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Abstract�This paper presents a constrained self-organizing 
map (SOM) model for the visualization and reconstruction of 
the human brain lateral ventricle. The SOM model is a widely 
used method to approximate large and complex high 
dimensional data and reduce the data dimension for advanced 
applications. In our applications, the SOM model is used to 
deform a spherical network field to a 3D crooked brain lateral 
ventricular surface. The main disadvantages of the formal 
SOM algorithm are its difficulties in stretching the network 
inside the concave parts of the lateral ventricular surface. 
Hence, a constrained SOM model is proposed to first obtain 
an elementary model of lateral ventricle which can be easily 
mapped to the lateral ventricle later by the SOM model. Based 
on this method, the SOM network field can successively and 
precisely map to the brain lateral ventricular surface. The 
simulations on T1-weighted MR images show that the 
proposed algorithm is robust to reconstruct 3D meshed brain 
lateral ventricular structures and its application to 3D 
morphometry is practicable.  

I. INTRODUCTION 
In clinical medicine, it is important to diagnose 

hydrocephalus and atrophy from the ventricular dilatation 
by physicians. Among various symptoms, the lateral 
ventricle of a human brain contains some significant 
features that can be estimated to differentiate between 
hydrocephalus and atrophy. These features measured from 
CT or MR scans include ventricular index, ventricular 
angle, frontal horn radius, and so on [1, 2]. However, these 
features are estimated and observed only in 2D CT or MR 
images. No stereo structures can help to visualize or 
observe the shape or volume change of the lateral ventricle. 
Therefore, it is essential to reconstruct the 3D brain lateral 
ventricle to assist physicians in diagnosing normal or 
abnormal, hydrocephalus or atrophy.  

Due to the advanced MR techniques, MR scans are 
often used in the analysis of cognitive neuroscience, 
diseases (e.g., epilepsy, schizophrenia and Alzheimer's 
disease), cerebration, and so on. In the diagnosis of 
hydrocephalus, MR provides its ability to visualize small 
obstructing lesions and to clearly delineate anatomic 
changes resulted in the mass effect of the distended 

ventricles [3]. Accordingly, in our simulations, we use T1-
weighted MR images to reconstruct the brain lateral 
ventricle. 

 The preprocessing of MR images including intensity 
normalization and correction, registration and resample, 
and tissue classification or segmentation is important to 
make comparisons across different subjects feasible. There 
are various tools or software that can help to complete the 
preprocessing, e.g., SPM (http://www.fil.ion.ucl.ac.uk/spm/), 
AIR (http://bishopw.loni.ucla.edu/AIR3/index.html), etc. In our 
previously developed adaptive mixture models [4], brain 
MR image voxels can be partitioned into cerebral spinal 
fluid (CSF), gray matter, and white matter, which can help 
to segment the lateral ventricle. However, in this paper, we 
do not focus on these techniques. The spotlight is how to 
reconstruct the brain lateral ventricle by a mesh structure.  

The self-organizing map (SOM) model [5, 6, 7] is a 
well-known algorithm which is designed to topologically 
map an input space to a network field. This model provides 
not only a geometrical surface mapping but also a 
dimensionality reduction from the input space to the 
network field. In our applications, it is applied to map a 
spherical surface to boundary voxel data for obtaining the 
meshed surface of the brain lateral ventricular structures. 
We attempt to construct a meshed lateral ventricular surface 
which has the intrinsic property of the SOM for advanced 
applications. However, the lateral ventricle has some 
concave shapes that is not easy to be mapped by the SOM 
model. The main reason is that the approximation between 
the network and data is accomplished only by the Euclidean 
distance evaluation, i.e., the nearest data is regarded as the 
best match with a network node. Although the SOM model 
has an iterative and progressive mechanism, it is difficult to 
adjust the parameters that are needed for the SOM model to 
adapt the network to the lateral ventricular structure. 
Therefore, a constrained SOM model is proposed and 
applied first to get an elementary model of lateral ventricle. 
This strategy uses a progressive distance criterion to 
conditionally map the network to the target and obtain the 
elementary model which is topologically and roughly 
similar to the target. Then this elementary model is fine 



tuned to successively and precisely map to the brain lateral 
ventricle by the formal SOM model. 

In the simulations, mapping a 3D meshed sphere to the 
brain lateral ventricle is experimented to show the 
differences between the formal SOM algorithm and the 
proposed method. Our studies on T1-weighted MR images 
show that the proposed method gains more precise results 
to reconstruct 3D meshed brain lateral ventricular structures. 
Afterward a manual modification of lateral ventricle is 
employed to display the change on the ventricular shape.  

