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Abstract

An agent which has desires is an autonomous agent which gives substantial attention to its
character, and it will behave much like a human being. We implement such agents using
an internal ethologically-inspired action selection model. The parameters of this model are
adaptively tuned by a stocastic cellular automata learning algorithm. We examine these

agents by observing their negotiating behaviors in a multi-agent electronic marketplace.

Keywords: agents, electronic marketplace, stochastic cellular automata, action selection

model.

1 Introduction

Autonomous agents have been applied in many areas. An agent is called autonomous if it decides by
itself how to relate its sensor data to motor commands in such a way that its goals are attended to
successfully [12]. We would expect an autonomous agent to be adaptive, robust, and effective in its
dynamic environment. An agent which has desires is an autonomous agent which not only emphasizes
the properties that an autonomous agent cares about, but gives much attention to its own character. This
kind of agent can be viewed as a semi-creature which has emotions, motivation and belief with regard to

the external world. It will behave much like a human being. Our goal is to build such an agent.



Each of our agents has two main parts. One is an internal ethologically-inspired action selection
model [3] which makes the agent effective and life-like. The other is a cellular automata which gives the
agent learning ability. The architecture of this agent is shown in Figure 1. The Sensor module collects
external world information, filters out noises, and sends useful information to the Behavior module.
The Behavior module then determines an appropriate action among possible candidates. The Motor
Controller module executes the action to react to the external world and the agent itself. The cellular
automata assists the agent by tuning the parameters in the action selection model. It uses a reinforcement
learning mechanism to learn the feedback from the environment.

We expect that by simulating the behaviors of human beings, an agent can handle more sophisticated
problems. We believe this is reasonable because, if an agent can simulate the behaviors of people, then
the agent might be able to solve the same problems that people can solve, at least to a significant degree.
However, in addition to simulating behaviors, modeling internal characteristics is important. For example,
if Bob eats a piece of pizza, he will be more satisfied if he is hungry than if he is satiated. If we want to
simulate the above situation, we will have to deal with two things. The first one is that, there must be a
way to meansure the degree of hunger(internal state); the second is that, under different internal states,
the value of the pizza(belief to external world) may be different. Many behaviors of human beings show
such properties. People also have motivation to do something.

Therefore, we must design this agent so that it will possess many personal characteristics. This
agent will have mental states like emotions, motivation and beliefs with regard to the external world. It
might be happy if it finishes a task on time. It might be impatient if it spends too much time doing the
same thing. This agent selects its action according to its internal mental state and external stimuli. For
example, if the agent is hungry, there will be more likely to select a feeding action than a sporting action.
In the following section, we will discuss the action selection model used by the desired agent. A detailed
example to explain the idea behind this agent will be given in section 3. We will develop a mulit-agent
electronic marketplace, put the desired agent into the marketplace, and observe its behavior. In section
4, we will further equip the desired agent with a stocastic cellular automata(SCA) learning mechanism

so that it can learn from experience.



2 Action Selection in the Desired Agent

As opposed to the traditional ’knowledge-based AI” technique, the "behavior-based AI” [12] has become
a useful approach to building an autonomous agent. Because we want this agent to behave more like a
human being, it is reasonable to use an action selection model which is borrowed from ethology. Many
researchers have studied this kind of model to imitate the behaviors of animals or have applied it to other
applications like robot control. For example, Reynolds [15] modeled the flocking behavior of birds and
the schooling behavior of fishes. Blumberg [3] proposed a computational model which sucessfully models
an artificial dog with life-like behaviors [4]. Terzopoulos [16] modeled the mental states of fishes using
a set of mathematical equations. Tyrrell [18] wrote a comparative comment on some early works and
argued that an information free-flow hierarchy is a sensible approach to action selection.

Among these different action selection models, we use Blumberg’s model as the core of action
selection for the desired agents. We further modify his model by adding branching instructions to the
algorithm. This makes action selection effective in critical situations. We will first present Blumberg’s
model, discuss the aspects of ethology in his model, and then explain our modification.

