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1 Introduction

THE PRIMARY goal of this technical note is to take advan-
tage of the nonlinear property of neural networks to study
the feasibility of constructing an alternative human-
machine interface. The new form of communication pro-
posed uses only the electroencephalogram (EEG) signals
generated from different mental tasks without any vocal-
isation or overt physical action. The results reveal some
phenomena which cannot be observed by using the linear
classifier and show us the direction for further research.

A nonlinear classifier is better than a linear classifier,
because the former can form arbitrarily complex decision
regions and thus obtain a much more accurate result. This
note also verifies that the EEG signals contain more com-
plicated messages than those obtained by using the linear
classifier. When compared with the chaotic features
observed in some aspects of human physiology, the results
of our investigation can be explained reasonably. More-
over, many topics worth future study are considered.

The objective of the research on using brainwaves as the
human-machine interface is to construct a system which
allows the handicapped to communicate with their sur-
roundings. Because all brainwaves can be recorded
without the subject having to speak or make overt move-
ment, a severely physically disabled person who has no
control over his motor responses but does have control of
his thoughts could use the system effectively. Thus, over
the past few years, there have been studies in the area of
developing this kind of human-machine interface.

Many previous studies concentrated on the user’s
mental response to external stimuli. The results of these
studies have demonstrated that, when the subject is
required to classify a series of items which come from two
possible categories and one of the categories appears only
rarely, these rare items will elicit an event-related potential
(ERP) with a positive peak which occurs about 300 ms
after the occurrence of the rare item. This ERP is called
the P300 (FAREWELL and DONCHIN, 1988).

The appearance of the P300 signals the subject’s
recognition of a rare event without vocalisation or overt
movements. Often the subject is required only to mentally
count or pay attention to the occurrences of the rare items.
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For example, a series of ‘1’ and ‘2’ appear at different rates:
‘1” occurs 45 times and 2’ occurs five times; in this case the
P300 can be measured approximately 300 ms after 2’
occurs. Based on this idea, Farewell and Donchin devel-
oped a character input system that realised 2-3 characters
per minute by using the P300 component of the ERP gen-
erated upon seeing the input character flash on a computer
screen. The primary drawback of such a system from the
viewpoint of the human-machine interface is that it must
rely on external stimuli, which may be ineffective for some
disabled persons. Also, system delay is unavoidable when
using responses to external stimuli and, therefore, the input
speed will slow down (HIRATWA et al., 1990).

Another study has investigated the EEG topography
preceding voluntary movements. DEECKE et al. (1969)
divided the potentials recorded preceding voluntary finger
movements into three components. The first is a slowly
increasing surface negative readiness potential (RP) which
starts about 850 ms before the movement and is bilaterally
symmetrical over the cortex. The second is a pre-motion
positivity (PMP), which is also bilaterally symmetrical and
starts about 86 ms before the movement. The third is a
surface negative motor potential (MP) which starts about
56 ms before the movement.

One study further demonstrated that the RP generated
prior to some voluntary movements-contains some infor-
mation about those movements (HIRAIWA et al., 1990),
such as a co-operative movement of the muscles of speech
to pronounce syllables and the finger movements which
could control a joystick. Therefore, RPs generated prior to
controlling the joystick and pronouncing syllables can be
the input of machines. The temporal signals of the RP
recorded 0-33s and 0-66s preceding the movements were
selected to be the input of the neural network, back-
propagation model, and the corresponding movements
and syllables were presented to the network as the desired
output.

Other research used the EEG signals generated from
different mental tasks (KEIRN and AUNON, 1990). These
signals were processed by fast Fourier transform (FFT)
and power spectra analysis, and were then classified into
one of the mental tasks with the Bayes quadratic classifier.
It is obvious that signals processed by power spectra
analysis are more reliable than temporal signals.

