
Loading Discriminative Feature Representations in
Hidden Layer

Daw-Ran Liou*, Yang-En Chen, Cheng-Yuan Liou
Dept. of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan

*Correspondent: dawran6@gmail.com

Abstract—This work explores the neural features that are
trained by decreasing a discriminative energy. It directly
resolves the unfaithful representation problem and the
ambiguous internal representation problem in various back-
propagation training algorithms for MLP. It also indirectly
overcomes the premature saturation problem.

Keywords—Multilayer perceptron; deep learning; Boltzmann
machine; ambiguous internal representation; unfaithful
representation; classification; image restoration

I. INTRODUCTION

The optimal spaced codes can hardly be accomplished
by any learning algorithms for reduced Boltzmann machine
[19]. This limits its applications in classification of noisy
patterns and resolving blurred images. This work studies a
discriminate energy to separate the internal representations
of the hidden layer where the Euclidean distance between
every two representations is enlarged as possible. Each
representation is isolated as far as possible from all others in
the layer hypercube space. When the representations of
certain patterns can be isolated within a Euclidean radius,
one can discriminate these patterns from all other patterns
using a single neuron in the succeeding hidden layer. Such
representations will exhaust the space uniformly and have
tolerance for noisy patterns. The layered network is
developed, layer after layer as those for deep networks, as
an adjustable kernel to separate multiple classes as much as
possible. Also, this energy directly resolves the ambiguous
internal representation problem [8], which causes back-
propagation learning algorithms to be inefficient. By
employing this energy along with its learning algorithm
simultaneously, multilayer networks can be trained for
various tasks.

The ambiguous internal representation problem (or the
unfaithful representation problem) [8] [11] is severe for any
BP learning algorithms [15] [18] [16]. Patterns will be
misclassified when patterns of different classes are mapped
to a same internal representation in any hidden layer. This
representation is called the ambiguous internal representation
(AIR). When an AIR exists in a hidden layer, it is impossible
to classify these patterns no matter how many neurons or
layers are added on to its succeeding layers. The AIR will
cause premature saturation [4]. One phenomenon is that the
output error remains a significantly high constant for an

unpredictable period during training. One may follow the
instruction in [8] to construct a multilayer network forwardly,
layer after layer, without the occurrence of AIR. Note that
the tiling construction for the multilayer network [11] does
not have the AIR problem. It is a feed-forward construction
with reduced hidden representations in each succeeding layer.
Its internal representations carry different meanings from
those obtained by various deep learning algorithms [19].

The deep neural network solved the internal
representations in an unsupervised way. Optimal spaced
hidden representations can hardly be reached by any learning
algorithms for RBM [19]. This limits its applications in
classification of noisy patterns and resolving blurred images.
To improve the resolution of these representations for
different patterns and resolve the AIR problem, this work
studied a discriminative energy to construct a network
forwardly with distances among distinct representations as
large as possible.

One way to do this is to separate these representations as
much as possible on each hidden layer from lower layers to
upper layers so that each class has its own isolated
representation in each layer. The outputs of each hidden
layer are in a hypercube space, and each output is close to a
corner of the hypercube. The representations are the outputs
of their corresponding patterns and are distributed at certain
hypercube corners. These representations must be separated
so that different classes have different representations. One
may use all the corners freely to achieve this separation. We
impose a requirement to isolate each representation. We
require the basin radius [9] of each representation to be as
large as possible. This means that the Euclidean distance
between a representation and its closest neighbor
representation is as large as possible. All representations are
allowed to evolve within the hypercube space and compete
for basins under this requirement. We will develop its
training process in the next section. Note that when the
internal representations are given, one can use the algorithms
in [9] to enlarge their basins for each hidden layer.

