Year	Authors	Paper/Book	Journal	Content	Relation	Country
1985	Wen-Hsiung Li, Chung-I Wu, Chi-Cheng Luo	A New Method for Estimating Synonymous and Nonsynonymous Rates of Nucleotide Substitution Considering the Relative Likelihood of Nucleotide and Codon Changes	Molecular Biology and Revolution Vol. 2 Number 2 pg 150-174, 1985	Substitution rates in mammalian genes pg. 8 For several reasons, we shall use mainly genes from mammals: man, rodents (mouse, rat, and Chinese hamster), and artiodactyls (cow, goat, and pic). First, the fossil record for mammals is better than those for other organisms; we assume that the above mammalian orders diverged 80 Myr ago We assume that all mammalian orders diverged at the same time, i.e., 80 Myr ago.		USA
2000	Dan Graur, Wen-Hsiung Li	Fundamentals of Molecular Evolution	Book 2000	<i>Chapter 4</i> Table 4.1 pg 103 a. All rates are based on comparisons between human and mouse or rat genes. The time of divergence was set at 80 million years ago. Rates are in units of substitutions per site per 10^9 years. <i>Chapter 4</i> pg 139 For exaple, let us assume that the rate of nonsynonymous substitution for the α chain of hemoglobin is 0.56×10^{-9} substitutions per site per year, and that α -globins from rat and human differ by 0.093 substitutions per site. Then, under the molecular clock hypothesis, the divergence time between the human and rat lineages is estimated to be approximately $0.093/(2 \times 0.56 \times 10^{-9})=80$ million years ago.		Israel USA
2001	Ronald M. Adkins, Eric L. Gelke, Diane Rowe, Rodney L. Honeycutt	Molecular Phylogeny and Divergence Time Estimates for Major Rodent Groups: Dvidence from Multiple Genes	Molecular Biology Evolution vol. 18, pg 777-791	The text does not specifically mention the Human-Mouse divergence time. (only Homo-Macaca, Rattus-Mus). But there are some info given in the phylogenetic tree figures. Homo = Homo Sapiens => Human Rattus => Rat Mus => Mouse $Fig \ 1a$ Maximum-parsimony phylogeny of GHR sequences with individual sites reweighted according to their rescaled consistency index. $Fig \ 1b$ Maximum-likelihood (-In likelihood = 13,155.0) phylogeny of GHR sequences. $Fig \ 2a$ Maximum-parsimony phylogeny (2,556 steps) of 12S sequences (consistency index = 0.31, retention index = 0.39). $Fig \ 2b$ Maximum-likelyhood (-In likelihood = 10,881.4)		USA

80 million years – the divergence time of human and mouse

Year	Authors	Paper/Book	Journal	Content	Relation	Country
				phylogeny of 12S sequences. <i>Fig 3a</i> Maximum-parsimony (3,937 steps, consistency index [CI] = 0.63 and retention index [RI] = 0.70) and maximum likelihood (-ln likelihood = 22,720.6) phylogenies of BRCA1 sequences. <i>Fig 3b</i> Maximum-parsimony phylogeny (6,860 steps, CI = 0.40 and RI = 0.40) for concatenated GHR, 12S, and vWF sequences)		
2001	Masatoshi Nei, Ping Xu, Galina Glazko	Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms	PNAS (Proceedings of National Academy of Science) vol. 98 no. 5, pg 2497-2502 2001	Table 1 pg. 4Estimates (+- standard errors) of divergence times (MY) betweenmic and rats and between humans and rodents. <i>Estimates of gamma parameter a and divergence times</i> pg 4.Therefore, if we use a small a value obtained from closely relatedspecies, it will give unduly large pairwise distances for distantlyrelated species and consequently give overestimates of divergencetimes for them but may give underestimates for closely relatedspecies. Therefore, time estimates of 82 and 25 MY for thehuman-rodent and the mouse-rat divergence time appear to beunderestimates. <i>Table 2</i> pg. 5Estimate of ancient divergence times pg. 5Table 2 includes the estimates obtained by d ₃ with a=0.54, whichwas obtained by using only animal sequences (five species). Thisdistance again gives a smaller estimate (115 MY) for the human-rat divergence, which is below the calibration point (310 MY).However, it gives rather high estimates for divergence timesearlier than the calibration point. In particular, the estimate of theE. coli-eukaryote divergence is unrealistic, because it is older thanthe age of Earth (ca. 4,500 MY).Unlike the case of mammalian data, Lynch's distance (d _L) givesthe smallest time estimates for ancient divergencetime estimates for ancient divergence times		USA

