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Abstract—This work explores the neural features that are 
trained by decreasing a discriminative energy. It directly 
resolves the unfaithful representation problem and the
ambiguous internal representation problem in various back-
propagation training algorithms for MLP. It also indirectly 
overcomes the premature saturation problem.  
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I. INTRODUCTION

The optimal spaced codes can hardly be accomplished 
by any learning algorithms for reduced Boltzmann machine 
[19].  This limits its applications in classification of noisy 
patterns and resolving blurred images. This work studies a 
discriminate energy to separate the internal representations 
of the hidden layer where the Euclidean distance between 
every two representations is enlarged as possible. Each 
representation is isolated as far as possible from all others in 
the layer hypercube space. When the representations of 
certain patterns can be isolated within a Euclidean radius, 
one can discriminate these patterns from all other patterns 
using a single neuron in the succeeding hidden layer. Such 
representations will exhaust the space uniformly and have 
tolerance for noisy patterns. The layered network is 
developed, layer after layer as those for deep networks, as 
an adjustable kernel to separate multiple classes as much as 
possible. Also, this energy directly resolves the ambiguous 
internal representation problem [8], which causes back-
propagation learning algorithms to be inefficient. By 
employing this energy along with its learning algorithm 
simultaneously, multilayer networks can be trained for 
various tasks.

The ambiguous internal representation problem (or the 
unfaithful representation problem) [8] [11] is severe for any 
BP learning algorithms [15] [18] [16]. Patterns will be 
misclassified when patterns of different classes are mapped 
to a same internal representation in any hidden layer. This 
representation is called the ambiguous internal representation 
(AIR). When an AIR exists in a hidden layer, it is impossible 
to classify these patterns no matter how many neurons or 
layers are added on to its succeeding layers. The AIR will 
cause premature saturation [4]. One phenomenon is that the 
output error remains a significantly high constant for an 

unpredictable period during training. One may follow the 
instruction in [8] to construct a multilayer network forwardly,
layer after layer, without the occurrence of AIR. Note that 
the tiling construction for the multilayer network [11] does 
not have the AIR problem. It is a feed-forward construction 
with reduced hidden representations in each succeeding layer. 
Its internal representations carry different meanings from
those obtained by various deep learning algorithms [19].

The deep neural network solved the internal 
representations in an unsupervised way. Optimal spaced 
hidden representations can hardly be reached by any learning 
algorithms for RBM [19].  This limits its applications in 
classification of noisy patterns and resolving blurred images.  
To improve the resolution of these representations for 
different patterns and resolve the AIR problem, this work 
studied a discriminative energy to construct a network 
forwardly with distances among distinct representations as 
large as possible. 

One way to do this is to separate these representations as 
much as possible on each hidden layer from lower layers to 
upper layers so that each class has its own isolated 
representation in each layer. The outputs of each hidden 
layer are in a hypercube space, and each output is close to a
corner of the hypercube. The representations are the outputs 
of their corresponding patterns and are distributed at certain 
hypercube corners. These representations must be separated 
so that different classes have different representations. One 
may use all the corners freely to achieve this separation. We 
impose a requirement to isolate each representation. We 
require the basin radius [9] of each representation to be as 
large as possible. This means that the Euclidean distance 
between a representation and its closest neighbor 
representation is as large as possible. All representations are 
allowed to evolve within the hypercube space and compete 
for basins under this requirement. We will develop its 
training process in the next section. Note that when the 
internal representations are given, one can use the algorithms 
in [9] to enlarge their basins for each hidden layer. 