Therefore, this technical note is mainly based on the
study of Keirn and Aunon. All the experiments were
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repeated while proper neural networks were substituted for
the Bayes quadratic clsssifier to perform the overall
analysis. The principal difference is that the Bayes quadra-
tic classifier can only perform linear classification and
assume the feature values are normally distributed,
whereas neural networks can perform nonlinear classi-
fication and the distribution of the feature values has no
influence on the performance of the network. Also, because
of the limitation of the linear classifier, Keirn and Aunon
only proposed the classification accuracy rates between
any pair of mental tasks for one subject in one session,
whereas this report has analysed the accuracy rates among
all mental tasks for every subject in every session.

The results reveal that almost all classification accuracy
rates are zero except those of a few mental tasks. A study
concerned about chaos and fractals in human physiology
has shown that most healthy people have a chaotic heart
rate, and many systems controlled by the neural system
exhibit chaotic dynamics (GOLDBERGER et al., 1990). If we
explain the result of this study from the same point of
view, it is not difficult to understand why almost all the
accuracy rates are zero. Many possibilities, including
inherent ability and external influences, are also proposed
to explain the high accuracy rates of some mental tasks for
some subjects obtained in this investigation. Moreover,
directions for further research are indicated.

2 Experiments

A total of five subjects, one female and four male, took
part in the experiments. Each subject completed at least
two sessions and each session was recorded in separate
weeks. Each mental task was repeated ten times per
session; five times with eyes open and the other five times
with eyes closed.

The subjects were seated comfortably and the experi-
enced nurse placed electrodes on their heads to record the
signals. The subjects were instructed to perform the mental
tasks without speaking or overt movements. Meanwhile, a
computer recorded the EEG signals from the electrodes for
10 s during each mental task, as shown in Fig. 1.

There were five distinct mental tasks to be performed
(KEIRN and AUNON, 1990).

Task I Baseline measurement: The subject was instructed
to simply relax and think of nothing in particular.

Task 2 Multiplication problem solving: The subject was
given a nontrivial multiplication problem to solve. Each
problem was different and was designed so that the answer
could not be obtained within 10 s.

Task 3 Geometric figure rotation: The subject was
instructed to visualise a complex three-dimensional block
being rotated about an axis. An example of one of the
block figures is shown in Fig. 2.

instructions of
mental tasks

EEG

spectral
analysis

|

neural
networks

Fig. 1 Schematic diagram of the system
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Fig. 2 Example of one of the figures used for the geometric figure
rotation

Task 4 Mental letter composing: The subject was
instructed to mentally compose a letter to a friend or a
relative. As the task was repeated several times, the subject
was told to try to pick up where he or she left off in the
previous task.

Task 5 Visual counting: The subject was asked to imagine
a blackboard and to visualise numbers being written on
the board sequentially, with the previous number being
erased before the next number was written. The subject
was further told to pick up counting from the previous
task rather than starting over each time.

3 Data analysis

3.1 Data extraction

Only data from the six channels, C3, C4, P3, P4, Ol and
O2 (KerN and AUNON, 1990), as shown in Fig. 3, were
used in the analysis process. Approximately Ss (1152
sample points) of EEG was extracted from each repeated
task. FFTs were performed every 128 sample points with a
frame size of 256, and thus eight periods of frequency
values were obtained for the 5s samples for each channel.
By averaging over the eight periods of frequeney—values,
the power spectra was calculated to accumulate the power
values in four frequency bands: 6(0-3 Hz), 6(4-7 Hz), o(8—
12Hz) and p(13-20 Hz). One spectrum is shown in Fig. 4.
The 1152 EEG values were subtracted by their own mean
value and thus the expectation, i.€. the mean, of the 1152
values was zero. Moreover, the FFT length was 256 and

nose

Fig. 3

Location of six-channel electrodes
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Fig. 4 Power spectrum for subject I in the second session under
eyes-open condition (C3 channel). This spectrum was
obtained by averaging over the eight periods of the fre-
quency values. Then, the power values in four frequency
bands: 0, 0, o and 3, as shown in the above, can be accu-
mulated

the overlapping length was one-half of the FFT length
(128), so the variance of the estimation of power spectra
can be proved to be proper (WELCH, 1967).