The computational model presented here originated from Blumberg’s ideas [3][4]. Figure 2 shows
the architecture of the model. The Internal Variable(IV) is used to model the internal states of the agent.
This value can change over time based on growth rates, damping rates, and the value of the relative gain
of active behavior. The Releasing Mechanism(RM) is used to sense the external stimuli and output a
continuous value which has common currency with the Internal Variable. The Level of Interest is used
to model the temporal apects of animal behaviors. When a behavior is active, the value of the Level of
Interest of this behavior decreases, which in turn reduces the value of this behavior such that a non-active
behavior has a chance to be executed. The Level of Interest prevents the agent from pursuing a single
behavior all the time. The Behavior module is used to decide on an appropriate behavior that the agent
will execute. Behaviors are organized into groups. Different groups are organized into a hierarchical
architecture. Behaviors in the same group are also organized into a loose hierarchical architecture. The
upper level behaviors are more general and abstract whereas the lower level behaviors are more specific.

Each behavior in the same group mutually inhibits others such that there is only one active behavior at



a time. With higher inhibition gains, the active behavior shows more persistence. With lower gains, the
system tends to dither. ’Loose hierarchical’ means a losing behavior could recommend to the winning
one. Finally, the Behavior module outputs a primary behavior together with a second behavior if there
is one.

There are some implications related to ethology [3]. First of all, animals do not dither among
multiple activites; they engage in one behavior at a time. Animals behave in a form of time-sharing.
Low priority behaviors can be executed while high priority behaviors will not be interrupted arbitrarily.
Second, a hierarchical architecture is one of the essential organizing principles of animals. It is easy to
scale up and provide a focus of attention to avoid processing irrelevant information. Third, an animal’s
response to an external stimulus depends both on the strengh of the stimulus and on its internal need
so that a continuous value of response and common currency between the internal need and external
stimulus are needed. Following are the life-like equations proposed by Blumberg [4]:

e Internal Variable (IV) Update Equation

Wy = (ivi(t_l) - IVdamp;) + IV growth; — Z Gaing; - by—1),
k

where 7v;; is the value of Internal Variable ¢ at time . iv;;_y) is its value at the previous time step.
IVdamp; and IV growth; are damping rates and growth rates related to this Internal Variable q.
Gaing; is the gain used by Behavior & related to Internal Variable i. by;_y) is the value of Behavior

k at time ¢t — 1.

e Level of Interest (LI) Update Equation
liyy = Clamp(((li;4—1y - LIdamp;) + LIgrowth; — (b;,_y) - bRate;)),0,1),

where [4;; is the value of the Level of Interest related to Behavior ¢ at time t. LIdamp; and
Llgrowth; are damping rates and growth rates related to this Level of Interest . bRate; is the

boredom rate for Behavior i. Clamp() clamps the value to the range 0 to 1.

¢ Releasing Mechanism (RM) Update Equation

rmge = Clamp(Temporal Filter(t, rm;q_y), Stimulus;), min;, mawx;)
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Stimulusy = Find(sy, dMin;, dMax;) - Filter(s;y) - Weight(sy, Opt;),

where rmy; is the value of Releasing Mechanism ¢ at time {. s; is the object in which RM 7 is
interested. dMin; and dMax; are minimum and maximum distances for search. Find() returns 1
if s;; is found within dMin; to dMaz;; otherwise, it returns 0. Filter() returns 1 or 0 if s;; satisfies
some conditions. Weight() weights s;; according to a weighting function and the distance to an
optimal value Opt;. Temporal Filter() filters the rm;; over some period t. Clamp() clamps rm;;

to the range min; to maxz;.

e Behavior (B) Update Equation

by = Mazx Kliit . Combine(z rmg;, Z ;) — Z UG - vmt) , 0},
k J

m

where C'ombine() is a function used to combine the values of the Releasing Mechanisms and Internal
Variables. ig,,; (¢g>1) is the Inhibitory Gain that Behavior m applies against Behavior i. v, is

the value of Behavior m, where m ranges over all other Behaviors in the same Behavior Group.

Note that the parameters 1v;qy, IVdamp;, IVgrowth;, Gaingi, by, lizo), LIdamp;, LIgrowth;,
bRate;, Tm;(o), min;, maz;, si4), dMin;, dMaz;, and ig;,; should be given in advance. They are initial
parameters.

The execution sequence of this algorithm is: (1)update the Internal Variable; (2)update the Releasing
Mechanism; (3)update the Level of Interest; (4)update the Behavior; (5)if more than one behavior in the
same behavior group has a non-zero value, repeate (4) by post-inhibiting values.