This reconstruction method can also be applied to other 
organs or brain tissues, e.g., a cortical surface. The meshed 
cortical surface can be used to support an estimation of 
neural dipoles of EEG signals [8] and the measurement of 
cortical thickness in human brains [9, 10]. 

II. THE PROPOSED METHOD 
The SOM model is an effective algorithm for the 

mapping between the model and data sets. It is a nonlinear, 
ordered, smooth function that can map a high-dimensional 
data set onto a low-dimensional model set. For example, 3D 
space data maps to a 2D array of grid nodes. The 
visualization of high-dimensional data, therefore, can be 
easily achieved by a low-dimensional display. In our 
applications, it is desired to map the brain lateral ventricle 
onto a simple graph, e.g., a sphere. The boundary voxels of 
brain lateral ventricle are defined to be the data set. Then a 
spherical mesh structure consisting of nodes is established 
to be the model set. The SOM model is applied to construct 
the mapping between the boundary voxels and the mesh 
nodes.  

The SOM model is mathematically described in the 
following. First, a best matching function is defined as  

( ) min ,  ,c j jj
F X X m X m m M= − = − ∈            (1) 

where ( ( ), ( ), ( ))X x i y i z i=  is the input data, M is the model 

set or reference network, and cm  is the nearest model node 
corresponding to data X. The smallest of the Euclidean 
distances 

jX m−  can be made to define the best matching 

node. Its update function denotes 

( 1) ( ) ( ) ( ( , ), )[ ( )],j j jm t m t t H D c j t X m tα+ = + −         (2) 

where t=0, 1, 2�is the iteration number, ( ) [0,1)tα ∈  is the 
learning rate, and H is the neighborhood function which 
decreases iteratively with the distance metric ( , )D c j . The 
Gaussian function is usually applied to be the smoothing 
kernel, i.e. 

2

( , )( ( , ), ) exp ,
2 ( )
D c jH D c j t

tσ
 

= − 
 

                    (3) 

where ( )tσ  is the standard deviation, i.e. the width of the 
smoothing kernel. In our algorithm, the function ( , )D c j  is 
defined as the angle with endpoints (0)cm  and (0)jm  

located on the initial sphere and the vertex located on the 
spherical center, that is 

1 (0) (0)
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(0) (0)
c j

c j

m m
D c j

m m
−
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 =
 
 

                  (4) 

where ． represents the inner product operation and t=0 
indicates the initial sphere model state. The neighborhood 
function H and the learning rate can be monotonically 
decreasing functions in iterations.  

The constrained SOM model is similar to the formal 
model but with a conditional update function that denotes 
as 

( 1) ( ) ( ) ( ( , ), )[ ( )],  if ( ) ( ),j j jm t m t t H D c j t X m t F X tα τ+ = + − >  (5) 

where ( )tτ  represents a threshold distance which decreases 
iteratively. This conditional update procedure means that 
the model node cm  and its neighbor nodes involved with 
the neighborhood function H are updated when the 
Euclidean distance 

cX m−  is larger than the threshold 

distance ( )tτ . According to this update function, the SOM 
model can form an elementary model, i.e., an approximate 
structure roughly similar to input data. Finally, the 
elementary model is updated without the limitation by the 
formal SOM algorithm. 

III. SIMULATION AND EXPERIEMNT 
In our simulations, the T1-weighted MR images in 

which the dimensions are 181x217x181 and the slice 
thickness is 1 mm are used for experiments. The boundary 
voxels of the lateral ventricle in T1-weighted images are 
first manually extracted to be the data set. The data set 
contains 7619 three-dimensional coordinate points. Figure 
1 shows some sample 2D slices with the location of lateral 
ventricle in transverse, sagittal, and coronal views and its 
spatial position. The initial reference network is a 3D 
spherical mesh with 4002 nodes that enclose the lateral 
ventricle. The spherical center is moved to the geometric 
centroid of data set. The total iteration of SOM model is set 
to 2000.  
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Fig. 1 The location of brain lateral ventricle in some sample 
T1-weighted MR images: (a)~(c) the white regions circled 
with red show the lateral ventricle in the transverse, sagittal, 
and coronal views, respectively, (d) the 3D spatial location 
of lateral ventricle inside the brain. 

The Euclidean distances between the mesh nodes and 
the corresponding data are applied to evaluate the quality of 
the 3D SOM results [6, 11], that is to calculate all the 
shortest distances between the SOM mesh nodes and the 
data points. The error function E is defined as 

( ) min ,  ,j j ji
E m X m m M= − ∈ ,               (6) 

where ( ( ), ( ), ( ))X x i y i z i=  is the input data and jm  is the 

jth mesh node in M. Then the maxima and mean of the 
distance measures in all mesh nodes are calculated to 
compare two different results of the formal and the 
proposed SOM models.  