This procedure resulted in 24 power values (total of six
channels) for each repetition of the task, and then the
power values became the input to the neural network.

3.2 Neural network training

The Hopfield (HopriELD, 1982) and back-propagation
(BP) models (RUMELHART et al., 1986) are most commonly
used in many applications among all neural network
models, but they cannot be easily applied to solve the
problem in this experiment. The main drawback of the
Hopfield model is that the network may merely converge
to a local minimum, not a global minimum, after training.
Simulated annealing (KIRKPATRICK et al., 1983) can raise
the probability of the network converging to the global
minimum, but it cannot make the probability 100 per cent
within a finite time. Therefore, the performance of the
network is beyond control (HOPFIELD, 1982; KIRKPATRICK
et al., 1983; HopriELD and TANK, 1985).

Although it is one of the most powerful and widespread
neural networks, the BP model also has a property which
is not compatible with our problem. There are 24 input
values, but only five possibilities of output in this experi-
ment. For a BP model with 24 nodes in the input layer,
there could be many variations in its storage. For example,
if a database of the photographs of the five thousand
million people in the world is to be constructed, and if
there are 100 x 100 pixels in one photograph, and if the
BP model is applied, it will only require 10* nodes in the
input layer to memorise the photographs of all the people
in the world; i.e. only a few tens of thousands of nodes in
the input layer can produce five thousand million varia-
tions in output. Thus, the BP model is not the most suit-
able one for solving our problem.

However, the self-organisation model (KOHONEN, 1984)
can be successfully applied to the problem with a fixed
number of classes. Also, the weights adapt slowly and
adaptation stops after training, allowing the model to
perform relatively well when noise is present (LIPPMANN,
1987). Therefore, the self-organisation model instead of the
other two is chosen to be the classifier in this study.

The model applied in this experiment is the network
with 30 x 30 nodes and 21600 synapses (24 x 900), as
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Neural network based on the self-organisation model, with
size 30 x 30

Fig. 5

shown in Fig. 5. For each subject, the power values from
one session, selected at random, were used as the training
samples of the neural network. Data from the other sess-
ions were used for testing. After training the network, one
mapping was obtained and calibrated for each subject, as
shown in Fig. 6. Based on the mapping, the testing data
can be classified into mental tasks according to the cali-
brated neuron with the maximum response to the input.
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Fig. 6 Mapping after training the network 100 times with data

from subject 1 in the second session. The numbers rep-

resent the mental tasks to which neurons are most sensitive

113
111
1.:1
111

T (G S P Q¥
=0 =k (b =N =
—_

1
1
1
1

— = 3 =2

11
11
11513373
111
11

The training results show that the network after training
100 times and after training 1000 times have almost the
same mapping, and therefore training 100 times is more
efficient. (On an 80386 PC, training the network 100 times
takes approximately 8 h).

4 Results and discussion

Having obtained mappings for each subject, the classi-
fication accuracy rates among different sessions for one
subject and for different subjects were analysed. The results
are shown in Tables | and 2; S1O(C)1 means that data are
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Table I  Classification accuracy rates (with eyes open)

