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Abstract This paper presents the
implementation of a surface mesh
on a genus-zero manifold with 3D
scattered data of sculpture surfaces
using the conformal self-organizing
map (CSM). It starts with a regular
mesh on a sphere and gradually
shapes the regular mesh to match
its object’s surface by using the
CSM. It can drape a uniform mesh

on an object with a high degree
of conformality. It accomplishes
the surface reconstruction and also
defines a conformal mapping from
a sphere to the object’s manifold.

Keywords Conformality · Sur-
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1 Introduction

Laser scanners can sample a 3D object’s surface data
quickly and accurately, and yield enormous amounts of
scattered digitized point data useful for surface model-
ing [2, 27]. Many 3D objects like sculptures are classified
as genus-zero manifolds [22]. Mapping a smooth mesh
onto a sculpture’s surface is an important issue in surface
parameterization [15]. The conformal self-organizing map
(CSM) can mimic a given manifold by continuously and
selectively tuning to the input point patterns [20, 21, 25,
26]. That is, its neurons can span the manifold smoothly.
Therefore, it is able to lay a smooth mesh on the manifold.
The input pattern points for CSM are unorganized points;
therefore, CSM is also capable of solving the surface re-
construction problem.

The topological space of a given manifold and the pa-
rameterization domain affect the mapping distortion [11].
A large amount of distortion is unavoidable when dif-
ferent topological spaces are parameterized, e.g., from
a genus-zero manifold to a flat R2 plane. In the texture-
mapping procedure, the range data must be segmented into
an atlas [19], but for applications such as morphing and
remeshing, it is best to parameterize the mesh over a do-
main that is topologically equivalent to the object [11].

In this paper, we focus on the genus-zero manifold.
Many 3D manifolds belong to the genus-zero class, such
as creatures, sculptures of the human body, etc. It is natu-
ral to use spherical parameterization for genus-zero mani-
folds. Thus, we extend the CSM to the conformal spheri-
cal self-organizing map (CSSM), which employs a spher-
ical network space.

We will introduce the CSSM in detail and then employ
useful deformation indicators – conformality measures –
to quantify the mapping quality. The result will be com-
pared with results obtained using the self-organizing map
(SOM) [28].

Related works

The CSSM method is capable of reconstructing a surface
from unorganized points and defining a conformal map-
ping from a sphere to a certain object’s manifold. There
are three types of modern methods to accomplish the sur-
face reconstruction with varying degrees of success. They
are neural network methods, interpolation methods, and
approximation methods. Yu [28] and Barhak et al. [2] em-
ployed SOM to reconstruct a closed surface of genus zero.
Ivrissimtzis et al. [16] developed the growing cell struc-
ture, which is also derived from SOM, to generate fit-
ting meshes for various objects. The interpolation methods
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include the α-shape by Edelsbrunner et al. [10] and the
‘crust’ by Amenta and Bern [1]. These methods work well
for uniform and dense sampling, but the local topology
may deviate and have holes due to undersampling. The
approximation methods include algorithms developed by
Hoppe et al. [14] and Curless et al. [8]. They calculated the
normal vector from a data set and obtain its tangent plane.
All of the three modern methods solve the surface recon-
struction properly, but they do not seek a surface with the
content of conformal mapping.

There are five approaches to achieve conformal pa-
rameterizations: harmonic energy minimization, Cauchy-
Riemann equation approximation, Laplacian operator lin-
earization, angle-based method, and circle-packing [13].
Gu and Yau [12] introduced a method for modeling genus-
zero surfaces based on nonlinear optimization of harmonic
energy. Their algorithm starts with a given mesh; that is,

Fig. 1. (a) The network space. There are
11× 11 neurons arranged uniformly in
a rectangular plane∈ R2. (b) The input
space. The location of each lattice node
is represented by its corresponding neu-
ron’s weight vector wi ∈ R3

Fig. 2a–d. This figure shows that an R2 plane cannot
wrap a surface with a genus-zero manifold. The meshes in
(c) and (d) are learned by SOM with an R2 network space

it is not designed to resolve unorganized points and noisy
data. This paper presents a novel flexible mesh that can
resolve unorganized points and noisy data. This mesh
is capable of reconstructing a surface from unorganized
points.