Another way to fully use all corners is to require that the 
topographic structure of these representations in the 
hypercube resembles that of the patterns in the input space. 
This is somewhat similar to the method in [6] [12]. That 
method transforms the patterns into new representations on a 
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grid plane according to the nonlinear mapping of a trained 
multilayer network. These new representations keep the 
property that similar patterns have near representations in the 
plane. It is expected that the topography [3] of patterns can 
be preserved on the plane. That method combines both 
unsupervised learning and supervised learning to force the 
patterns to be mapped on a plane according to their 
geometric topography. Its goal is to construct a perfect 
topographic mapping on a grid plane such that one can 
handle many recognition and classification tasks on this 
plane. To preserve topology, we may modify the method in 
[12] for each layer’s hypercube instead of the grid plane. 
This is not our goal. We will develop internal representations 
within each hidden layer’s hypercube space which will 
facilitate operations of the network. Our goal is to resolve the 
AIR problem by developing a self-organization evolution to 
separate the internal representations as much as possible. 
This is also the goal of the transformation kernels used in the 
support vector machine [1] [2], which employs artificial 
kernels to transform difficult patterns into high-dimensional 
representations and then attempts to construct an optimal 
hyperplane to separate these representations in the high-
dimensional space. This high-dimensional space is not a 
hypercube, and its representations are not allowed to evolve 
in this hypercube freely. This is because this machine uses 
fixed and limited mapping kernels. We use the layered 
network as an adjustable and flexible kernel which can be 
trained by patterns. We formulate a simple case in the next 
section to show the idea. An extended case is also included 
in the next section. We then illustrate the trained neural
features in the third section. Discussions are included in the 
last section. 

II. SEPARABLE INTERNAL REPRESENTATION METHOD

Single-layer perceptrons 
We formulate the separable internal representation (SIR) 

method used to solve the AIR problem and derive its 
algorithm for the single-layer perceptron. Assume that the 
values of input units can only be -1 or 1. Consider the 
discriminative (or repellence) energy [5] [6] [10] [13] [14]
[17], 

where ( ) is an -dimensional output representation 
corresponding to the  ( ) pattern.  is the number of 
neurons. This repellence energy will force the 
representations to evolve in an -dimensional hypercube 
space. Instead of the Hamming distance, the Euclidean 
distance is used in the function  to ease the derivation. 

Consider  input patterns , where the th

pattern  is an -tuple bipolar binary 
row vector. In this case, each pattern has its own class. 
Therefore, there are P classes. The vector  is the output 
vector of the hidden neurons corresponding to the input 
pattern . The goal is to maximize the distance between 
every pair of output representations such that each 
representation is isolated from all others as far as possible. 
The balance of all distances is indicated by the extreme value 
of the energy.  

To achieve this goal, we reduce the energy E by means
of the gradient descent rule. The algorithm for adjusting the 
weights to decrease this energy is described below. 

By differentiation, the gradient descent of each individual 
energy is

where 

, and

Note that 

for 

The updating equations for the weights are 

where  is a positive learning constant. The threshold values 
 are updated in exactly the same way as those for the 

weights. Their updating equations are 

and the fixed input is of value . 

The initial weights are set as  and 
. These are orthogonal weights. All the 

patterns will map to themselves using these weights. We then 
feed patterns one by one into the network and save their 
corresponding output vectors in an array. We calculate the 
Euclidean distance between every pair of output vectors. We 
use a square matrix  to store these distances. The value of 
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its entry  is the distance between the output vector 
and the output vector  for the th pattern and the th

pattern. Thus, the distance matrix  is symmetric and has 
zeros in all its diagonal entries. Among all the pairs of output 
vectors, we select one pair that has the minimum distance. 
Then we use this pair of output vectors (indexed as p1 and p2)
together with their corresponding patterns in Equation 2 to 
increase their distance.  

 For the next iteration, we feed all the patterns into the 
network again. We update the distance matrix to increase 
the minimum distance. We repeat this procedure until the 
minimum distance cannot be increased or it is greater than a 
predetermined value. See one example in [5]. 

 We can extend this algorithm to the case of noisy 
patterns. Assume the patterns belong to classes 

, where class  contains  patterns 
. The goal is to maximize the distance 

between every pair of output vectors that belong to different 
classes and minimize the distance between every pair of 
output vectors that belong to the same class. To achieve this 
goal, we need an algorithm that can provide the attraction 
force for the same class patterns. This can be done by 
reversing the sign of the energy, Equation 1. We include the 
algorithm below.  The energy and the attraction force [10]
[13] [14] [17], are  

and 

where 

To minimize , we update the weights using the 
method of steepest descent as follows:  

for . The thresholds are adjusted in a similar 
way as that for .