Training

Accuracy data S102 S202 S302 S402 S502
Testing
data
S101 T1 0/5 0/5 5/5 0/5 1/5
T 4’5 4/5 1/5 0/5 1/5
T3 0/5 /5 0/5 4/5 0/5
3 0/5 0/5 0/5 2/5 2/§
TS 2/5 0/5 0/5 35 3/5
S103 jj 0/5 0/5 0/5 0/5 4/
T2 3/5 3/5 3/5 0/5 0/5
T3 0/5 0/5 1/5 1/5 0/5
r4 0/5 0/5 0/5 1/5 3/5
il ) 2/5 0/5 3/5 3/5 0/5
S201 rt 1/5 1/5 4/5 175 0/5
2 0/5 5/5 5/5 0/5 2/5
T3 1/5 0/5 0/5 1/5 1/5
r4 0/5 0/5 0/5 0/5 6]
‘TS 2/5 1/5 0/5 0/5 3/5
S301 ! 0/5 0/5 5/5 0/5 3/5
T2 1/5 5/5 3/5 0/5 2/5
13 1/5 /5 1/5 o) 0/5
T4 0/5 0/5 0/5 2/5 0/5
TS 0/5 1/5 25 2/5 0/5
S401 Tl 1/5 0/5 0/5 0/5 3/
T2 0/5 5/5 2/5 1/5 0/5
T3 0/5 0/5 1/5 2/5 0/5
T4 3/5 0/5 1/5 0/ 2/5
TS 1/5 0/5 0/5 1/5 0/5
S501 Tl 0/5 0/5 1/5 0/5 1/5
T2 0/5 5/5 3/5 1/5 1/5
3 1/5 0/5 2/5 5/5 0/5
T4 2/5 0/5 0/5 0/5 2/5
TS 3/5 0/5 3/5 2/5 0/5
Table 2 Classification accuracy rates (with eyes closed)
Training
data sSi1C2 S2C2 S3C2 S4C2 S5C2
Testing
data
SI1C1 Tl 0/5 §/5 2/5 2/5 0/5
T2 1/5 0/5 4/5 4/5 1/5
T3 1/5 0/5 0/5 1/5 2/5
T4 1/5 3/5 0/5 0/5 4/5
TS 3/5 0/5 0/5 0/5 0/5
S1C3 T 0/5 35 3/5 3/5 0/5
T2 1/5 L5 1/5 35° 0/5
T3 0/5 0/5 0/5 2/5 2/
T4 0/5 0/5 /S 0/5 5/5
TS 1/5 0/5 0/5 2/5 0/5
S2C1 Tl 0/5 0/5 0/5 3/5 1/5
2 5/5 3/5 2/5 0/5 4/5
T3 1/5 0/5 0/5 0/5 0/5
T4 0/5 2/5 1/5 0/5 3/5
i 1/5 0/5 /5 0/5 /5
S3C1 Tl 0/5 0/5 1/5 4/5 0/5
T2 0/5 0/5 2/5 5/5 0/5
T3 1/5 1/5 1/5 1/5 0/5
T4 0/5 1/5 1/5 0/5 15
TS 1/5 0/5 2/5 0/5 0/5
S4C1 Tl 0/5 1/5 0/5 0/5 1/5
T2 45 0/5 1/s 25 0/
E3 1/5 3/5 0/5 2/5 2/5
T4 0/5 2/5 0/5 1/5 0/5
] B 2/5 0/5 2/5 2/5 1/5
SSCI TI * % *% *% *% * %
T2 34 4/4 0/4 1/4 4/4
1 N 0/5 1/5 1/5 1/5
T4 0/5 4/5 1/5 1/5 2/5
1) 1/5 0/5 1/5 0/5 3/5

** data not available

from the first session of subject 1 under the eyes open
(closed) condition; T1 means mental task 1; and so
on. In Tables 1 and 2, almost all the accuracy rates,
whether relating to different sessions for one subject or for
different subjects, are zero except for a few special mental
tasks. This result cannot be obtained by using the linear
classifier. Although the linear classifier may successfully
classify patterns from two different mental tasks, it will not
work once the number of tasks increases and the decision
region becomes more complex. This is the reason that
Keirn and Aunon only proposed accuracy rates between
every pair of the mental tasks. The results of their study
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also revealed that the accuracies fell for the combined sess-
ions even though a high degree of accuracy between any
pair of the five mental tasks for a single session was
obtained.

Based on Tables 1 and 2, it seems that constructing a
human-machine interface by using different mental tasks is
not as easy as expected. But, from another viewpoint, this
result provides topics for further research. More and more
studies have shown that many chaotic states and fractals
exist in human physiology, and a paper has also been
presented showing that healthier people have more chaotic
heart rates (GOLDBERGER et al., 1990). Each subject in this
experiment had a normal EEG measurement and was cer-
tified to be healthy by the neurologist. Because brainwaves
are another human physiological function, as heart rate is,
it might also exhibit chaos.

