Hop�eld network will be equivalent
to the minimization of the energy function of Neural Mesh.

III. DYNAMICS OF THE MESH

To model deformable objects in Neural Mesh, the mesh
is treated as the surface of an object. Analogous to mass-
spring model in computer graphics, each edge of the mesh
is treated as a spring. First, by extending Neural Mesh into
three-dimensional, we have a 3D neural mesh. Consider a
3D neural mesh Q which consists of n points represented by
Pi; i = 1 � n and edges between points represented by Li;j
if there is an edge between point i and point j. Next, every
edge Li;j in Q is treated as a spring with natural length �Li;j .
The original Neural Mesh now becomes a special case of this
3D neural mesh with �Li;j = 0 and two-dimension only.

Analogous to (1), an energy function of the mesh Q which
represents the potential of springs is de�ned as

EQ =
X

Li;j2Q
�i;j(jPi � Pj j � �Li;j)2; (4)

where �i;j is the weighting factor for Li;j .
Then, similar to (2), the dynamics of the mesh is a

minimization process of EQ. Every spring minimizes its
potential and the lost potential is transformed into kinetic
energy. Now the deformation of the object, in theorically,
can be simulated.

Since acceleration is involved in the deformation, the
original Hop�eld neural network used in Neural Mesh is not
suitable to minimize EQ, because the output of the Hop�eld
neural network is binary. Furthermore,a sophisticated energy
function which involved acceleration should be considered.

Let xi(t) = [xi;1(t); xi;2(t); xi;3(t)] be the coordinate
vector, vi(t) = [vi;1(t); vi;2(t); vi;3(t)] be the velocity vector,



ai(t) = [ai;1(t); ai;2(t); ai;3(t)] be the acceleration vector of
Pi at time t, respectively. Then for any time t1, t2 such that
t2 = t1 +�t, we can approximate xi(t2) by

xi(t2) = xi(t1) + vi(t1)�t+
1

2
(ai(t1) +�ai(t1))�t

2; (5)

where �ai(t1) = [ai;1(t1); ai;2(t1); ai;3(t1)] is the change of
acceleration from time t1 to t2.

Rewrite (4) by substituting Pi with xi(t2) and Pj with
xjt2:

EQ(t2) =
X

Li;j2Q
�i;j

�
jxi(t2)� xj(t2)j � �Li;j

�2

=
P

Li;j2Q

"
�i;j

���xi(t1) + vi(t1)�t+ 1
2 [ai(t1) + �ai(t1)]�t

2

�(xj(t1) + vj(t1)�t+ 1
2 [aj(t1) + �aj(t1)]�t

2)
��� �Li;j�2#

=
X

Li;j2Q
�i;j

"
s X

p=1�3

�
Ci;j;p(t1)) +

1

2
�t2

�
�ai;p(t1)��aj;p(t1)

��2
��Li;j

#2
;

where EQ(t) represents the potential energy of mesh Q at
time t and Ci;p(t) is de�ned as:

Ci;p(t) = xi;p(t) + vi;p(t)�t+
1

2
(ai;p(t))�t

2;

and Ci;j;p(t) = Ci;p(t)� Cj;p(t).

The problem of choosing the next con�guration of the
mesh Q which minimize EQ(t2) is now becomes an min-
imization problem that, �nding a parameter matrix

A(t1) =

26664
�a1(t1)
�a2(t1)

...
�an(t1)

37775
which minimize EQ(t2).

In order to simulate the deformation more precisely and
speed up the minimization process, �ai(t) is used for
probing only and is constrained into an unit vector, that is,
�a2i;1(t)+�a

2
i;2(t)+�a

3
i;3(t) = 1. After �ai(t) is obtained,

an energy change �Ei(t1) from time t1 to t2 corresponding
to every point Pi in Q is calculated:

�Ei(t1) =
X

Lk;j2Q
�k;j

"
�
jxk(t1) + vk(t1)�t+

1

2
[ak(t1) + �(i; k)�ak(t1)]�t

2 �

(xj(t1) + vj(t1)�t+
1

2
[aj(t1) + �(i; j)�aj(t1)]�t

2)j � �Lk;j
�2

�
�
jxk(t1)� xj(t1)j � �Lk;j

�2#
; (6)

where �i;j is the Kronecker delta function. �Ei(t1) rep-
resents the energy change from t1 to t2 assuming that
acceleration change only occurred in Pi.