 The procedure for operating this attraction algorithm is 
similar as the former one. We randomly pick a pair of 
patterns from class . We use these two patterns as input 
vectors (denoted as  and  ) and feed them into the 
network to obtain output responses (denoted as  and 

). We calculate the distances between every pair of 
output vectors, which are produced by patterns in the same 
class. We select the pair which has the maximum distance 
and use this pair of output vectors and their corresponding 
input patterns in Equation 5 to decrease the distance.  

 We employ a mixed strategy to operate the repellence 
force in Equation 2 and the attraction force in Equation 5 in a 
sequential mode. We randomly select two patterns from all 
classes. When these two patterns come from the same class, 
we use Equation 5 to pull them close together; when they 
come from different classes we use Equation 2 to push them 
far apart from each other. The network is trained until the 
following two conditions are satisfied: (1) The maximum 
distance among all the pairs of output vectors belonging to 
the same class is below a predetermined threshold. (2) The 
minimum distance among all the pairs of output vectors 
belonging to different classes exceeds a predetermined 
threshold. Otherwise, the training will continue until no more 
improvement in either the maximum or minimum distance 
can be achieved.  

III. SIMULATIONS

Characters Recognition 
In order to explore the trained feature of each hidden 

neuron obtained by the energy , we show an experiment 
with two character patterns, ‘A’ and ‘B’ in Fig. 1, which will 
be used as the input patterns. Each pattern is a class of its 
own. We construct a single-layer perceptron with 256 input 
units and 10 output neurons, abbreviated as 256-10 network.
Each output neuron is fully connected with all input units. 
The two characters are saved as binary images of size of 16 
pixels × 16 pixels and represented as two 16-by-16 matrices 

 and  respectively. Each matrix element is a real 
number in [-1,1]. In the matrix, a white pixel is represented 
by 1, and a black pixel is represented by -1. Let , or ,
denote the raw vector that contains all the elements of the 
matrix , or  , where 

The size of each image is 16-by-16 pixels, so the number of 
input units of the network, , is 256. The number of output 
neurons of the network, , is manually set to 10 in this 
experiment. To simplify the experiment, we set the values of 
all thresholds to zero. The activation function of each neuron 
of the network is set as a  hyperbolic tangent function, which 
maps any real number to the interval [-1, 1]. The function of 
each neuron is

Fig. 1. Two character Images.

106 Int'l Conf. Artificial Intelligence |  ICAI'17  |

ISBN: 1-60132-460-X, CSREA Press ©



The energy is The training process will be stopped when there is no 
improvement in the energy value during 300 consecutive
iterations. 

TABLE I. ACTIVATION LEVELS OF NEURONS WITH WEIGHTS FROM THE SIXTEEN LOGIC FUNCTIONS

# Function of
and 

Pre-Activation: 
A

Pre-Activation: 
B

Pre-Activation: 
Difference

Sigmoid:
A

Sigmoid:
B

Sigmoid:
Difference

     
 
 

 
 

 
 

1 186 152 34 0.621 0.533 0.088
2 -166 -200 34 -0.571 -0.653 0.083
3 96 242 -146 0.358 0.738 -0.379
4 -256 -110 -146 -0.762 -0.405 -0.357
5 242 96 146 0.738 0.358 0.379
6 -110 -256 146 -0.405 -0.762 0.357
7 152 186 -34 0.533 0.621 -0.088
8 -200 -166 -34 -0.653 -0.571 -0.083
9 200 166 34 0.653 0.571 0.083
10 -152 -186 34 -0.533 -0.621 0.088
11 110 256 -146 0.405 0.762 -0.357
12 -242 -96 -146 -0.738 -0.358 -0.379
13 256 110 146 0.762 0.405 0.357
14 -96 -242 146 -0.358 -0.738 0.379
15 166 200 -34 0.571 0.653 -0.083
16  -186 -152 -34 -0.621 -0.533 -0.088

Fig. 2. 16 constructed weight features obtained from the sixteen logic functions that applied to the two matrices and .
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The energy will be improved when there exists 
significant difference, , between the activation levels 
of each neuron while giving two different patterns to it. Its 
weights must be discriminative for these two patterns. We 
further analyze this discrimination using the weights that are 
obtained from the operation of logic functions defined on 
these two pattern matrices.  