We add branching instructions to the original action selection model (see Figure 3). From our
experience in building this agent, we know that there are situations where the agent has to execute a
particular action without consideration. For example, a negotiating action is forced to terminate if the
deadline has expired. If we use the original algorithm without any modification, we have to carefully
tune the parameters of our model to cover such a particular action. This will be diffcult in such a large
scale system. Therefore, adding branching instructions in the right situations might be a good choice.
This simplifies decision-making in crutial situations without losing the merit of the original model. This

can be viewed as pre-programmed conditional action selection.
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The execution sequence of the modified algorithm is: (1)update IV; (2)update RM; (3)update LI;
(4)if the agent and the environment satify some conditions, (4a)a specified action will be active; other-

wise,(4b)update B until only one behavior is active.

3 An Electronic Marketplace Experiment

Many electronic marketplaces have been implemented where people can buy or sell goods. Many of these
systems use a ’conditions matching’ strategy to find an appropriate product. A Buyer/Seller gives the
server a set of condition rules, like a price, properties, or a deadline for the deal. The server searches
the answer from its database or makes queries to other servers, and then lists matching answers for the
users. BargainFinder [2], Jango [8], and Buy&Sell Online [6] are examples.

Agent-mediated negotiation is a new research approach to electronic commerce (e.q., ActionBot [1],
Kasbah [7], and Tete-a-Tete [17]). In this kind of system, agents automate the process of determining
prices. The benefit in using this technique is that people could save time and money in real-world
negotiation, such as at a stock market or flea market, or in price haggling. Chavez’s Kasbah [7] is an
interesting experiment. He proposed an agent marketplace for automating the process of negotiating
prices. A user in this marketplace can create a particular type of agent. This agent will automatically
negotiate with other agents in the same marketplace using a simple and flexible strategy. A buying/selling
agent will ask/offer different prices over time.

In this section, we will present an agent-based electronic marketplace and the desired agents for nego-
tiation. These agents will negotiate with each other in a human-like way. To our knowledge, few systems

have been implemented in this way. The experiment reveals many life-like negotiating phenomena.
Market Architecture

Our electronic marketplace is a client-server architecture, shown in Figure 4. Client users on-line operate
their agents through a web-based user interface. All agents are situated on the server-side. The server
chooses two waiting agents to negotiate and notifies remote users of the results.

The operating procedure is as follows: A user first opens an account on the server. The next step is

to create a personalized agent by specifing a particular negotiating strategy (shown in Figure 5). He can



assign a task to his agent, that is, specify what kind of product he wants to buy/sell and the best price
and so on. The agent will be free to the marketplace and will negotiate with other agents. It will raise
or lower prices over time according to its strategy. It can perform other kinds of actions like threatening
and dickering to help it get a good price. It will continue to negotiate with another agent until both
agents agree on the same price.

The current version of the desired agent in the electronic marketplace experiment has seven Behav-
iors: ’raise my price’, Jlower my price’, ’do nothing’, ’dicker’, *threaten’; ’leave’, and ’make a deal’. Also,
it has two Internal Variables: the desire for price and the desire for time. The former means how much
the agent cares about price. With a high value of desire for price, the agent will spend as little money as
possible. On the other hand, the later means how much the agent cares about time taken in negotiation.
With a high value of desire for time, the agent wants to make a deal as quickly as possible. There are
five Releasing Mechanisms: ’the difference in the prices that the two agents offer’, "the difference in price
between the current price an agent offers/asks and the optimal price it expects’, 'the residual time before
deadline’, ’the dicker signal’, and ’the threaten signal which detects the relative actions that the other

agent performs’.