From the idea of energy conservation, �Ei(t1) is trans-
formed into kinetic energy of Pi. Thus, the acceleration at
time t2 is obtained by

ai(t2) = ai(t1) + �ai(t1)
p
j
�Ei(t1)j; (7)

where 
 is a weighting parameter. The velocity vi(t2) and
position xi(t2) can then be obtained from ai(t2).

After velocity is obtained, energy lose due to various
frictions is introduced by multipling vi with a ratio Rfriction.
Additionally, all external forces are directly applied on ve-
locity each iteration. More precisely, the followings are used
to update vi(t2) and ai(t2):

vi(t2) = vi(t2)Rfriction;

ai(t2) = ai(t2) + external force:

The dynamics of the mesh is now well-described.

Because �ai;p(t) 2 R, it is hard to minimize EQ(t) using
a traditional Hop�eld neural network. In the next section, a
modi�ed Hop�eld neural network is proposed. The modi�ed
Hop�eld neural network is more suitable for this situation.

IV. MODIFIED HOPFIELD NEURAL NETWORK

In this section, we extend Hop�eld neural network with
the capability to handle real number.

At �rst, we check the convergence and energy-
minimization properties of Hop�eld neural network[15]:

�E = �[
X
j 6=i

Wi;jVj + Ii]�Vi

� 0:
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Fig. 1. A neuron of the modi�ed Hop�eld Neural Network.

This result guarantees the convergence and energy-
minimization properties of Hop�eld neural network. But,
in order to guarantee these properties, the outputs of this
model are constrained to be binary. This constraint enforces
following inequation to be true:

�Vi
�X
j 6=i

Wi;jVj + Ii
�
� 0: (8)

In order to keep (8) true and make input/output of neurons
be real, a neuron in Hop�eld neural network is divided into
two parts: input part and output part. The input part collects
inputs from other neurons and sends them to the output
part. The output part modi�es and produces the output of
this neuron according the inputs provided by the input part.
The modi�ed neuron can be viewed as a neuron with self-
loop, although such neuron is not extactly the same with the
modi�ed neuron. Figure 1 depicts the modi�ed neuron.

From this idea, we modify the updating rule of Hop�eld
neural network by

�V
0

i =

P
j 6=iWi;jVj + IiP
j 6=i jWi;j j+ jIij

(9)

and

�Vi = R�V
0

i ; (10)

where R is de�ned as

R =

�
1� Vi; if �V

0

i � 0;
1 + Vi; if �V

0

i < 0:
(11)

The output is adjusted by

V 0i = Vi +�Vi (12)
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Fig. 2. The Updating Rule. One can think of the updating rule as the
inputs in�uence the output in a biased way, but not directly decide the output.
Previous output still has in�uence on the future output.

where V 0i is the new output and Vi is the old output. Notice
that for this updating rule to work, at least one of Ii andWi;j

must be nonzero.

The divisor in (9) normalizes the dividend, keeping �1 �
�V 0i � 1 . It is then served as the ratio of R. Obviously, R in
(10) is always positive(from (11)), thus �Vi = R�Vi always
has the same sign with

P
i 6=jWi;jViVj . Figure 2 shows how

output is modi�ed by this updating rule.

Now, check the energy function of the modi�ed Hop�eld
neural network:

E = �1
2

XX
i 6=j

Wi;jViVj �
X
i

IiVi

�E = �[
X
j 6=i

Wi;jVj + Ii]�Vi

= �[
X
j 6=i

Wi;jVj + Ii] �R�V
0

i

= �R
[
P

j 6=iWi;jVj + Ii]
2P

j 6=i jWi;j j+ jIij
� 0: (13)

Thus the modi�ed Hop�eld neural network preverses
the convergence and energy-minimization properties of the
original Hop�eld neural network. Inputs for neurons affect
neurons in a less direct way.