2 Conformal spherical SOM (CSSM)

The conformal SOM, CSM [20, 25], attempts to accom-
plish conformal transformations between forms. It uses
a Euclidean plane as its network space, e.g., R2. But an
R2 plane cannot wrap a genus-zero manifold without pro-
ducing seams. See an example in Figs. 1 and 2. Therefore,
we extend the CSM to the CSSM, which uses a sphere
as its network space. This is because a sphere is topologi-
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cally equivalent to a genus-zero manifold [23]. The details
about arranging neurons and the CSSM algorithm will be
given in successive subsections.

The SOM model [18] is made of n neurons. The
neurons are usually placed regularly in one- or two-
dimensional space, called the network space. The neurons
of the CSSM model are placed on the tessellation of a unit
sphere. Each neuron has a weight vector (or synapse vec-
tor) wi , where wi contains the location of the ith neuron
in the input space. Figure 1 shows the positions of the
neurons in the network space and the input space.

2.1 The spherical network space

The neurons of the SOM are usually arranged uniformly
in Euclidean space lattices [18]. Adhering to this prop-
erty, the neurons are arranged uniformly on a unit sphere.
We use a geodesic dome to approximate this configura-
tion [17]. There are five tessellations (platonic bodies) of
a sphere: the tetrahedron, the octahedron, the cube, the do-
decahedron, and the icosahedron [23]. An icosahedron is
preferred because each of its faces is an equilateral tri-
angle. The basic type of icosahedron has 12 vertices, 30
edges, and 20 equivalent equilateral triangular faces. It
is varied by combining more icosahedrons into a single
body. We use the term f (frequency) to denote its multipli-
city. The formula of the icosahedron is

Faces = 20 f 2,

Vertices = Faces

2
+2. (1)

See Fig. 3 for frequencies from 1 to 6.
Since the neurons are arranged on the surface of a unit

sphere, its metric should no longer be Euclidean. Instead,

Fig. 3a–f. Icosahedrons approximating
spheres at different frequencies. From (a) to
(f) at f = 1 to f = 6, respectively

we compute the distance along the sphere surface. The dis-
tance between two neurons is

d = cos−1 (
ni ·nj

) |ni |
∣
∣nj

∣
∣ = cos−1 (

ni ·nj
)
, (2)

where ni and nj are three-dimensional column vectors
with a unit magnitude, |ni | = ∣

∣nj
∣
∣ = 1, and contain the lo-

cations of neurons i and j on the sphere, respectively. The
center of the sphere is at the origin, (0, 0, 0).

2.2 Learning algorithm

The CSSM learning algorithm is very similar to the CSM.
The only difference is in the distance metric (see Eq. 2).
The CSSM model is a continuous version of the SOM
with a spherical network space. It uses conformal map-
ping to compute the precise location of a pattern mapped
onto the network space. We will first introduce the CSSM
model, some terminologies, and then the learning algo-
rithm.

The CSSM model contains neurons that are arranged
on a sphere surface (which is approximated by a multi-
frequency icosahedron). Each vertex of the icosahedron
is set as a neuron in CSSM (see Fig. 3). The evolution
of these neurons’ weights proceeds based on competi-
tive learning with a conformal updating rule. Each neuron
occupies a fixed location in the network space and rep-
resents a marker in the input space – a vertex point in
a mesh. Here, let ni be the ith neuron’s location in the
network space and have a fixed value. Let wi(t), the neu-
ron’s weight vector, be the ith neuron’s location in the
input space at learning time t. wi(t) is a 3D column vec-
tor. Let X denote all input patterns, the set of all scat-
tered points sampled from the scanned model, and let
x ∈ X be an input pattern. The learning algorithm is as
follows:
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Fig. 4. The procedure for mapping input pattern x to the
reference vector r in the network space

1. Initialization. Initialize the CSSM network. In all of
our simulations, we initialize neurons’ weight vectors
as their uniform locations on a sphere.

wi(t = 0) = ni, position of the ith neuron (3)
on a sphere as in Fig. 3.

