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Abstract. We construct a geometrical perspective to justify the slow learning period and fast 

learning period during training. We plot the error surfaces and the solution space on the input space 

for a single neuron with two inputs. We study various training paths on this space when we run the 

back-propagation (BP) learning algorithm [1]. We display the relation between the learning curve 

and the training path. We apply this study to correctly and efficiently operate the momentum 

method [2] to accelerate the training. 
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1   Introduction 

The error surface, or energy surface, and the solution space for descending learning rules(BP) 

[1] have commonly been plotted in the weight space or in hypercube space [3,4]. Instead of this 

common approach, we draw the error surfaces and the solution space on the input space [5,6]. This will 

provide different viewpoint for the training paths. Consider a neuron with its weights [w1, w2, w3] and 

two inputs {x1, x2}, plus a fixed input 1 for the threshold w3 (see Fig. 1a). In Fig. 1b, L designates a 

decision line given by weights [w1, w2, w3]. 
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Fig. 1. (a) a single neuron diagram. (b) the decision line L. 

The line L can be represented by a perpendicular point X at location (a1, a2), where a1 and a2 are 

obtained by solving the following equations: 
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Reformulate above equation, we obtain 
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We use such a decision point (a1, a2) to represent the decision line (or decision hyperplane). 

Accordingly, in this input space, each point (a1, a2) corresponds to two decision lines: 
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In the next section, we use the collection of such points (a1, a2) to represent error surfaces, solution 

space, and training paths. We also provide an example to illustrate the learning behaviors in detail. 
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2    Perspective in Input Space 

We use the four binary patterns, {( )(
2

)(
1 , pp xx ), p = 1~4.} as the inputs shown in Fig. 1b, to construct 

error surfaces, solution space, and training paths. The desired outputs of these four patterns have 24 =16 

combinations. Each combination is a desired Boolean function. We list them as follows. 

 

Table 1. List of all the Boolean functions with two inputs {x1, x2}. 

 )(
1

p
x  
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2

p
x  F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

p1 (p=1) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 

p2 (p=2) -1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 

P3 (p=3) 1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 

p4 (p=4) 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 

2.1 Error surfaces and solution space 

Since each decision point represents two hyperlines (Eq. 2), there are two errors, )1(
XE  and )2(

XE , at this 

point X. They can be calculated as 
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The variable )(i
pnet of the sigmoid function (.)σ  has two possible values. They are 
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The error surfaces are continuous collections of these two kinds of errors )1(
XE  and )2(

XE . The hard-

limited error surface can be obtained by replacing the sigmoid function )( )(i
pnetσ  with the hard-

limited activation function )sgn( )(i
pnet . 

We plot the two hard-limited error surfaces, C = ± 1, and the solution space where 0)1( =XE  or 

0)2( =XE  in Fig. 2. Each point in the shaded area of the solution space represents an admissible 

decision line. Note that the minima of error in Fig. 2(1a), 2(2a), 2(3a), 2(4a), 2(5a) are not zero. There is no 

solution under these surfaces with C=-1 because the directions of their decision lines are wrong. The 

minima of error in Fig. 2(8a) and 2(8b) both are not zero so the solution space does not exist (see Fig. 

2(8c)). This is called XOR problem. Other Boolean functions that are not shown in Fig. 2 can be 

obtained by changing the sign of patterns.  

The solution space for these 14 Boolean functions (except XOR and XNOR) is summarized in Fig. 

3. It is useful to examine the transition path of BP algorithm in such space which will be discussed in 

the successive section. 

 

2.2   Training paths 

We follow a sequence of decision points, or a training path, during BP training to show important 

learning behaviors. We will use the desired output F1 as an example. The result is shown in Fig. 4 and it 

shows some interesting properties. 

In Fig. 4a, the initial weights are [0.9, 2.6, 2.2], and the converged weights are [2.0, 2.0, -1.8]. We 

observe that the training path passes the origin (w3 = 0), where the sign of w3 switches.  In Fig. 4b, the 
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initial weights are [-0.9, -2.6, 2.2], and the converged weights are [1.9, 1.9, -1.9], where the signs of all 

the weights must be changed to achieve convergence. We observe that the training path first passes the 

x2 axis, where the sign of w1 changes. Then, it changes its direction to pass the origin (w3 = 0 and w2 = 

0) in order to switch the other two signs of w2 and w3 at the same time. If the signs of the initial weights 

are equal to those of the converged weights, then the path will not have to pass the origin or any axis in 

order to change its signs. It will move to the solution directly (see Fig. 4c). 

In many cases, as shown in Fig. 4a, 4b and Fig. 5a, 5b (C=-1), the path will pass either an axis or the 

origin, and the signs of the weights will switch. The path will jump to the other surface at the origin to 

reach the minimum. With this property, we may initially assign small magnitudes to the weights. This 

will ease the change of the weights’ signs during training. In other cases, as shown in Fig. 5b, 5c (C=1), 

the path will detour and surround the origin. In Fig. 5, we plot all the different kinds of paths but we 

omit some symmetric plots. 

As shown in Fig. 5c, in the case C=1, the training paths are long for initializations near the negative 

x2 axis. The extreme cases are those initializations on the negative x2 axis which will require infinitely 

long training. The same situation exists for the case C=-1 when the initializations are on the positive x2 

axis. These kinds of long paths are also appeared in the case shown in Fig. 5b, (C=1). 