Another way to fully use all corners is to require that the
topographic structure of these representations in the
hypercube resembles that of the patterns in the input space.
This is somewhat similar to the method in [6] [12]. That
method transforms the patterns into new representations on a

104 Int'l Conf. Artificial Intelligence | ICAI'17 |

ISBN: 1-60132-460-X, CSREA Press ©

grid plane according to the nonlinear mapping of a trained
multilayer network. These new representations keep the
property that similar patterns have near representations in the
plane. It is expected that the topography [3] of patterns can
be preserved on the plane. That method combines both
unsupervised learning and supervised learning to force the
patterns to be mapped on a plane according to their
geometric topography. Its goal is to construct a perfect
topographic mapping on a grid plane such that one can
handle many recognition and classification tasks on this
plane. To preserve topology, we may modify the method in
[12] for each layer’s hypercube instead of the grid plane.
This is not our goal. We will develop internal representations
within each hidden layer’s hypercube space which will
facilitate operations of the network. Our goal is to resolve the
AIR problem by developing a self-organization evolution to
separate the internal representations as much as possible.
This is also the goal of the transformation kernels used in the
support vector machine [1] [2], which employs artificial
kernels to transform difficult patterns into high-dimensional
representations and then attempts to construct an optimal
hyperplane to separate these representations in the high-
dimensional space. This high-dimensional space is not a
hypercube, and its representations are not allowed to evolve
in this hypercube freely. This is because this machine uses
fixed and limited mapping kernels. We use the layered
network as an adjustable and flexible kernel which can be
trained by patterns. We formulate a simple case in the next
section to show the idea. An extended case is also included
in the next section. We then illustrate the trained neural
features in the third section. Discussions are included in the
last section.

II. SEPARABLE INTERNAL REPRESENTATION METHOD

Single-layer perceptrons
We formulate the separable internal representation (SIR)

method used to solve the AIR problem and derive its
algorithm for the single-layer perceptron. Assume that the
values of input units can only be -1 or 1. Consider the
discriminative (or repellence) energy [5] [6] [10] [13] [14]
[17],

where () is an -dimensional output representation
corresponding to the () pattern. is the number of
neurons. This repellence energy will force the
representations to evolve in an -dimensional hypercube
space. Instead of the Hamming distance, the Euclidean
distance is used in the function to ease the derivation.

Consider input patterns , where the th

pattern is an -tuple bipolar binary
row vector. In this case, each pattern has its own class.
Therefore, there are P classes. The vector is the output
vector of the hidden neurons corresponding to the input
pattern . The goal is to maximize the distance between
every pair of output representations such that each
representation is isolated from all others as far as possible.
The balance of all distances is indicated by the extreme value
of the energy.

To achieve this goal, we reduce the energy E by means
of the gradient descent rule. The algorithm for adjusting the
weights to decrease this energy is described below.

By differentiation, the gradient descent of each individual
energy is

where

, and

Note that

for

The updating equations for the weights are

where is a positive learning constant. The threshold values
 are updated in exactly the same way as those for the

weights. Their updating equations are

and the fixed input is of value .

The initial weights are set as and
. These are orthogonal weights. All the

patterns will map to themselves using these weights. We then
feed patterns one by one into the network and save their
corresponding output vectors in an array. We calculate the
Euclidean distance between every pair of output vectors. We
use a square matrix to store these distances. The value of

Int'l Conf. Artificial Intelligence | ICAI'17 | 105

ISBN: 1-60132-460-X, CSREA Press ©

its entry is the distance between the output vector
and the output vector for the th pattern and the th

pattern. Thus, the distance matrix is symmetric and has
zeros in all its diagonal entries. Among all the pairs of output
vectors, we select one pair that has the minimum distance.
Then we use this pair of output vectors (indexed as p1 and p2)
together with their corresponding patterns in Equation 2 to
increase their distance.

 For the next iteration, we feed all the patterns into the
network again. We update the distance matrix to increase
the minimum distance. We repeat this procedure until the
minimum distance cannot be increased or it is greater than a
predetermined value. See one example in [5].