The neurons’ weight vectors denote the positions of
the mesh vertices (see Fig. 1(b)). Set the initial vari-
ance σt=0 and initial learning rate αt=0. The vari-
ance and learning rate decrease gradually with the
annealing scheme, e.g., σt = σ0 exp(− t

τ1
) and αt =

α0 exp(− t
τ2

), where τ1 and τ2 are time constants and t
denotes the learning time. We start the algorithm from
t = 0.

2. Sampling. Randomly choose an input pattern x ∈ X
with equal probability. X is the set of all scattered
points of the model.

3. Similarity Matching. Determine the winning or best-
matching neuron by using

‖wc − x‖ = min
i

‖wi (t)− x‖ , wi (t) ∈ W(t), (4)

where wc is the weight vector of the winning neu-
ron for the corresponding input x in time t, and
W(t) is the set of all weight vectors. The purpose of
this step is to find a nearest neuron to the sampled
point x.

4. Updating. Update all weight vectors according to the
following equation:

∆wi = αth (d (M (x) , ni)) (x −wi (t))
= αth (d (r, ni)) (x −wi (t)) ,

wi (t +1) = wi (t)+∆wi , (5)
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where αt ∈ [0, 1) is the learning rate at time t, and h is
the neighborhood function, which decreases monoton-
ically with the distance metric d in the network space.
This step is to improve the similarity of the weight
vectors toward the pattern x. Here, we use a Gaussian
neighborhood function:

h (d) = exp
(

− d2

2σ2
t

)
, (6)

where σt is the variance at time t. The distance metric d
here is based on the spherical metric, d = cos−1 (ni ·r).
r = M (x) is the reference vector of input pattern x
projected onto the network field. The function M first
projects pattern x onto the simplex s formed by the
winning neuron weight vector wc (t) and its adja-
cent neighboring neuron vectors and then maps it to
the network space using conformal mapping. Figure 4
illustrates the transformation of input x into the ref-
erence vector r. Let z ∈ s be the projection point of x
on s, and xz ⊥ s.
If a pattern x does not project inside any simplex of
the CSSM mesh, it will be tuned based on the updating
equation:

∆wi = αth (‖x −wc (t)‖) (x −wi (t)) ,

wi (t +1) = wi (t)+∆wi . (7)

5. Continuation. Continue with step 2 until a satisfactory
result is obtained. One epoch means that all patterns
x ∈ X have been selected once. Successful learning
requires many epochs.
In Step 4 of the learning algorithm, the function M

requires the use of conformal mapping to map simplex s
in the input space to s′ in the network space (see Figs. 4
and 5). The conformal mapping from simplex s to equilat-
eral simplex s′ can be approximated by means of Schwarz-
Christoffel mapping [7, 9, 20].

The mapping function from the v-plane to the z-plane
is given by

z = f1(v) = a1 + B1

v∫

0

1

ζ2

3∏

i=1

(
1− vi

ζ

)−βi

dζ. (8)

Fig. 5. The conformal mapping from an
arbitrary triangle to a unit disk and then to
an equilateral triangle and vice versa

The mapping function from the v-plane to the z′-plane is
given by

z′ = f2(v) = a2 + B2

v∫

0

1

ζ2

3∏

i=1

(
1− vi

ζ

)−γi

dζ. (9)

Since βi and γi are known, a, B and vi have to be solved in
the above equations. Therefore, the mapping from simplex
s to simplex s′ is z′ = f2( f −1

1 (z)), where z is any point on
s, and z′ is its corresponding point on s′. Then, the refer-
ence vector r is computed using r = nc + vector(z′). The
vector(z′) is the vector from w′

c to z′ in s′. In this paper, r
is always normalized with the same magnitude as that of
ni , |r| = |ni | = 1.

