
If a wave function for two-particle system is factorable 
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we call these two particles are uncorrelated.

Most two-particle states are not the case! 

For instance,
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, and ψ  describes the correlation 
between particle 1 and particle 2.
(Once the position of one particle is measured, the other 
one’s position is ascertained without further 
measurement since x1-x2=a)

Another example is any function with the form 
( 1 2)x xψ − . Note that
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Hence, if the moment of particle 2 is measured and found 
to have the value p2, then particle 1 is certain to be 
found to have the sharp momentum value p1=-p2. 
(Corresponding to total momentum=0 in the center of 
mass frame)

If we assume the motion is constrained in one dimension 
and the momentum magnitude can only be |p|, the above 
state can be expressed as 
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, an entanglement!

In fact, |P> are special cases of the so-called Bell or EPR 
states:
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Their common feature is the inability to be factorized to 
the tensor product of two pure states.

For example,
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But the equations have no solution!



In summary, if a composite state cannot be separated as a 
tensor product of its component states, such composite 
state is then called entangled.