Experiment Result

An experiment result is shown in Figure 6. There are ten charts, divided into three rows. In each chart,
the horizontal axis is the time step. The vertical axis is the value of each parameter which has been
normalized from 0 to 1. The four charts from left to right in the first row indicate the IV curves, RM
curves, LI curves, and Behavior curves of Agent A, respectively. The charts in the third row indicate
those for Agent B. The left chart in the second row indicates the fluctuation of price; the right chart
indicates the degree of impatience. The number below "Deal Price’ indicates the price at which these two
agent make a deal; the number below ’Tick’ indicates the time that this negotiation process takes. In
the IV chart, curve M is the desire for money, and curve T is the desire for time. In the Behavior chart,
the curves u, s, k, w, and d indicate, respectively, the 'raise my price’, ’do nothing’, > lower my price’,
and 'make a deal’ behaviors. The multiple curves in the RM and LI charts indicate different parameters,

but we will not interpret them in order to reduce the length of this paper.
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We can explain Figure 6 from at least two viewpoints. From the viewpoint of internal variables, for
Agent A, the value of T is always much higher than the value of M. This indicates that Agent A wants
to save time more than money. It will buy/sell the goods as soon as possible, without considering the
price it offers. On the other hand, Agent B pays much attention to saving money, but as time passes, it
cares about time as much as money.

From the point of view of ’Behaviors’, we can easily find that at first, Agent A(Buyer) quickly raises
the price it offers, because of its initial interest in saving money. As the interest in price increases, it
stops raising the price and chooses to ’do nothing’. Although it performs these actions, it is patient and
feels that there is still a lot of time for negotiation. But as time goes on, it dickers; it wants to save both
time and money. After dickering, it becomes more impatient and wants to leave. However, the action
it chooses at this time is 'do nothing’. "Wait, then make a decision’ might be a good strategy here. For
Agent B(Seller), because of its initial interest in saving money, it chooses to ’dicker” in the early stage of
the negotiation process. But as time passes, it lowers the price it offers. At last, these two agents agree
on a price and make a deal.

Before ending this section, we will note three important phenomena in the behaviors of agents. First
of all, we can find that in each time step there is only one active behavior. The second is that the
intension to do one behavior decreases gradually. The third is that one behavior will last only for a short
period until another behavior wins in its competition with all the others. These life-like phenomena are

also found in ethology and generally agreed on by ethologists [3].

4 Stochastic Cellular Automata for Adaptive Behaviors

Blumberg’s model is a hand-built, hierarchical network [12]. Developers have to design and adjust
parameters by hand. To perform this tricky task, we need a learning mechanism to give the agent a
learning ability. Furthermore, it is important to adjust the agent itself in order make it adaptive to
changes in the environments. Blumberg proposed a learning algorithm [5] and used it in his action
selection model. We, however, use a stochastic cellular automata(SCA) learning algorithm to give the

learning ability to the desired agent.



The cellular automata(CA) is a discrete time/space universe and operates using a set of simple
local rules. Much work has been done on the theoretical bases of CA. The results show that the cellular
automata supports the basic operations of information transmission, storage, and modification in the
vicinity of a phase transition [9]. It has been proved that the cellular automata and Turing machine
have the same computational power [11]. By building appropriate rules, CA can display many kinds
of complex behaviors. The difference between SCA and CA is that SCA updates itself by means of

nonuniform local rules.
Definition of Stocastic Cellular Automata

Let SCA = (U,X,Y,Q,N ,v,F,GG) be a stochastic cellular automata, where

(i) U: the discrete cellular space,
(ii) X: the set of input symbols,
(iii) Y': the set of output symbols,
(iv) Q: the set of state symbols,
(v) N: the neighborhood relations of one cell in U,
(vi) 7: the neighborhood state configuration function
7:Q — ONG,
(vii) F: the stochastic next state mapping function
F: X xeyQ —Q

Vee X, ¥Yne N, Zf(ac,n,q): 1, and
9€EQ

(viii) G: the stochastic output mapping function
G ®NQ —Y

Vn € N, Zg(n,y): 1.
yey



The state-transition diagram of SCA is shown in Figure 7. z; and y; were six-dimentional vectors in all

our experiments. xz;, 7;, and ¢; are, respectively, the input, output, and state at time step 7.

Reinforcement Learning Method

We used the following learning algorithm to train the parameters iv;y), [V damp;, and IV growth; of the
Internal Variable ’desire for time’ and ’desire for money’ in the experiment described in section 3. All
the other parameters were fixed. This is because training all the parameters was inefficient. We chose
these key parameters to enable the agent to learn feedback from the environment.

Following is a reinforcement learning method of the stochastic cellular automata proposed by Lee
et al. [10]. It has been demostated by means of a pole balancing experiment [14].