3 Deformation measure

We now review the conformality measure [21]. It can be
used to express both the distribution error and topology
preservation for the self-organizing process. It achieves
better performance than the mean square error criterion
(MSE) [4] or topographicity criterion (TPG) [6] meas-
ure [21]. Although it is derived for the SOM, it is also
applicable to the CSSM. To formulate it, we first define
two vectors:

relative synapse vector, v = w−wc;

relative input, x ′ = x −wc.

Note that in this section, v has a different meaning
than in Eqs. 8 and 9. Figure 6 shows the topological rep-
resentation of the synapse vectors. The topology formed
through self-organization can be regarded as a collection
of 2-dimensional simplices. In this paper, the pattern is
in 3D, and the network is intrinsic in 2D.

From the CSSM synapse update equation, Eq. 5, we
have

wc (t +1) = wc (t)+αh (d (M (x) , nc)) (x −wc (t))
for the winning neuron, and

wi (t +1) = wi (t)+αh (d (M (x) , ni)) (x −wi (t))
for other neurons. (10)
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Fig. 6. Diagram of the relative input x′ and the relative synapse v.
x is the input pattern, wc is the winning neuron weight, and wi
and wj are the neighboring neuron weights. v1, and v2 form a 2D
simplex

Then the update of relative synapse vector v, ∆v, in the
simplex is

∆v = v (t +1)−v (t)
= (w (t +1)−wc (t +1))− (w (t)−wc (t))

≈ α(h −1)x ′ −αhv (t) , (11)

where h denotes h(d(x ′, v)) = h(d(x, w)), and assume
d(M(x), nc) ≈ 1. Note that the variables in the neigh-
borhood function here are different from those in Eq. 5.
To formulate the deformation measure in each adaptation
step, the mapping function f is defined as

f(x ′, v (t)) = v (t +1) = v (t)+∆v

= α(h −1)x ′ + (1−αh)v (t) . (12)

Function f is the update equation for relative synapse
v. We now introduce the Jacobian matrix J used to analyze
function f . The Jacobian matrix can represent the deriva-
tive map of function f in a small neighborhood around
a certain point p [3]. The explicit definition of the deriva-
tive map is ignored here, but it can be thought of as a lin-
ear transformation that approximates function f near the
point p, i.e., f(p+∆p) = f(p)+ J∆p.

Let f(x ′, v) be ( f1, f2, . . . , fi, . . . , fn)
T , and let each

component fi be a function of v = (v1, . . . , vj, . . . , vn)
T .

Let us focus on each component of f , i.e.,

fi(x ′, v) = α(h −1)x ′
i + (1−αh)vi, i = 1, . . . , n. (13)

Here, we will use the Euclidean metric for d in the sim-
plicial coordinate; that is, d(x ′, v) = |x ′ −v|2. Hence, the
partial derivatives of f , for 1 ≤ i, j ≤ n, are

∂ fi

∂vi
= −2α

dh

dd
(x ′

i −vi)
2 + (1−αh)

= −2αh′(x ′
i −vi)

2 + (1−αh), for j = i ;
∂ fi

∂vj
= −2α

dh

dd
(x ′

i −vi)(x ′
j −vj)

= −2αh′(x ′
i −vi)(x ′

j −vj), for j �= i . (14)

The derivative of h is

h′ = dh

dd
=
d

(
exp

( −d
2σ2

))

dd
= − 1

2σ2 exp

( −d

2σ2

)
. (15)

Therefore, the Jacobian matrix, d fv = A, of function f is

A =








∂ f1
∂v1

∂ f1
∂v2

. . .
∂ f1
∂vn

∂ f2
∂v1

∂ f2
∂v2

. . .
∂ f2
∂vn

...
...

. . .
...

∂ fn
∂v1

∂ fn
∂v2

. . .
∂ fn
∂vn








=



−2αh′(x1 −v1)

2 + (1−αh) . . . −2αh′(x1 −v1)(xn −vn)

.

.

.
. . .

.

.

.