 We can extend this algorithm to the case of noisy
patterns. Assume the patterns belong to classes

, where class contains patterns
. The goal is to maximize the distance

between every pair of output vectors that belong to different
classes and minimize the distance between every pair of
output vectors that belong to the same class. To achieve this
goal, we need an algorithm that can provide the attraction
force for the same class patterns. This can be done by
reversing the sign of the energy, Equation 1. We include the
algorithm below. The energy and the attraction force [10]
[13] [14] [17], are

and

where

To minimize , we update the weights using the
method of steepest descent as follows:

for . The thresholds are adjusted in a similar
way as that for .

 The procedure for operating this attraction algorithm is
similar as the former one. We randomly pick a pair of
patterns from class . We use these two patterns as input
vectors (denoted as and) and feed them into the
network to obtain output responses (denoted as and

). We calculate the distances between every pair of
output vectors, which are produced by patterns in the same
class. We select the pair which has the maximum distance
and use this pair of output vectors and their corresponding
input patterns in Equation 5 to decrease the distance.

 We employ a mixed strategy to operate the repellence
force in Equation 2 and the attraction force in Equation 5 in a
sequential mode. We randomly select two patterns from all
classes. When these two patterns come from the same class,
we use Equation 5 to pull them close together; when they
come from different classes we use Equation 2 to push them
far apart from each other. The network is trained until the
following two conditions are satisfied: (1) The maximum
distance among all the pairs of output vectors belonging to
the same class is below a predetermined threshold. (2) The
minimum distance among all the pairs of output vectors
belonging to different classes exceeds a predetermined
threshold. Otherwise, the training will continue until no more
improvement in either the maximum or minimum distance
can be achieved.

III. SIMULATIONS

Characters Recognition
In order to explore the trained feature of each hidden

neuron obtained by the energy , we show an experiment
with two character patterns, ‘A’ and ‘B’ in Fig. 1, which will
be used as the input patterns. Each pattern is a class of its
own. We construct a single-layer perceptron with 256 input
units and 10 output neurons, abbreviated as 256-10 network.
Each output neuron is fully connected with all input units.
The two characters are saved as binary images of size of 16
pixels × 16 pixels and represented as two 16-by-16 matrices

 and respectively. Each matrix element is a real
number in [-1,1]. In the matrix, a white pixel is represented
by 1, and a black pixel is represented by -1. Let , or ,
denote the raw vector that contains all the elements of the
matrix , or , where

The size of each image is 16-by-16 pixels, so the number of
input units of the network, , is 256. The number of output
neurons of the network, , is manually set to 10 in this
experiment. To simplify the experiment, we set the values of
all thresholds to zero. The activation function of each neuron
of the network is set as a hyperbolic tangent function, which
maps any real number to the interval [-1, 1]. The function of
each neuron is

Fig. 1. Two character Images.

106 Int'l Conf. Artificial Intelligence | ICAI'17 |

ISBN: 1-60132-460-X, CSREA Press ©

The energy is The training process will be stopped when there is no
improvement in the energy value during 300 consecutive
iterations.

TABLE I. ACTIVATION LEVELS OF NEURONS WITH WEIGHTS FROM THE SIXTEEN LOGIC FUNCTIONS

Function of
and

Pre-Activation:
A

Pre-Activation:
B

Pre-Activation:
Difference

Sigmoid:
A

Sigmoid:
B

Sigmoid:
Difference

1 186 152 34 0.621 0.533 0.088
2 -166 -200 34 -0.571 -0.653 0.083
3 96 242 -146 0.358 0.738 -0.379
4 -256 -110 -146 -0.762 -0.405 -0.357
5 242 96 146 0.738 0.358 0.379
6 -110 -256 146 -0.405 -0.762 0.357
7 152 186 -34 0.533 0.621 -0.088
8 -200 -166 -34 -0.653 -0.571 -0.083
9 200 166 34 0.653 0.571 0.083
10 -152 -186 34 -0.533 -0.621 0.088
11 110 256 -146 0.405 0.762 -0.357
12 -242 -96 -146 -0.738 -0.358 -0.379
13 256 110 146 0.762 0.405 0.357
14 -96 -242 146 -0.358 -0.738 0.379
15 166 200 -34 0.571 0.653 -0.083
16 -186 -152 -34 -0.621 -0.533 -0.088

Fig. 2. 16 constructed weight features obtained from the sixteen logic functions that applied to the two matrices and .