Since each element in the pattern matrix is a real number 
in . We define four basic logic functions on 16-by-16 
matrices:

; 

 ; and 

. 

With these four basic functions, we can construct all 16 logic
functions for the two matrices. All 16 logic functions are 
listed in TABLE I.  The 16 constructed matrices obtained 
from the 16 functions are converted into images and plotted 
in Fig. 2. All 16 images are visually understandable. Each 
constructed matrix can be converted to the 256 weights of 
each neuron. Let  be a set that contains these 16 matrices. 
For each matrix in , we construct a neuron and convert this
matrix to its 256 feature weights. Then, we inputted  and 

 respectively to each neuron, and recorded the activation 
levels of the neuron in TABLE I. In this table, is a row 
vector, where . The difference of 
activation levels between inputs  and  are also listed. 
Four neurons, {No. 3, 5, 12, and 14} or 
{ , , ,
and } produce large differences. These 
large differences are reasonable. They are the major 
differences between these two patterns. Using them as 
weights can greatly discriminate the two patterns. These four 
weight features are highly discriminative. Let  be a 
collection of such highly discriminative weights, for example, 
these four weight matrices. We expect that decreasing the 
energy  will generate certain highly discriminative 
weights that are similar to those in . For two matrices,
and , the similarity  is defined as

For each neuron in the network, we calculate the 
similarities between its trained weights and the matrices in 

. The matrix in  which is the most similar to a neuron’s

weight matrix is called “the most similar function” of the 
neuron. 

We did 5 experiments using the same 256-10 network 
and the same  training process with five different 
settings for the initial weights of all 10 neurons. Their results 
are plotted in Fig. 3 to Fig. 8. In these figures, we use black 
for -1 and white for 1 in black-white images; black for 0, 
intensity of green for the values from 0 to 1, and intensity of 
red for the values from 0 to -1 in black-red-green figures. We 
discuss each of them in the following context. 

For the first training, we set the initial weights with 
random numbers between [-1,1]. The result is shown in Fig. 
3. We define the quantitative difference level of the th

neuron as . We say that a neuron 
“successively discriminates  and ” only when this level 
is larger than 0.5. For the neurons that successively 
discriminate  and , “the most similar functions” of them 
are usually in .  

For the second training, we set the initial weights as the 
matrices in , and its results are plotted in Fig. 4. All 
updates are unchanged during the training and all weights are 
exact the same as their initial weights. Every neuron 
generates the same activation levels when  and  are 
inputted. This is because that among all 256 pixels in [A] and 
[B], most of them are black pixels (-1) in the background.
While multiplying with the weights of neurons, this black 
portion in the background always produces a sum with a very 
large value. So, the signs of the pre-activation values for  
and  are always the same. Both of their pre-activation 
values have very large values, which will be mapped to -1 by 
the activation function, . So, any neuron 

Fig. 4. Trained weights that are initialized as matrices in and 
trained with SIR. Rows from the top are: trained wegihts, the 
most similar logic function. Their difference levels are all 0.0.

Fig. 3. Trained weights that are randomly initialized in [-1,1] and 
trained with SIR. Rows from the top are: trained wegihts, the 
most similar logic function. Their difference levels are 0.0, 1.0, 
1.0, 0.0, and 0.0 respectively. The similarities to are -
0.030, -0.060, -0.062, -0.020, -0.034.
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initialized in this way does not discriminate  and  by the 
training process. 

For the third training, we set the initial weights as those 
in the matrices and scaled them with a small number 0.01.
The results are plotted in Fig. 5. Since we reduce the 
magnitudes of initial weights,  and  produce different 
levels and become separable during training. After training, 
all the weight matrices of the 10 neurons evolve to a single 
feature as those plotted in the first two images in Fig. 7. This 
is because the cost is maximized when all 10 neurons evolve 
to this most discriminative feature. This feature possesses a 
weight matrix formed by . The elements in the 
common parts of  and are all 0 in . The elements 
that are different with opposite signs in  and  will be 
doubled. Using this feature  as the weights of a neuron, 
one can effectively distinguish  and  and map them into 
two distant codes.  