−2αh′(xn −vn)(x1 −v1) . . . −2αh′(xn −vn)2 + (1−αh)



.

(16)

Because matrix A is symmetric, every eigenvalue of A
is real. Using the results given by Liou and Tai [21], the
eigenvalues of matrix A are

λ1 = 1−αh and λ2 = −2αh′
n∑

i=1

(x ′
i −vi)

2 + (1−αh),

(17)

with multiplicities n − 1 and 1, respectively. If the Ja-
cobian J(v, f ), the determinant of the Jacobian matrix
d fv = A, is greater than zero, then the deformation of the
mapping function f can be defined. Based on the above
introduction, the three non-conformality measures are de-
fined as follows:

1. The deformation measure: Q(x ′, v) ≡
√

emax
emin

,

2. The non-conformality measure: K(x ′, v) ≡
(∑n

i=1‖∇ fi(v)‖2)n/2

nn/2 J(v, f )
,

3. The deformation potential: E(x ′, v) ≡(∑n
i=1 ‖∇ fi(v)‖2)n/2 −nn/2 J(v, f ).

In the deformation measure Q, emax and emin are the
maximal and minimal eigenvalues of the Jacobian ma-
trix A, respectively. The two distinct eigenvalues (λ1, λ2)
of A, in Eq. 17, are all greater than zero. In addition, λ2 is
greater than or equal to λ1:

λ2 −λ1 = −2αh′
n∑

i=1

(x ′
i −vi)

2 � 0. (18)

The above equation holds because α ∈ [0, 1) and h′ � 0,
where h is a monotonically decreasing function. Hence,
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the deformation measure for the CSSM is

Q(x ′, v) =
(

λ2

λ1

)1/2

=
(

−2αh′

(1−αh)

n∑

i=1

(x ′
i −vi)

2 +1

)1/2

.

(19)

The value of Q is not less than 1. If Q = 1, the measure
Q indicates that there is no deformation in the mapping
function f .

In the non-conformality measure, a geometrical inter-
pretation may give us a better sense of this criterion. The
term J(v, f ) is the volume of the hyper-parallelpiped de-
termined by the vectors ∇ fi(v), i = 1, . . . , n. The term
in the numerator,

(∑n
i=1 ‖∇ fi(v)‖2)1/2

, is the length
of the diagonal in the hypercube formed by the n orth-
ogonal vectors of length ‖∇ fi(v)‖ , i = 1, . . . , n, and
(∑n

i=1‖∇ fi(v)‖2)n/2

nn/2 is the maximum volume of the hyper-
cube inside a hypersphere with diameter(∑n

i=1 ‖∇ fi(v)‖2)1/2
. K is always greater than 1 for any

function f , where J(v, f ) > 0. When K = 1, the map-
ping function f is conformal. After some derivation, the
non-conformality measure in CSSM can be reduced to

K(x ′, v)

≡
[(−2αh′∥∥x ′ −v

∥∥2 +1−αh
)2 + (n −1)(1−αh)2

]n/2

nn/2(−2αh′∥∥x ′ −v
∥∥2 +1−αh)(1−αh)n−1

.

(20)

The non-conformality measure K in Eq. 20 may be infin-
ity when its denominator is equal to or close to zero. This
condition cannot be predicted at all in general.

The deformation potential E can measure the non-
conformality without encountering this serious problem.
After some derivation, the deformation potential in the
CSSM is found to be

E(x ′, v)

=
[(

−2αh′ ∥∥x ′ −v
∥∥2 +1−αh

)2 + (n −1)(1−αh)2
]n/2

−nn/2(−2αh′ ∥∥x ′ −v
∥∥2 +1−αh)(1−αh)n−1. (21)

The measures Q, K and E are all based on the in-
dividually sampled relative input, x ′ = x −wc , and rela-
tive synapse v = w−wc of the neighboring neurons. To
compute, roughly, the network’s overall performance, the
individual deformation is averaged as follows:

Deformation measure of the whole network:

Qtotal = 1

n P

P∑

p=1

n∑

i=1

Q(x ′
p, vi),

Non-conformality measure of the whole network:

Ktotal = 1

n P

P∑

p=1

n∑

i=1

K(x ′
p, vi),

Deformation potential of the whole network:

Etotal = 1

n P

P∑

p=1

n∑

i=1

E(x ′
p, vi),

where P is the total number of input data and n is the
dimension of the simplex shown in Fig. 6. Furthermore,
a total non-conformality metric [21] is introduced. It is the
product of consecutive non-conformality measures,

Mi =
T∏

t=1

K(x ′, vi), (22)

where T denotes the total number of learning steps in the
whole learning process. This metric indicates the accu-
mulative deformation of the neuron i through the whole
learning process.

4 Simulation

4.1 Process

In our simulation, 3D models were collected from the
sample archive of the Cyberware company website [29],
and the files were in the polygon file format (PLY) for-
mat. The CSSM is capable of learning from scattered
point data. Therefore, the source files were translated into
point clouds to serve the input patterns in our simulation
(see Fig. 7). The procedure for our simulation is described
below.

Fig. 7a,b. In our simulation, we used scattered data points as in-
put patterns. (a) The original model after rendering. (b) The point
cloud extracted from the original model
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Fig. 8a,b. The scattered data extracted from the PLY file. These
point clouds are the input patterns in our simulations. (a) Venus
model, 33 587 data points. (b) Female model, 49 463 data points

Fig. 9a–d. The results produced by the CSSM and SSOM models
with 2562 neurons (vertices) using the CSSM (a,b) and using the
SSOM (c,d). Comparing the forehead part of the CSSM and SSOM
meshes, the mesh obtained with the CSSM model is found to be
more regular than the mesh obtained with the SSOM model

1. 3D points were extracted out of the source file as raw
input patterns, X. These points were scattered.

2. A CSSM network was initialized on a sphere by using
an f -frequency icosahedron (see Fig. 3).

Fig. 10a–d. The results produced by the CSSM and SSOM models
with 5762 neurons (vertices) using the CSSM (a,b) and using the
SSOM (c,d). Comparing the forehead part of the CSSM and SSOM
meshes, the mesh obtained with the CSSM model is found to be
more regular than the mesh obtained with the SSOM model

3. The CSSM was trained to learn X until convergence
was reached. The details of this step have been given in
Sect. 2.

4. Its conformality measures were computed.

The conformal mapping in function M was solved
by using the MATLAB Schwarz-Christoffel toolbox by
Driscoll [9]. We also applied a spherical network space
to the conventional SOM model, which will be called

Table 1. The conformality measures of the CSSM and SSOM re-
sults with 2562 neurons. These data correspond to Figs. 9 (a) to
(d)

The conformality measure CSSM SSOM
( f = 16) ( f = 16)

deformation measure Qtotal 1.0188 1.0191
non-conformality measure Ktotal 1.001 1.0011
deformation potential Etotal 0.006007 0.0061
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Table 2. The conformality measures of the CSSM and SSOM re-
sults with 5762 neurons. These data correspond to Figs. 10 (a) to
(d)

The conformality measure CSSM SSOM
( f = 24) ( f = 24)

deformation measure Qtotal 1.0088 1.0088
non-conformality measure Ktotal 1.0002 1.0002
deformation potential Etotal 0.0012869 0.0012563

Table 3. The conformality measures of the CSSM and SSOM re-
sults with 2562 neurons. These data correspond to Figs. 11 (a) to
(f)

The conformality measure CSSM SSOM
( f = 16) ( f = 16)

deformation measure Qtotal 1.1821 2.7646
non-conformality measure Ktotal 1.175 23.003
deformation potential Etotal 1.0549 1949.3

SSOM in the following sections, for the purpose of
comparison.

For the convenience of coding and debugging, we used
MATLAB to implement our program. Solving Schwarz-
Christoffel mapping, Eqs. 8 and 9, using the SC-map tool-
box was a bottleneck in our program. About 40 minutes
were required to complete one epoch with 3000 neurons
and 20 000 patterns on an Althon XP 2500+ with 768MB
DDR RAM.