Judging from Fig. 2 and Fig. 3, we construct a transition table (Table 2). In this table we list all the 

possible transitions from a given Boolean area. All the transitions are in the neighborhood of this 

Boolean area as shown in Fig. 3. We denote a specific area in the input space as a Boolean area, where 

this area is the solution space of this Boolean function. This table is useful for explaining and inferring 

the transitions in a training path. A transition example is plotted in this table for the case shown in Fig. 

4b. The BP algorithm will select a transition from its neighborhood with a reduced error in the same 

error surface before jumping to the other surface. 
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Fig. 2. The hard-limited error surfaces and the solution space for eight Boolean functions (F0, F8, F4, 
F2, F1, F5, F3, F6). Note that  ‘o’ represents 1 and ‘x’ represents –1 in the desired response. 
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Fig. 3.  The solution space of 14 Boolean functions. The ‘o’, ‘x’ marks are consistent with Fig. 2. Each 
closed area is a Boolean area. 

 
Fig. 4. (a, b, c) The training paths with different initial weights. (a) The initial weights are [0.9, 2.6, 2.2] 

and the converged weights are [2.0, 2.0, -1.8]. (b) The initial weights are [-0.9, -2.6, 2.2] and 
the converged weights are [1.9, 1.9, -1.9]. (c) The initial weights are [0.9, 2.6, -2.2] and the 
converged weights are [1.9, 1.9, -1.9]. 

 
Table 2. The transition table. The Boolean functions that are in italic font have a two-bit difference in a 
transition; the functions that are in normal font have a one-bit difference in a transition. The arrows 
indicate the transition path that is shown in Fig. 4b. 
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Fig. 5. The training paths of different initializations. (a, b, c) stands for Boolean function F0, F1 and F5 
respectively. The shaded area is the solution space. (a) The training paths for F0. In C=1, all the 
paths proceed outwards to the solution space directly. In C=-1, all the paths pass the origin in 
order to switch the sign first (changing the surface) and then proceed to the solution space. (b) 
The training paths for F1. We observe that all the paths pass the origin (changing the surface) in 
order to switch the weight’s sign in C=-1. (c) The training paths for F5. There are two leaves in 
the solution space. The training path converges to the upper leaf in C=1 and to the lower leaf in 
C=-1, staying on the same surface. The two leaves are on different error surfaces. 
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2.2 Learning Behaviors 

Now, we will study learning behaviors using an example presented previously  (Fig. 4b). From Fig. 6a, 

we observe that the period D in the learning curve (see Fig. 6b) corresponding to the training path 

passes through the origin. The error surface near the origin is very complicated. There is an extremely 

narrow and flat descending slope for the path moving, from the left leaf of F3 to the right leaf of F3. 

This causes slow learning. Fast learning periods will occur when the path passes the Boolean area 

borders, such as periods C (F11 to F3) and E (F3 to F1) in the learning curve. As far as we know, this is 

the first explicit explanation for the slow and fast learning period in BP algorithm. 

 Fig. 7 shows a learning path of the decision line using the BP algorithm on the error surface 

with Eq. 4, 5. We see that this path will follow down and keep in one of the error surface as marked by 

C=1 in Fig. 7a, where it starts the evolution. This path will not jump to the lower error surface until it 

passes the origin to switch the sign of w3 (to change the sign of C from –1 to 1 as in Fig. 7b). Once the 

sign is reversed, the path will evolve in the opposite error surface with C=+1. 

 
 

 
 

Fig. 6. (a) The training path of initial weights w = [-0.9, -2.6, 2.2]. It is the same as Fig. 4b. (b) The learning curve. 
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Fig. 7. The path jumps between the two sigmoid error surfaces (corresponding to Fig. 2(4a, 4b)). The 
learning path starts at (a) tracking the descending gradient, when it comes to the origin (a1,a2)=(0,0), it 
changes the sign of C to 1 and the error surface becomes what is shown in (b). Then it still tracks the 
greatest gradient to the minimum error. 
 
 

3   Simulation 

To our knowledge, there is no feasible learning method which can resolve and accelerate the 

learning in the region close to the origin. Since the momentum method [2] can accelerate the learning in 

the slow slope region which is far from the origin. So we may restrict using the momentum method 

only in the region far from the origin. 

We show a simulation with this restriction and compare it with both BP and BP with 

momentum methods. We use a 2-3-1 feed-forward network to solve the XOR problem. The momentum 

method is used only when the path is far from the origin with a distance larger than R ( Ra
i

i >∑ 2 ). 
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Here we set R=0.8 in the simulation. The initial weights of this network are set to small random 

numbers. The learning rate η  is set to 0.7 and the momentum constant α  is set to 0.3. The result for 

the learning curve is shown in Fig. 8. We also plot the learning curves of the BP and momentum 

methods. As this figure shows, learning with restricted momentum achieves higher performance than 

conventional BP or BP with momentum.   

 

 

Fig. 8. The learning curves BP(dash line), BP with momentum(thin line), and the restricted momentum 
method(thick line). The numbers on abscissa denote the training epochs. The ordinate denotes 
the mean square errors. 
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