In the fourth training, we set the initial weights with 
random real numbers between [-0.01, 0.01]. The results are 
shown in Fig. 6. All the 10 trained weight matrices are 
similar to the single feature  or its negative version.  

In the fifth training, we set the initial weights as 
 or its negative version. The result is plotted in Fig. 7.

The trained weights are exactly the same as the initial 
weights. The inputs  and  are mapped to two codes that 

are as far from each other as possible in the representation 
space [9]. This proves that  and its negative 
version are the best discriminative weights to distinguish 
and . The SIR method can find the discriminative weights. 
To compare the results, Fig. 8 shows that the weight features 
trained with an auto-encoder [7] are similar to  or 
its negative version. This is consistent with our study.

Fig.9. A Multilayer network. 

The other approach to applying the single-layer method
to the multilayer perceptron, Figure 9, is to extend this 
algorithm backwards to a deep bottom layer as the BP 
algorithm does. The reason for doing so is that we can take 
advantage of the nonlinear mapping ability of a multilayer 
perceptron to obtain ideal representations in the output layer. 
The derivation is similar to that for the BP algorithm. As 
before, we require that the distances between the output 
representations of different classes must be maximized. The 
weights between the output layer and the top hidden layer are 
adjusted based on the same updating rule used in Eq. 2. All 
the lower hidden layers are trained backwards. The local 
gradient of the upper layer is propagated to the next lower 

x y z o

1 k j i

u v w

Fig. 6. Results obtained by the weights that are randomly initialized 
values in [-0.01,0.01]. Square of distnace between and :
39.99. Rows from the top are: trained wegihts, the most similar 
logic function. Their difference levels are all 1.0. The similarities
to are 0.986, 0.986, -0.987, 0.985, and -0.987 
respectively.

Fig. 5. Trained results by the weights that are initialized as those 
matrices in and scaled by 0.01. Rows from the top are: initial 
weights, trained wegihts, the most similar logic functions. Their
difference levels are all 1.0. The similarities to are -
0.996, 0.996, -0.996, and 0.996 respectively.

Fig. 8. Trained weights that are trained with Autoencoder [7]. Square 
of distance between and : 33.47. Rows from the top are: 
trained wegihts, the most similar logic function.

Fig. 7. Trained weights that are initialized as or 
and trained with SIR. Weights are not changed during training. 
Rows from the top are: trained wegihts, the most similar logic 
function. Their difference levels are all 1.0.
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layer, and their weights are adjusted accordingly. The energy  
is

The local gradient δoi for the output neuron oi is defined as  

  where oi is obtained much as in Eq.2.
The local gradients for different input patterns p1 and p2 are   

 , and 

 . 

The local gradients for hidden neurons are obtained as   

The weights can be updated by the local gradient: 

  

 and 

  

We may reverse the sign of Erep to obtain the attraction 
energy. We omit its algorithm. We operate these two kind 
energies for every two patterns according to their class 
membership. 

IV. DISCUSSIONS

From the experiments above, we conclude that the best 
discriminative weight  to distinguish two patterns is the 
difference of the two input patterns,  or its 
negative version. In order to obtain other discriminative 
features, one may set the initial weights of the rest neurons 
with random numbers that are orthogonal to the trained 
features. New training patterns should not have components 
in those trained features.  

Since it is tedious to do the same analyses for three or 
more patterns and many of their results are similar, we skip 
the discussions for them. The SIR method can pick the 
discriminative features among patterns and improve the 
energy value. Note that their common portions are gradually 
diminished and lost during the training process. Since these 
common portions are important in reconstruction of patterns, 

it is not recommended to use the energy  in restorations, 
see the restoration example in [5]. 

The SIR method will exhaust the hidden space and 
maximize the utility of all neurons to accomplish highly 
separable representations of patterns. We can develop refined 
representations for patterns layer after layer or train a 
multilayer network backwardly to obtain such 
representations. We can use the network as an adjustable 
kernel to transform the patterns to a hypercube space with 
much isolated representations. 
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