Int'l Conf. Artificial Intelligence | ICAI'17 | 107

ISBN: 1-60132-460-X, CSREA Press ©

The energy will be improved when there exists
significant difference, , between the activation levels
of each neuron while giving two different patterns to it. Its
weights must be discriminative for these two patterns. We
further analyze this discrimination using the weights that are
obtained from the operation of logic functions defined on
these two pattern matrices.

Since each element in the pattern matrix is a real number
in . We define four basic logic functions on 16-by-16
matrices:

;

 ; and

.

With these four basic functions, we can construct all 16 logic
functions for the two matrices. All 16 logic functions are
listed in TABLE I. The 16 constructed matrices obtained
from the 16 functions are converted into images and plotted
in Fig. 2. All 16 images are visually understandable. Each
constructed matrix can be converted to the 256 weights of
each neuron. Let be a set that contains these 16 matrices.
For each matrix in , we construct a neuron and convert this
matrix to its 256 feature weights. Then, we inputted and

 respectively to each neuron, and recorded the activation
levels of the neuron in TABLE I. In this table, is a row
vector, where . The difference of
activation levels between inputs and are also listed.
Four neurons, {No. 3, 5, 12, and 14} or
{ , , ,
and } produce large differences. These
large differences are reasonable. They are the major
differences between these two patterns. Using them as
weights can greatly discriminate the two patterns. These four
weight features are highly discriminative. Let be a
collection of such highly discriminative weights, for example,
these four weight matrices. We expect that decreasing the
energy will generate certain highly discriminative
weights that are similar to those in . For two matrices,
and , the similarity is defined as

For each neuron in the network, we calculate the
similarities between its trained weights and the matrices in

. The matrix in which is the most similar to a neuron’s

weight matrix is called “the most similar function” of the
neuron.

We did 5 experiments using the same 256-10 network
and the same training process with five different
settings for the initial weights of all 10 neurons. Their results
are plotted in Fig. 3 to Fig. 8. In these figures, we use black
for -1 and white for 1 in black-white images; black for 0,
intensity of green for the values from 0 to 1, and intensity of
red for the values from 0 to -1 in black-red-green figures. We
discuss each of them in the following context.

For the first training, we set the initial weights with
random numbers between [-1,1]. The result is shown in Fig.
3. We define the quantitative difference level of the th

neuron as . We say that a neuron
“successively discriminates and ” only when this level
is larger than 0.5. For the neurons that successively
discriminate and , “the most similar functions” of them
are usually in .

For the second training, we set the initial weights as the
matrices in , and its results are plotted in Fig. 4. All
updates are unchanged during the training and all weights are
exact the same as their initial weights. Every neuron
generates the same activation levels when and are
inputted. This is because that among all 256 pixels in [A] and
[B], most of them are black pixels (-1) in the background.
While multiplying with the weights of neurons, this black
portion in the background always produces a sum with a very
large value. So, the signs of the pre-activation values for
and are always the same. Both of their pre-activation
values have very large values, which will be mapped to -1 by
the activation function, . So, any neuron

Fig. 4. Trained weights that are initialized as matrices in and
trained with SIR. Rows from the top are: trained wegihts, the
most similar logic function. Their difference levels are all 0.0.

Fig. 3. Trained weights that are randomly initialized in [-1,1] and
trained with SIR. Rows from the top are: trained wegihts, the
most similar logic function. Their difference levels are 0.0, 1.0,
1.0, 0.0, and 0.0 respectively. The similarities to are -
0.030, -0.060, -0.062, -0.020, -0.034.

108 Int'l Conf. Artificial Intelligence | ICAI'17 |

ISBN: 1-60132-460-X, CSREA Press ©

initialized in this way does not discriminate and by the
training process.