To further examine the property of the modi�ed Hop�eld
neural network, notice that the diagonal weight (Wi;i) of the
original Hop�eld neural network, in fact, needs not to be zero



to satisfy the convergence property. It is necessary whenWi;i

is positive[13].

To verify the same property in the modi�ed Hop�eld neural
network, rede�ne the updating rule and energy function to
include diagonal terms, then

�Vi = R

 P
j=1�nWi;jVj + IiP
j=1�n jWi;j j+ jIij

!

and

E = �1
2

X X
i;j=1�n

Wi;jViVj �
X
i

IiVi

�E = �[
X
i 6=j

Wi;jVj + Ii]�Vi �
1

2
(2Wi;iVi�Vi +Wi;i�V

2
i )

= �[
X

j=1�n
Wi;jVj + Ii] ��Vi �

1

2
Wi;i�V

2
i

= �R
[
P

j=1�nWi;jVj + Ii]
2P

j=1�n jWi;j j+ jIij
� 1
2
Wi;i�V

2
i

� 0:

if Wi;i � 0.

Thus, the same property is also true in a modi�ed Hop�eld
neural network.

Furthermore, to satisfy �E < 0,

�R
[
P

j=1�nWi;jVj + Ii]
2P

j=1�n jWi;j j+ jIij
� 1
2
Wi;i�V

2
i � 0

1

2
Wi;i�V

2
i � �R

[
P

j=1�nWi;jVj + Ii]
2P

j=1�n jWi;j j+ jIij
Wi;iR

2

2

[
P

j=1�nWi;jVj + Ii]
2

(
P

j=1�n jWi;j j+ jIij)2
� �R

[
P

j=1�nWi;jVj + Ii]
2P

j=1�n jWi;j j+ jIij

Wi;i � � 2
R
(
X

j=1�n
jWi;j j+ jIij)

for R 6= 0, (
P

j=1�n jWi;j j + jIij) 6= 0, and
(
P

j=1�nWi;jVj + Ii) 6= 0. But this is always true for
any Wi;i by observing that Wi;i appears in two sides of
the inequation. Thus, in a modi�ed Hop�eld neural network,
there is no constraint on Wi;i. The value of Wi;i only
affects the convergence speed of the modi�ed Hop�eld neural
network.

V. THE DEFORMABLE MESH

The modi�ed Hop�eld neural network is used to minimize
the energy function of 3D neural mesh, just as the original
Hop�eld neural network is used to minimize the energy
function of the Neural Mesh. The modi�ed Hop�eld neural
network consists of n � 3 mutual interconnected neurons,
where n is the number of points of the mesh.
Let Vi;p be the output of the (i; p)th neuron in the network

and Wi;p;j;q be the synaptic weight from the (j; q)th neuron
to the (i; p)th neuron, the energy function of the modi�ed
Hop�eld neual network , E0Hopfield, can be written as

E0Hopfield = �
1

2

nX
i=1

3X
p=1

nX
j=1

3X
q=1

Wi;p;j;qVi;pVj;q�
nX
i=1

3X
p=1

Ii;pVi;p:

(14)
Next, every neuron is used to represent the change of

acceleration de�ned previous. Hence, replace �ai;p in(6) by
Vi;p and plus it by a constrained energy which is minimized
when (Vi;1; Vi;2; Vi;3) forms an unit vector: (Here we write
EQ instead of EQ(t) for simplicity)

EQ =
X

Li;j2Q
�i;j

"
X
p=1�3

�
Ci;p � Cj;p +

1

2
�t2(Vi;p � Vj;p)

�2
�2�Li;j

s X
p=1�3

�
Ci;p � Cj;p +

1

2
�t2(Vi;p � Vj;p)

�2
+ �L2i;j

#

+
X
i2Q

�i

 
1�

s X
p=1�3

V 2i;p

!2
: (15)

Replace the square root terms with the second-order taylor
series expansion of them about these points (V 0i;1; V 0i;2; V 0i;3)
and (V 0j;1; V 0j;2; V 0j;3) :

s X
p=1�3

�
Ci;p � Cj;p +

1

2
�t2(Vi;p � Vj;p)

�2

= B�1i;j +
X
p=1�3

(Vi;p � V 0i;p)(
1

2
Di;j;pBi;j)

+
X
p=1�3

(Vj;p � V 0j;p)(�
1

2
Di;j;pBi;j)

+
X
p=1�3

(Vi;p � V 0i;p)2
 
1

8

�
�t4Bi;j �D2

i;j;pB
3
�!