The mesh with the minimal value of maximal distance 
measure is selected to be the final result. Figure 2 shows the 
result by using the formal SOM model, where the concave 
parts of the lateral ventricle are not well mapped. Figure 3 
shows the elementary model formed by the constrained 
SOM model. The threshold distance term  ( )tτ  in the 
conditional update function is empirically set to the value 
from 10 to 2 with a decreasing rate 0.9. Figure 4 shows the 
result by using the proposed SOM model. Although some 
crooked and concave surfaces exist in the lateral ventricle, 
the proposed SOM model can properly mesh it.  

 
(a) 

 
(b) 

 
(c) 

Fig. 2 The reconstruction of brain lateral ventricle by using 
the formal SOM model: (a) the result of meshed structure, 
(b) the top view of (a), (c) the bottom view of (a). 
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Fig. 3 The elementary model formed by the constrained 
SOM model: (a) the result of meshed structure, (b) the top 
view of (a), (c) the bottom view of (a). 

Figure 5 plots the maxima (dashed and solid lines) and 
the mean (dash-dot and dotted lines) of the distance 
measures. The dashed and dash-dot lines correspond to the 
error measures of the formal SOM model and others 
correspond to those of the proposed model. From the result 
selection rule (the minimal value of the maximal distance 
measure), their iteration numbers are 2000 and 540 in the 
formal and proposed SOM models, respectively, and their 
error distance measures are also plotted in Fig. 5 with the 
star symbols.  

In the error measures, the results of proposed method 
have less maximal distance errors than those of the formal 
SOM model. The quality measures of Fig. 2 and Fig. 4 are 
shown in Fig. 6 where the error range is set from 0 to 
6.5949 mm. Figures 6(a) and 6(b) are the error maps 
corresponding to Figs. 2(b) and 2(c) while Figs. 6(c) and 
6(d) are the error maps corresponding to Figs. 4(b) and 4(c). 
The maximal and minimal errors are 6.5949 and 0.0224 
mm in Figs. 6(a)(b), and 2.7125 and 0.0613 mm in Figs. 
6(c)(d), respectively. 
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Fig. 4 The reconstruction of brain lateral ventricle by using 
the proposed method: (a) the result of meshed structure, (b) 
the top view of (a), (c) the bottom view of (a). 

 
Fig. 5 The plot of error measures ( )jE m : dashed and dash-

dot lines are the maximal and mean errors by using formal 
SOM model; solid and dotted lines are the maximal and 
mean errors by using the proposed method. 
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Fig. 6 The quality measures of the experiments: (a)(b) the 
top and bottom views of the error map corresponding to Fig. 
2(b)(c), where the maximal and minimal errors are 6.5949 
and 0.0224 mm, respectively, (c)(d) the top and bottom 
views of the error map corresponding to Fig. 4(b)(c), where 
the maximal and minimal errors are 2.7125 and 0.0613 mm, 
respectively. 

In another experiment, a manual modification of lateral 
ventricle is employed to show the preliminary shape change 
on the ventricle. The modification is only focused on the 
frontal horns of lateral ventricle that usually dilate when a 
hydrocephalus happened. The lateral ventricle before the 
modification is considered to be the normal or standard case 
while the one after the modification is regarded as the 
abnormal case. It is feasible to show the differences 
between the normal and abnormal cases in a stereo view. 
Figure 7 shows the normalized error map in the meshed 
lateral ventricular structure. This application by using the 
lateral ventricular surface reconstruction technique can be 
established and embedded in a hospital PACS (Picture 
Archiving and Communication System) system for helping 
physicians to diagnose hydrocephalus and atrophy.  

 

Fig. 7 Normalized error map in the meshed lateral 
ventricular structure to show the change on the frontal 
horns. 

IV. CONCLUSIONS 

In this paper, a constrained SOM model is proposed for 
the reconstruction of the human brain lateral ventricle. The 
method provides a good capability to construct an 
elementary model which can be easily mapped to the 
crooked and concave surfaces of the lateral ventricle by the 
SOM algorithm. Based on this method, the 3D mesh 
structure can successively and precisely map to the surface 
of the lateral ventricle. This 3D meshed structure can be 
used to support the visualization and morphometry of brain 
lateral ventricle which is sensitive to brain abnormal 
phenomena, e.g. hydrocephalus. The future work of our 
research is to apply more real MR images to establish an 
assistant diagnosis system. Moreover, some critical 
techniques, e.g. segmentation or data acquisition, can be 
embedded into our system for automation. 
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