For the third training, we set the initial weights as those
in the matrices and scaled them with a small number 0.01.
The results are plotted in Fig. 5. Since we reduce the
magnitudes of initial weights, and produce different
levels and become separable during training. After training,
all the weight matrices of the 10 neurons evolve to a single
feature as those plotted in the first two images in Fig. 7. This
is because the cost is maximized when all 10 neurons evolve
to this most discriminative feature. This feature possesses a
weight matrix formed by . The elements in the
common parts of and are all 0 in . The elements
that are different with opposite signs in and will be
doubled. Using this feature as the weights of a neuron,
one can effectively distinguish and and map them into
two distant codes.

In the fourth training, we set the initial weights with
random real numbers between [-0.01, 0.01]. The results are
shown in Fig. 6. All the 10 trained weight matrices are
similar to the single feature or its negative version.

In the fifth training, we set the initial weights as
 or its negative version. The result is plotted in Fig. 7.

The trained weights are exactly the same as the initial
weights. The inputs and are mapped to two codes that

are as far from each other as possible in the representation
space [9]. This proves that and its negative
version are the best discriminative weights to distinguish
and . The SIR method can find the discriminative weights.
To compare the results, Fig. 8 shows that the weight features
trained with an auto-encoder [7] are similar to or
its negative version. This is consistent with our study.

Fig.9. A Multilayer network.

The other approach to applying the single-layer method
to the multilayer perceptron, Figure 9, is to extend this
algorithm backwards to a deep bottom layer as the BP
algorithm does. The reason for doing so is that we can take
advantage of the nonlinear mapping ability of a multilayer
perceptron to obtain ideal representations in the output layer.
The derivation is similar to that for the BP algorithm. As
before, we require that the distances between the output
representations of different classes must be maximized. The
weights between the output layer and the top hidden layer are
adjusted based on the same updating rule used in Eq. 2. All
the lower hidden layers are trained backwards. The local
gradient of the upper layer is propagated to the next lower

x y z o

1 k j i

u v w

Fig. 6. Results obtained by the weights that are randomly initialized
values in [-0.01,0.01]. Square of distnace between and :
39.99. Rows from the top are: trained wegihts, the most similar
logic function. Their difference levels are all 1.0. The similarities
to are 0.986, 0.986, -0.987, 0.985, and -0.987
respectively.

Fig. 5. Trained results by the weights that are initialized as those
matrices in and scaled by 0.01. Rows from the top are: initial
weights, trained wegihts, the most similar logic functions. Their
difference levels are all 1.0. The similarities to are -
0.996, 0.996, -0.996, and 0.996 respectively.

Fig. 8. Trained weights that are trained with Autoencoder [7]. Square
of distance between and : 33.47. Rows from the top are:
trained wegihts, the most similar logic function.

Fig. 7. Trained weights that are initialized as or
and trained with SIR. Weights are not changed during training.
Rows from the top are: trained wegihts, the most similar logic
function. Their difference levels are all 1.0.

Int'l Conf. Artificial Intelligence | ICAI'17 | 109

ISBN: 1-60132-460-X, CSREA Press ©

layer, and their weights are adjusted accordingly. The energy
is

The local gradient δoi for the output neuron oi is defined as

 where oi is obtained much as in Eq.2.
The local gradients for different input patterns p1 and p2 are

 , and

 .

The local gradients for hidden neurons are obtained as

The weights can be updated by the local gradient:

 and

We may reverse the sign of Erep to obtain the attraction
energy. We omit its algorithm. We operate these two kind
energies for every two patterns according to their class
membership.

IV. DISCUSSIONS

From the experiments above, we conclude that the best
discriminative weight to distinguish two patterns is the
difference of the two input patterns, or its
negative version. In order to obtain other discriminative
features, one may set the initial weights of the rest neurons
with random numbers that are orthogonal to the trained
features. New training patterns should not have components
in those trained features.