4.2 Results

In our simulation, we used two head models that came
from the Cyberware company website [29]. Both models

Fig. 12a,b. The histogram of the mesh angle distribution. The Venus model with 2562 vertices (a) and with 5762 vertices (b) obtained
with the CSSM

Fig. 11a–f. The results produced by the CSSM and SSOM model
for the second 3D model. All of the figures are composed of the
resulting meshes and rendered models. (a)–(c) CSSM results for
2562 neurons, (d)–(f) SSOM results for 2562 neurons. These re-
sults are obtained under the same parameters and show that CSSM
gives a better mesh

were extracted to obtain scattered data points and are
shown in Fig. 8. The first model is a woman’s head with
a flaw beside her mouth (see Fig. 7(a)). The second model
is a female head scanned from a real person.

Figures 9 and 10 show the CSSM and SSOM results
obtained with different densities for surface reconstruc-
tion. Figures 9(a,b) show the results obtained using the
CSSM with 2562 neurons ( f = 16). The number of learn-
ing epochs was set to 80, the learning rate α was decreased
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Fig. 13a–m. The morphing results produced by the CSSM model. The CSSM starts to learn the model in Fig. 8(a) with respect to the
model in Fig. 8(b). During learning, intermediate surface meshes are saved as in (b) to (k)

from 0.01 to 0.001, and the variance σ was decreased from
0.3 to 0.1. Figures 9(c,d) show the results obtained using
the SSOM with 2562 neurons ( f = 16). Figures 10(a,b)
show the results obtained using the CSSM with 5762 neu-
rons ( f = 24). The number of learning epochs was 69, the
learning rate α was decreased from 0.01 to 0.001, and the
variance σ was decreased from 0.3 to 0.1. Figures 10(c,d)
show the results obtained using the SSOM with 5762 neu-
rons ( f = 24). All of the learning criteria were set to be
equal for the purpose of comparing these two methods.
The results obtained using these two methods show that
the CSSM learns smoother meshes than the SSOM does.
The performance of the CSSM and SSOM is shown in

Tables 1 and 2. The deformation measure Qtotal and non-
conformality measure Ktotal for both methods are close to
1, and the deformation potential Etotal for both methods is
close to zero. This shows that the results obtained using
the CSSM and SSOM are close to conformal mapping.

In Fig. 11, The CSSM and SSOM results for the sec-
ond model are shown. In Figs. 11(a-c) show the results
obtained using the CSSM with 2562 neurons ( f = 16).
The number of learning epochs was 88, the learning rate
α was decreased from 0.01 to 0.001, and the variance
σ was decreased from 0.3 to 0.1. Figures 11(d-f) show
the results obtained using the SSOM with 2562 neurons
( f = 16). The number of learning epochs was 88, the
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Fig. 14. The total non-conformality metric from the left model to the middle one. The metric values are plotted in the right column. The
scale is normalized and double logged with different colors. The red area indicates a large difference, while the blue area indicates a small
difference

learning rate α was decreased from 0.01 to 0.001, and
the variance σ was decreased from 0.4 to 0.1. All of
the learning criteria were set to be equal for the purpose
of comparison. Simulating with this model, the SSOM
failed to learn when the variance started at σ = 0.3.
Hence, we started the variance at 0.4 (σ = 0.4). From
the results shown in Fig. 11, the SSOM did not con-
verge to smooth meshes and did not tighten the manifold.
The performance of the CSSM and SSOM for the sec-
ond model is shown in Table 3. The non-conformality
measure Ktotal of the CSSM model was 1.175, which
means that the map was a quasi-conformal mapping. The
SSOM had worse performance than the CSSM for this
model.

The quality of the CSSM mesh is shown in Fig. 12. It
shows the mesh angle distribution [24] of the Venus model
in Figs. 9 and 10.