We have two learning strategies. Both learning strategies will converge with the desired behavior of

minimizing the penalty:

(i) only punish g¢g(n,y)and f(z,n,q):

If at time ¢, the automaton is at state s; = s' and the output is y = y', then
e when the reinforcement signal r, = 1 (penalize)
Ply' [ s't+1]= APy | s',1],

where 0 < A < 1,

and to preserve normalization, for all other output y # y!,

Ply|sht4 1] = APly | s' 4 ——2
ny—l

where n,, is the cardinality of the set of ouput symbols;
e when 7, = 0 (not penalize)

do nothing!

If at time ¢, the automaton is at state s; = s', its previous state is s, and the input is z; = 2,

then
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e when reinforcement signal 7, = 1 (penalize)
Pls' |2, %t + 1] = AP[s" | 2, s, 1],
and to preserve normalization, for all other states s # s!,

Pls|a',s® t+ 1] = AP[s | 2', s°, 1]

1=2A

ne— 1’

_I_

where ng is the cardinality of the set of state symbols;

e when r; = 0 (not penalize)

do nothing!

(ii) reward and punish g(n,y) and f(z,n,q):
When r, = 1, we solve the above four equations to punish g(n,y) and f(z,n,q); when r, = 0, we

can reward them by
Plyt | st t+ 1) = APy | sh 1]+ (1= N)
Plst |2t %t + 1] = AP[s' | 2b, 8% 8] + (1 = A).
Note that P[A|B] is the conditional probability.

Implementation

We modified the implementation of the pole balancing learning experiment [14] to suit our requirements.
The meaning of each variable in our algorithm is explained as follows. X is the set of Internal Variables.
S is the set of coarsely quantized states of X in phase space. Y is the set of bounded output values of 5.
Each value in Y will be added to a corresponding value in X in the next run. Our algorithm, first, sets
X and lets an agent negotiate with others based on X. Second, it generates a punishment/reward signal
which depends on whether the goal is reached or not. Third, it calculates S by looking up the nearest
two neighbors around each cell [14]. Next, it calculates Y by looking up in the CA rule table. Then,
it modifies the CA rule table according to a punishment/reward signal. Last, it updates X. Figure 8

showes a flowchart of our algorithm.

11



Experiment Result

In the two experiments described below, we used ’whether two chosen agents will make a deal or not’
as the objective function. According to this function, we could decide when to punish or reward the
agents. The first experiment was performed as follows. We chose two agents and let them negotiate with
each other. At the beginning, Agent A could not make a deal with Agent B within fifty time steps. But
we found that after learning, Agent A could make a deal with Agent B. Note that learning could be
processed either online or offline. Figure 9 displays an offline example.

In the second experiment, one agent could not make a deal with any of the four agents in a group.
After learning, this agent could make a deal with every one in this group. This experiment shows that
this agent had memory in its CA brain. The results are shown in Figure 10, Figure 11, and Figure
12. Note that in these figures, Agent A is the agent which learned. The results shown in (a), (b), and
(c) were generated by untrained Agent A negotiating with the other three agents. Those in (d), (e),
and (f) were generated by trained Agent A negotiating with the same three agents. The training in this
experiment was performed offline.

In this paper, we have presented an implementention of a desired agent. The system includes
two main parts: an ethologically-inspired action selection model and a learning mechanism based on
a stochastic cellular automata. We also performed three experiments. One was for an agent-based
electronic marketplace, and the others tested the learning mechanism. All of these three experiments

demostrated the capability of our agents.
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Figure 11: The second set of experimental results, part 2.

21



Agent A Agent A
v B v
1 T 1 17T
M d
u M
0 50 0 50 0
Money "B_Kil " AgentA Money
300 B "B_Up ~AgentB B
7.!5.- B_Down Deal Price 77&
B_Same 290
B_Threat Tick
" B_Leave 13
0 go B_Deal 0
Agent B Agent B
1I‘u" 1B 1I‘u"
M |
M
5 i
L~ T k T
0 50 0 50 -
(e) (f)

a0

a0

[al'a

0 50
"B_Kill T AgentA
"B_Up " AgentB
B_Down Deal Price
B_Same 250
B_Threat Tick

" B_Leave 13
B_Deal

a0

Figure 12: The second set of experimental results, part 3