Since it is tedious to do the same analyses for three or
more patterns and many of their results are similar, we skip
the discussions for them. The SIR method can pick the
discriminative features among patterns and improve the
energy value. Note that their common portions are gradually
diminished and lost during the training process. Since these
common portions are important in reconstruction of patterns,

it is not recommended to use the energy in restorations,
see the restoration example in [5].

The SIR method will exhaust the hidden space and
maximize the utility of all neurons to accomplish highly
separable representations of patterns. We can develop refined
representations for patterns layer after layer or train a
multilayer network backwardly to obtain such
representations. We can use the network as an adjustable
kernel to transform the patterns to a hypercube space with
much isolated representations.

REFERENCES

[1] B. Boser, I. Guyon, and V.N. Vapnik, “A training algorithm for
optimal margin classifiers,” Fifth Annual Work'shop on
computational Learning Theory, pp. 144-152, 1992.

[2] C. Cortes, and V.N. Vapnik, “Supprot vector networks,” Machine
Learning, 20, pp. 273-297, 1995.

[3] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
78, 1464-1480, 1990.

[4] Y. Lee, S. Oh, and M. Kim, “The effect of initial weights on
premature saturation in back-propagation learning,” International
Joint Conference on Neural Ñetworks, 1, pp. 765-770, 1991.

[5] C.-Y. Liou, H.-T. Chen, and J.-C. Huang, “Separation of internal
representations of the hidden layer,” Proceedings of the International
Computer Symposium, ICS, Chiayi, Taiwan, pp. 26-34, 2000.

[6] C.-Y. Liou and W.-C. Cheng, “Forced Accretion and Assimilation
Based on Self-organizing Neural Network,” Self Organizing Maps -
Applications and Novel Algorithm Design, Chapter 35 in Book edited
by: Josphat Igadwa Mwasiagi, pp. 683-702, 2011.

[7] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, D.-R. Liou, “Autoencoder for
Words,” Neurocomputing, 139, pp. 84-96, 2014.

[8] C.Y. Liou, and W.J. Yu, “Ambiguous binary representation in
multilayer neural networks,” IEEE International Conference on
Neural Networks, 1, pp. 379-384, 1995.

[9] C.Y. Liou, and S.K. Yuan, “Error tolerant associative memory,”
Biological Cybernetics, 81, pp. 331-342, 1999.

[10] J.C. Mao, and A.K. Jain, “Artificial neural networks for feature
extraction and multivariate data projection,” IEEE Trans. on Neural
Networks 6(2), pp. 296317, 1995.

[11] M. Mézard, and J.P. Nadal, “Learning in feed-forward layered
networks: The tiling algorithm,” Journal of Physics A, 22, pp. 2191-
2203, 1989.

[12] W. Pedrycz, and J. Waletzky, “Neural-network front ends in
unsupervised learning,” IEEE Trans. on Neural Networks 8, pp. 390-
401, 1997.

[13] B.D. Ripley, “Pattern recognition and neural networks,” Cambridge:
Cambridge University Press, 1996.

[14] D.W. Ruck, S.K. Rogers, M. Kabrisky, M.E. Oxley, and B.W. Suter,
“The multilayer perceptron as an approximation to a Bayes optimal
discriminant function,” IEEE Trans. on Neural Networks, 1, No.4, pp.
296-298, 1990.

[15] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning
representations by back-propagating errors,” Nature (Longon), 323,
533-536, 1986.

[16] D.E. Rumelhart, and J.L. McClelland, “Parallel distributed
processing: explorations,” the microstructure of cognition. vol. 1.
Cambridge, MA: MIT Press, 1986.

[17] A.R. Webb, and D. Lowe, “The optimal internal representation of
multilayer classifier networks performs nonlinear discriminant
analysis,” Neural Networks, 3, pp. 367-37, 1990.

[18] P.J. Werbos, “Beyond regression: New tools for prediction and
analysis in the behavioral sciences,” Ph.D. Thesis, Harvard
University, 1974.

[19] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, 18, pp. 1527-1554, 2006.

110 Int'l Conf. Artificial Intelligence | ICAI'17 |

ISBN: 1-60132-460-X, CSREA Press ©