The adaptation procedure for the CSSM is appli-
cable to the morphing problem. In this case, we first
used the CSSM to learn the first model and saved the

trained result. We then used this result as the initial
mesh in a successive learning to learn the second model.
We tested this idea, and plotted its result in Fig. 13.
The number of learning epochs was 88, the learning
rate α was 0.001, and the variance σ was decreased
from 0.26 to 0.1. In Fig. 13, we show that the shape
changes smoothly from the first model to the second
model.

To compare the shape difference between these two
models, we calculated the total non-conformality metric
Mi through the morphing process. The result is shown in
Fig. 14.

5 Summary

This paper presents a novel CSSM mesh. A confor-
mal spherical self-organization method for parameteri-
zation of genus-zero manifold models is presented. It
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Fig. 15a–c. In this figure, the flawed region on the right chin of the Venus model is deleted, and the CSSM can fill this hole. (a) The
original Venus model using a mesh with 133 446 vertices. (b) The input point cloud. The flaw region is removed. (c) The CSSM mesh
with 12 962 vertices

Fig. 16a–e. Two male head models are mixed together. (a) The first male head model with 35 091 vertices. (b) The second male head
model with 30 492 vertices. (c) The mixed point cloud. (d) The mesh obtained with the CSSM using σ = 0.2~0.1 and α = 0.01. (e) The
mesh using σ = 0.2~0.01 and α = 0.01
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Fig. 17a–c. A male head model with 1% random noise. CSSM can recover the model without topological error. (a) The head model with
1% noise. The model has 35 091 points (green dots) and there are 351 uniform random noise points (red dots). (b) The mesh obtained
with CSSM using 12 962 vertices. The rate α was set to 0.01, and the σ was decreased from 0.6 to 0.03. (c) The CSSM mesh with edge
obtained the same way as in (b)

differs from that proposed by Gu et al. [12, 13]. Their
method is derived from the gradient fields of confor-
mal maps [13] to find global conformal parameteriza-
tions. The neural network proposed by Chen [5] uti-
lizes the multilayer neural networks to learn the desired
model. It does not necessarily have the conformal con-
tent.

A curved, differentiable, continuous and smooth CSSM
surface can be obtained by transforming the triangular
portion of the sphere over each equilateral simplex s′ to its
corresponding object surface over simplex s.

The CSSM is intrinsically suitable for morphing ap-
plications (see Fig. 13) in its learning process. It is also
suitable for studying morphological variability that is an
important issue in many surface structure analyses (see
Fig. 14). As for the long legs (sticking out the body) the
proposed method needs extra techniques. It is necessary
to include extra nodes or links to accomplish such tasks.
We did not develop such techniques. In CSSM, the ini-
tial spherical mesh is extended toward the object surface
without adding any node or link during self-organizing
evolution. This CSSM mesh is capable of reconstructing
a surface from unorganized points and defining a confor-
mal mapping from a sphere to certain object’s manifold.
This mesh can resolve models with random noisy data. We
are working on several applications shown below.

Hole recovery
The Venus model with 133 446 sample points has a flaw
near its right chin (see Fig. 15(a)). We manually remove
the data points of this flaw region (refer to Fig. 15(b)) and
apply CSSM with 12 962 vertices to fill this region (see
Fig. 15(c)). The learning rate α was set to 0.01, and the
variance σ was decreased from 0.2 to 0.01. CSSM can fill
the missing region without producing any holes [1, 10].

Mixed patterns
In this example, two models of male heads are mixed to-
gether. The total number of data points is 80 507. The
CSSM model has 12 962 vertices. The results using CSSM
are shown in Fig. 16. The CSSM mesh shows a new head
that is similar to both of the heads. The neighborhood vari-
ance σ is crucial in this example. In the mesh in Fig. 16(d),
σ was decreased from 0.2 to 0.1, and it is smoother than
the mesh in Fig. 16(e), where σ was decreased from 0.2 to
0.01.

Model with random noise
One percent of uniform random noise is added in a male
head model. The mesh obtained by the CSSM is in Fig. 17.
Although the result has some imperfections, it recovers
a head model that is not affected much by the noise.
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