+
X
p=1�3

(Vj;p � V 0j;p)2
 
1

8

�
�t4Bi;j �D2

i;j;pB
3
�!



+
X
p=1�3

(Vi;p � V 0i;p)(Vj;p � V 0j;p)
�D2

i;j;pB
3
i;j ��t4Bi;j
4

�
+

X
p6=q
(Vi;p � V 0i;p)(Vj;q � V 0j;q)

�Di;j;pDi;j;qB3i;j
4

�
+

X
p6=q
(Vi;p � V 0i;p)(Vi;q � V 0i;q)

��Di;j;pDi;j;qB3i;j
4

�
;

where

Bi;j =

s X
p=1�3

�
Ci;p � Cj;p +

1

2
�t2(V 0i;p � V 0j;p)

�2�1
and

Di;j;p = �t
2(Ci;p � Cj;p) +

�t4

2
(V 0i;p � V 0j;p):

The second square root is expanded as:

s X
p=1�3

V 2i;p = Fi +
X
p=1�3

(Vi;p � V 0i;p)
V 0i;p
Fi

+
1

2

X
p=1�3

(Vi;p � V 0i;p)2
�F 2i � (V 0i;p)2

F 3i

�
�
X
p=1�3

X
q 6=p
(Vi;p � V 0i;p)(Vi;q � V 0i;q)

�V 0i;pV 0i;q
F 3i

�
where

Fi =

s X
p=1�3

(V 0i;p)
2:

Finally, solve EQ = E0Hopfield, Wi;p;j;q will be

Wi;p;j;q = T1(i; p; j; q)+T2(i; p; j; q)+T3(i; p; j; q)+T4(i; p; j; q)

where

T1(i; p; j; q) = �2�i�i;j�p;q + �i;j
X

Li;k2Q

 
1

2
(2� �p;q)�i;k �Li;k

�
�p;q�t

4Bi;k �Di;k;pDi;k;qB3i;j
�!

T2(i; p; j; q) = �(1� �i;j)
X

Li;j2Q

 

�i;j �Li;j

�
�p;q�t

4Bi;j �Di;j;pDi;j;qB3i;j)
�
� 2�i;j�t2

!

T3(i; p; j; q) = �i;j�p;q

�
� 2�i;j

�t4

4
+ 2�i

F 2i � (V 0i;p)2

F 3i

�
T4(i; p; j; q) = �i;j4�i

V 0i;pV
0
i;q

F 3i

and

Ii;p =
X

Li;j2Q

(
� �i;j�t2 + 2�Li;j

"
1

2
Di;j;pBi;j � V 0i;p

h
�t4Bi;j �D2

i;j;pB
3
i;j

i
+

1

2
V 0j;p

h
�t4Bi;j �D2

i;j;pB
3
i;j

i
+

X
q 6=p

1

2
(V 0j;q � V 0i;q)

h
Di;j;pDi;j;qB

3
i;j

i#)

+ �i

 
�
V 0i;p
Fi

+
F 2i � (V 0i;p)2

F 3i
�
X
q 6=p

V 0i;q
V 0i;pV

0
i;q

F 3i

!
:

After Wi;p;j;q is obtained, the modi�ed Hop�eld neural
network can be used to minimize the energy function of the
deformable object to obtain Vi;p. From (7), acceleration ai,
velocity vi and position xi can also be obtained.
The whole algorithm is described as follow.
� Initial the mesh and network.
� Run modi�ed Hop�eld neural network until the network
reaches one of stable states.

� Update the acceleration, velocity and position of points
in the mesh.