The result also shows another unusual phenomenon: the
high accuracy rates on the second mental task (multi-
plication problem-solving) in most of the cases. The errors
of recording and analysing data might affect the result, but
they could only have the negative influences on the experi-
mental result and reduce the accuracy rates. For example,
if the desired pattern is ‘A’ and the image size is 100 x 100,
the probability of an erroneous pattern which just matches
‘A’ and thus will be classified as an ‘A’ is merely about
1/21°990 On the other hand, the probability of one noisy
pattern ‘A’ which will be misclassified is much higher than
1/210000 That is to say, if the EEG signals recorded were
noisy, the accuracy rates could only be reduced. Thus, the
high accuracy rates obtained in this experiment are reli-
able. Many possible reasons are proposed in the following
to explain this result.

The first possibility is that it is the result of education. In
this research, the five subjects, aged from 23 to 40, all
finished college education and majored in engineering.
They were well trained in arithmetic. GOLDBERGER et al.
(1990) have proposed that the plasticity of chaos allows
systems to cope with the exigencies of an unpredictable
and changing environment, but when ageing, disease and
external stimuli such as drug toxicity are present, the regu-
larity will increase. But sometimes people need fast and
precise processing routines rather than good adaptability
to deal with certain things. Such processing routines can
be obtained from education, social convention and other
experiences, especially during the growth stage of human
beings, and must be kept in the brain cells through learn-
ing. Consequently, brain cells always accept external
stimuli and are learning and ageing such that chaos will no
longer appear when encountering these certain things. In
other words, after being trained in arithmetic, these five
subjects’ mental responses to certain external stimuli are
already fixed instead of chaotic.

Another possibility is that these subjects’ mental
responses to such external stimuli are inherently fixed so
that they can be selected from the general population to
accept professional training in arithmetic and engineering.
Regardless of whether these fixed responses are inborn or
due to postnatal influences, their effects on biological evo-
lution cannot at present be determined. Maybe these sub-
jects will find it easy to survive and become winners in this
technological age, but whether they will remain able to
adapt if the environment changes is so far unknown.

There is still the possibility that the subjects’ mental
responses are not yet fixed. They were skilled in doing this
particular mental task, and so the brain waves from the
stage of concentrating on the task could be recorded, even
though the recording time only lasted for 10s. However, it
may take the subjects longer before they are fully concen-
trating on the other tasks. Therefore, they may just be

July 1993



beginning to concentrate on those tasks after the 10s of
recording, or it may be difficult for them to keep concen-
trating on doing those tasks. Under such assumptions, the
effects on biological evolution need not be considered,
because the mental responses would not really be fixed.

But, because a person finds it easy to concentrate on a
particular mental task does not mean that they find it easy
to get out of that mental state. For example, some may
need a long time to recover after focusing on a job, and yet
some may only need a break or a nap. A person who gets
out of a state slowly may not be well adapted to today’s
changing world. The relationship between two mental
tasks and the time one needs to get out of one task and
then concentrate on the next task are not discussed in this
note. It is very possible that the experimental subjects still
stayed in the previous task when instructed to perform
another mental task.

Moreover, Table 1 shows high accuracies on the first
mental task in some cases, especially for the network
trained with the data of S302. Because there was actually
no mental task performed in task 1, the subjects might be
thinking of several different things or pondering on one
particular thing. It is very probable that subject 1 in the
first session, subject 2 in the second session and subject 3
in the first and second sessions were in similar states. Such
states may vary with the subjects’ moods and character-
istics; for example some tend to daydream and some tend
to ponder one particular subject. Also, the subjects” mood
might be affected by the environment, such as the noise
and temperature. (The same condition also results from the
network trained with the data of S502.)