Year	Authors	Paper/Book	Journal	Content	Relation	Country
				Discussion pg. 6 Nevertheless, if we use a large number of protein sequences, the estimates appear to be reasonably good (11, 17, 18). Our estimate (96 MY) of the time of human-rodent divergence from d3 is somewhat smaller than a recent estimate (112 MY) obtained by Kumar and Hedges (11). This difference occurred primarily because we used the CD approach with multiprotein gamma distance, whereas Kumar and Hedges used the IP approach with PC distance.		
2002	Mouse Genome Sequencing Consortium*	Initial sequencing and comparative analysis of the mouse genome MOST IMPORTANT & COMPLETE FOR MOUSE/HUMAN GENOME COMPARISON	Nature, Vol 420, pg 520-577, 5 December 2002	 Introduction pg. 1 Metaphorically, comparative genomics allows one to read evolution's laboratory notebook. In the roughly 75 million years since the divergence of the human and mouse lineages, the process of evolution has altered their genome sequences and caused them to diverge by nearly one substitution for every two nucleotides (see below) as well as by deletion and insertion. Background to the mouse genome sequencing project pg. 2 In the analyses below, we use a divergence time for the human and mouse lineages of 75Myr for the purpose of calculating evolutionary rates, although it is possible that the actual time may be as recent as 65Myr. Conservation of synteny between mouse and human genomes pg. 7 Starting from a common ancestral genome approximately 75Myr, the mouse and human genomes have each been shuffled by chromosomal rearrangements. The rate of these changes, however, is low enough that local gene order remains largely intact. Higher substitution rate in mouse lineage pg. 12 Assuming a speciation time of 75Myr, the average substitution rates would have been 2.2 x 10²⁹ and 4.5 x 10²⁹ in the human and mouse lineages, respectively. This is in accord with previous estimates of neutral substitution rates in these organisms. Genomic outliers pg. 15 Other repeat-poor loci in the human genome (about 100-kb regions on human chromosomes 1p36,8q21 and 18q22) have independently remained repeat-poor in mouse (2.6, 6.5 and 7%, respectively) over 		USA UK Switzerland Germany Canada Japan

Year	Authors	Paper/Book	Journal	Content	Relation	Country
				roughly 75 million years of evolution; we speculate that this similarly reflects dense regulatory information in the region.		
				<i>Fine-scale alignment of genomes</i> pg. 30 In a preliminary test of this hypothesis, we identified ancestral repeats in the mouse that lay in intervals defined by orthologous landmarks. Examination of the corresponding interval in the human genome showed a rate of loss of these elements, broadly consistent with the 24% deletion rate in the human lineage assumed above (see Supplementary Information). Such a deletion rate in the human lineage over about 75 million years is also roughly compatible with the observation that roughly 6% has been deleted over about 22 million years since the divergence from baboon, an estimate derived from the sequencing of specific regions in human and baboon (E. Green, unpublished data).		
2003	Ross C. Hardison	Comparative Genomics	PloS Biology vol. 1 issue 2 pg 156-160	<i>What can you learn about genome evolution?</i> pg. 2 The basic observation in comparative genomics is a description of the matches between genomes. For example, in the roughly 75-80 million years since human diverged from mouse, the large-scale gene organization and gene order have been preserved (International Mouse Genome Sequencing Consortium 2002).	References "Initial sequencing and comparative analysis of the mouse genome"	USA
2003	Anton Nekrutenko, Wen-Yu Chung, Wen-Hsiung Li	An evolutionary approach reveals a high protein- coding capacity of the human genome	TRENDS in Genetics vol. 19 no. 6 June 2003	<i>Identifying novel exons</i> pg. 2 Second, it is highly unlikely for a noncoding region to maintain the observed level of sequence conservation among three species with divergence times of ~20 Myr (rat-mouse) to ~80 Myr (human-rat, human-mouse)	References "Molecular Phylogeny and Divergence Time Estimates for Major Rodent Groups: Dvidence from Multiple Genes"	USA Taiwan Taiwan

*Complete author list of Mouse Genome Sequencing Consortium:

Robert H. Waterston, Kerstin Lindblad-Toh, Ewan Birney, Jane Rogers, Josep F. Abril, Pankaj Agarwal, Richa Agarwala, Rachel Ainscough, Marina Alexandersson, Peter An, Stylianos E. Antonarakis, John Attwood, Robert Baertsch, Jonathon Bailey, Karen Barlow, Stephan Beck, Eric Berry, Bruce Birren, Toby Bloom, Peer Bork, Marc Botcherby, Nicolas Bray, Michael R. Brent, Daniel G. Brown, Stephen D. Brown, Carol Bult, John Burton, Jonathan Butler, Robert D. Campbell, Piero Carninci, Simon Cawley, Francesca Chiaromonte, Asif T. Chinwalla, Deanna M. Church, Michele Clamp, Christopher Clee, Francis S. Collins, Lisa L. Cook, Richard R. Copley, Alan Coulson, Olivier Couronne, James Cuff, Val Curwen, Tim Cutts, Mark Daly, Robert David, Joy Davies, Kimberly D. Delehaunty, Justin Deri, Emmanouil T. Dermitzakis, Colin Dewey, Nicholas J. Dickens, Mark Diekhans, Sheila Dodge, Inna Dubchak, Diane M, Dunn, Sean R, Eddy, Laura Elnitski, Richard D, Emes, Pallavi Eswara, Eduardo Evras, Adam Felsenfeld, Ginger A, Fewell, Paul Flicek, Karen Foley, Wayne N. Frankel, Lucinda A. Fulton, Robert S. Fulton, Terrence S. Furey, Diane Gage, Richard A. Gibbs, Gustavo Glusman, Sante Gnerre, Nick Goldman, Leo Goodstadt, Darren Grafham, Tina A. Graves, Eric D. Green, Simon Gregory, Roderic Guigo, Mark Guyer, Ross C. Hardison, David Haussler, Yoshihide Hayashizaki, LaDeana W. Hillier, Angela Hinrichs, Wratko Hlavina, Timothy Holzer, Fan Hsu, Axin Hua, Tim Hubbard, Adrienne Hunt, Ian Jackson, David B. Jaffe, L. Steven Johnson, Matthew Jones, Thomas A. Jones, Ann Joy, Michael Kamal, Elinor K. Karlsson, Donna Karolchik, Arkadiusz Kasprzyk, Jun Kawai, Evan Keibler, Cristyn Kells, W. James Kent, Andrew Kirby, Diana L. Kolbe, Ian Korf, Raju S. Kucherlapati, Edward J. Kulbokas III, David Kulp, Tom Landers, J. P. Leger, Steven Leonard, Ivica Letunic, Rosie Levine, Jia Li, Ming Li, Christine Lloyd, Susan Lucas, Bin Ma, Donna R. Maglott, Elaine R. Mardis, Lucy Matthews, Evan Mauceli, John H. Mayer, Megan McCarthy, W. Richard McCombie, Stuart McLaren, Kirsten McLay, John D. McPherson, Jim Meldrim, Beverley Meredith, Jill P. Mesirov, Webb Miller, Tracie L. Miner, Emmanuel Mongin, Kate T. Montgomery, Michael Morgan, Richard Mott, James C. Mullikin, Donna M. Muzny, William E. Nash, Joanne O. Nelson, Michael N. Nhan, Robert Nicol, Zemin Ning, Chad Nusbaum, Michael J. O'Connor, Yasushi Okazaki, Karen Oliver, Emma Overton-Larty, Lior Pachter, Genis Parra, Kymberlie H. Pepin, Jane Peterson, Pavel Pevzner, Robert Plumb, Craig S. Pohl, Alex Poliakov, Tracy C. Ponce, Chris P. Ponting, Simon Potter, Michael Quail, Alexandre Reymond, Bruce A. Roe, Krishna M. Roskin, Edward M. Rubin, Alistair G. Rust, Ralph Santos, Victor Sapojnikov, Brian Schultz, Jo" rg Schultz, Matthias S. Schwartz, Scott Schwartz, Carol Scott, Steven Seaman, Steve Searle, Ted Sharpe, Andrew Sheridan, Ratna Shownkeen, Sarah Sims, Jonathan B. Singer, Guy Slater, Arian Smit, Douglas R. Smith, Brian Spencer, Arne Stabenau, Nicole Stange-Thomann, Charles Sugnet, Mikita Suyama, Glenn Tesler, Johanna Thompson, David Torrents, Evanne Trevaskis, John Tromp, Catherine Ucla, Abel Ureta-Vidal, Jade P. Vinson, Andrew C. von Niederhausern, Claire M. Wade, Melanie Wall, Rvan J. Weber, Robert B. Weiss, Michael C. Wend, Anthony P. West, Kris Wetterstrand, Raymond Wheeler, Simon Whelan, Jamey Wierzbowski, David Willey, Sophie Williams, Richard K. Wilson, Eitan Winter, Kim C. Worley, Dudley Wyman, Shan Yang, Shiaw-Pyng Yang, Evgeny M. Zdobnov, Michael C. Zody & Eric S. Lander