� Update Wi;p;j;q .
� Repeatedly do above three operations.

VI. EXPERIMENT RESULTS
The experiment results are shown in Figure 3 and Figure

4. Table I shows the parameters used in these experiments.

TABLE I
EXPERIMENTS PARAMETERS

Figure �T Rfriction 
 elapsed time node #
3 0.05 0.99 4000 93 mins 400
4 0.05 0.99 8000 54 mins 225

VII. CONCLUSION

This paper has implemented deformable objects on Neural
Mesh. Similar to other mass-spring or energy solution, this
method suffer from accuracy problem. Different 
 and time
step �t lead to different outcomes. Another disadvantage
is that the formula for Wi;p;j;q is very complicated. It
takes many calculations, both for computer and human. This
approach also can only handle quadratic energy function;
otherwise, Taylor series expansion must be introduced which
brings more complicated calculations and the possibility of
error.



Fig. 3. The badge of National Taiwan University on a �ying �ag.

Fig. 4. Another Experiment Result.

On the other hand, it is a nice attempt to use neural
network as a computational tool. Hardware supports and
more sophisticated neural network model can speed up the
computation and reduce the approximation error.

REFERENCES
[1] A. Radetzky, A. Nurnberger, D. P. Pretschner and R. Kruse, "The

Simulation of Elastic Tissues in Virtual Laparoscopy Using Neural
Networks," Proceedings of Neural Networks in Application (NN.98),
pp. 167-174, University of Magdeburg, Magdeburg, Germany, 1998.

[2] A. Radetzky, A. Nurnberger, M. Teisler, D. P. Pretschner, "Elasto-
dynamic Shape Modeling in Virtual Medicine," Proceedings of the
International Conference on Shape Modeling and Applications, pp.
172, 1999.

[3] A. A. Amini, S. Tehrani, and T. E. Weymouth, "Using Dynamic
Programming for Minimizing the Energy of Active Contours in the
Presence of Hard Constraints," Proceedings of IEEE Conference of
Computer Vision, pp. 95-99, 1988.

[4] B. Eberhardt, A. Weber, and W. Strasser, "A Fast, Flexible, Particle-
System Model for Cloth Draping," IEEE Computer Graphics and
Applications, vol. 16, issue 5, 1996.

[5] C. T. Tsai, "Minimizing the Energy of Active Contour Model Using a
Hop�eld Network," IEE Proceedings-E, vol. 140, no. 6, pp. 297-303,
1993.

[6] C. Y. Liou and Q. M. Chang, "Active mesh for minimal surface prob-
lems," Proceedings of International Conference on Nueral Information
Processing, Dunedin, New Zealand, vol. 1, pp. 486-489, Nov. 1997.

[7] C. Y. Liou and Q. M. Chang, "Meshed Snakes," Proceedings of
International Conference on Neural Network, Washington D. C., USA,
vol. 3, pp. 1516-1521, Jun. 1996.

[8] C. Y. Liou and Q. M. Chang, "Numerical soap �lm for the steiner
tree problem," Proceedings of International Conference on Neural
Information Processing, Hong Kong, China, vol. 1, pp. 642-647, Sep.
1996.

[9] C. Y. Liou and Q. M. Chang, "Neural Mesh for the Steiner Tree
Problem," Journal of Information Science and Engineering, vol. 13,
no. 2, pp. 335-354, 1997.

[10] E. N. Gilbert and H. O. Pollak, "Steiner minimal trees." SIAM J. Allp.
Math., vol. 16, pp. 1-29, 1968.

[11] F. Cordier and N. Magnenat-Thalmann, "Real-time Animationof
Dressed Virtual Humans," EUROGRAPHICS 2002, vol. 21, no. 3,
2002.

[12] F. Leymarie and M. D. Levine, "Tracking Deformable Objects in the
Plane Using an Active Contour Model," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, no. 6, pp. 617-634, June
1993.

[13] Gene R. Gindi, Arthur F. Gmitro, and K. Parthasarathy "Hop�eld
model associative memory with nonzero-diagonal terms in memory
matrix," Applied Optics, vol. 27, no. 1, 1998.