When Table 1 is compared with Table 2, it can be
clearly seen that there are no obvious differences between
the cases with the eyes open and those with the eyes
closed. Because closing the eyes makes the o-waves (8-
12 Hz) appear prominently, it is very possible that a-waves
have no direct relationship with mental tasks. Another
possibility is that closing the eyes affects the a-waves of
both hemispheres and it is the asymmetry ratio of the two
hemispheres that is really related to mental tasks. There-
fore, the results of both conditions (with eyes open and
closed) are similar.

Table 3 shows the results from using the analysis of data
from mental task 1 as baseline, i.e. the power values of all
the mental tasks except task 1 were subtracted from the
power values of the corresponding task 1 (data of task 1
obtained in the same session) before training and testing
neural networks. The remaining analysis steps are the
same as those used to obtain Tables 1 and 2. The results of
Table 3 are similar to Tables 1 and 2: most of the accuracy
rates are near zero except some special mental tasks. But,
in this case, mental task 3 (geometric figure rotation)
rather than task 2 exhibits obviously high accuracy rates.
As to this result, further experiments and analyses are
necessary for us to find a satisfactory explanation.

In conclusion, what we do not know amounts to more
than what we do know in studying the EEG signals from
different mental tasks. But, after the analysis by neural
networks, many clues for further study are provided. Some
of the inferences need biological experiments to verify
them. For example, training mice to climb ropes can be
used to observe the effects on survival of the training and
the innate abilities of those mice which climb well. Also,
the brainwaves from epileptics and subjects with brain
tumours could be further recorded to analyse whether the
frequencies are chaotic. If these frequencies exhibit periodic
or other special regular behaviour, an automation system
for recognition of brain disease can be constructed. Such a
system would save the large amounts of time which are
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Table 3 Classification accuracy rates using mental task 1 as
baseline (with eyes open)

Training

Accuracy data S102 $202 S302 S402 S$502
Testing
data

S101 12 2/5 1/5 2/5 0/5 2/5

T3 4/5 4/5 0/5 5/5 1/

T4 0/5 2/S 3/5 0/5 1/5

TS 3/5 2/5 1/5 0/5 1/5

S103 T2 2/5 2/5 215 1/5 3/5

13 3/5 3/5 1/5 1/5 2/5

T4 0/5 0/5 0/5 1/5 1/5

T35 0/5 2/5 1/5 2/5 0/5

S201 T2 2/5 0/5 0/5 2/5 0/5

T3 0/5 0/5 1/ 0/5 3/5

T4 1/5 5/5 1/5 1/5 0/5

TS 1/5 0/5 0/5 0/5 1/5

S301 T2 1/5 2/5 4/5 1/5 3/5

T3 3/5 5/5 3/5 5/5 0/5

T4 0/5 2/5 1/5 0/5 3/5

T5 0/5 0/5 1/5 1/5 0/5

S401 T2 2/5 0/5 1/5 1/5 1/5

I3 0/5 2/5 2/5 2/5 2/5

T4 1/5 1/5 1/5 1/5 4/5

TS 1/5 1/5 0/5 5/5 0/5

S501 T2 0/5 0/5 3/5 1/5 3/5

3 4/5 3/5 1/5 4/5 1/

T4 0/5 2/5 15 1/5 2/5

TS 0/5 0/5 0/5 2/5 0/5

spent by neurologists in inspecting EEG signals. From the
viewpoint of the human-machine interface, if the EEG
signals from different mental tasks are used as the input of
a system, and if such signals vary with one’s characteristics
and background, experiments and analyses on subjects
with different backgrounds and characteristics are neces-
sary to find out more about the proper mental tasks to be
used for expanding the instruction set of the system.

There are still many improvements that can be made to
the experiment environment. Because the experiments were
carried out in the National Taiwan University Hospital,
the quality of the environment was beyond our control.
Interferences from voices could not be avoided, and the
experiment was not arranged perfectly. Once the environ-
ment has been improved, an increase of accuracy rates can
be expected. All these areas for further research are beyond
our present abilities owing to the limits of knowledge,
resources and time. The initial results of this research are
proposed here to offer data and ideas to researchers who
are interested in these topics, and we hope this contributes
towards progress in these studies.
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