[14] J. Brown, S. Sorkin, C. Bruyns, J.C. Latombe, K. Montgomery, and
M. Stephanides, "Real-Time Simulation of Deformable Objects: Tools
and Application," Proceedings of Computer Animation, Seoul, Korea,
November 2001.

[15] J. J. Hop�eld and D. W. Tank, "Neural Computation of Decisions in
Optimization Problems," Biological Cybernetics, vol. 52, pp. 141-152,
1985.

[16] J. Montagnat, H. Delingette and N. Ayache, "A Review of Deformable
Surfaces: Topology, Geometry and Deformation," Image and Vision
computing, vol. 19, issue 14, pp. 1023-1040, Dec. 2001.

[17] J. Mandziuk, "A Neural Network Designed to Solve the N-Queens
Problem," Biological Cybernetrics vol. 66, no. 4, pp. 375-379, 1992.

[18] K. Tabb, S. George, N. Davey and R. Adams, "The Analysis of Ani-
mate Object Motion using Neural Networks and Snakes," Proceedings
of the 6th International Conference on Engineering Applications of
Neural Networks (EANN'2000) , D. Tsapsinos(ed), pp. 221-228, 2000.

[19] M. A. Greminger and B. J. Nelson, "Modeling Elastic Objects with
Neural Networks for Vision-Based Force Measurement," Proceedings
of International Conference on Intelligent Robots and Systems, Las
Vegas, Nevada, Oct. 2003.

[20] M. Desbrun, P. Schroder and A. H. Barr, "Interactive animation of
structured deformable objects," Proceedings of the 1999 conference
on Graphics interface '99, pp. 1-8.

[21] M. Kass, A. Witkin and D. Terzopoulos, "Snakes: Active Contour Mod-
els," Proceedings of the First International Conference on Computer
Vision, IEEE Computer Society Press, 1987.

[22] M. Meyer, G. Debunne, M. Desbrun and A. H. Barr, " Interactive
Animation of Cloth-like Objects in Virtual Reality," Journal of Vizual-
isation and Computer Animation vol. 12, issue 1, pp. 1-12, May 2001.

[23] O. Etzmub and B. Eberhardt, "Collision Adaptive Particle Systems,"
Proceedings of the 8th Paci�c Conference on Computer Graphics and
Application, pp. 338-453, Oct. 3-5, 2000.

[24] R. Grzeszczuk, D. Terzopoulos, and G. Hinton, "NeuroAnimator: Fast
Neural Network Emulation and Control of Physics-Based Models,"
Proc. Int. Conf. on Computer Graphics and Interactive Techniques,
pp. 9-20, 1998.

[25] Simon Haykin, "Neural Networks: A Comprehensive Foundation 2/e",
Prentice Hall Press, 1999.

[26] S. W. Chen, G. C. Stockman and K. E. Chang, "SO Dynamics
Deformation for Building of 3-D Models", IEEE Transaction on Neural
Networks, vol. 7, no. 2, March 1996.

[27] S. Schein and G. Elber, "Placement of Deformable Objects," Computer
Graphics Forum, vol. 23, no. 4, pp. 727-739, 2004.

[28] T. Kohonen, "Self Organized formation of topologically correct feature
maps," Biological Cybernetics, vol. 43, pp. 59-69, 1982.

[29] T. H. Wu, Y. K. Tzeng, and C. Y. Liou, "Implement Neural Mesh on
Cellular Neural Network," The 9th IEEE International Workshop on
Cellular Neural Networks and their Applications, Taiwan, 2005.

[30] Vassilev, T., Spanlang, B, "A Mass-spring Model for Real Time
Deformable Solids," East-West-Vision Sep. 2002.

[31] Wayne Sebastianelli, Elena Slobounov, Richard
Tutwiler, "The Virtual Surgery Project,"
http://gears.aset.psu.edu/viz/services/projectlist/surgery/

[32] Y. J. Shen and M. S. Wang, "Apply Neural Schemes to Deformation
Objects," International Journal on Graphics, Vision and Image Process-
ing, vol. 4, 2005.


