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Quantum Computing — Two Applications'

Which two?

1. In Communication Complexity: [2].

2. In Cryptography: [1].
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Communication Complexity I
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Communication Complexity — Model Description'

[Alice has x ] = [Bob has y ]
—-X
E(y)

Figure 1: A protocol P for computing f(z,y)

Model Description:
e |z| = |yl =n, E(v): encoding of v(= x or y).

e f(xz,y): a Boolean predicate of x and y.
(f:{0,1}" x {0,1}" — {0,1})

Nov 4, 2003



Quantum Computing — Two Applications [Page 5]

Communication Complexity — GoaII

Goal:

e Design a protocol P such that
— PrP(z,y) =f(x,y)] >1—c.
(for 0 € [0, 3])

— The length of E(v) is as minimum as possible.
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Communication Complexity — Definition I

Definition:

e Communication Complexity of P:

Cp = max{F(x), E(y)} (of the protocal P).

(z,y)

e Communication Complexity of f:

C(f) 2 minCp.

P
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SMM (Simultaneous Message Model)

E(z) E(y)
Alice has x Bob has y

Figure 2: A protocol P for computing f(z,y) in the SMM.

e Alice and Bob cannot interact with each other.
e F(z) and F(y) can be sent to the Referee R only.
e Only one round to send F(x) and E(y).
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EQ.(x,y) Problem

(We only care the protocols in SMIM hereafter.)
(We only care f(x,y) = EQ.(z,y) hereafter.)
Definition

PrlEQ.(z,y) =1] =1, when x = y;

PrlEQ.(z,y) =0] > 1—¢, when x #y.
(1)

EQ.(z,y) :

Amazingly, CSMM(EQg) — @(\/ﬁ)'
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Protocol s.t. Csnm(EQ.) = O(y/n) — Warmup!

Good code F(v) (Justesen code):
e F£:{0,1}" +—— {0,1}"" for ¢ > 1

e d(x,y): Hamming distance between x and y.

1
For 0 <e < 5 we have:

(Compare with (1))).
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Justesen code — construction (1)

Figure 3: Divide v into m piece of equal length ¢ (m < 2¢71,
suggested)

m—1

q(r) 2 Z virt  (mod 2%). (3)

1=
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Justesen code — construction (2)

g(r) rg(r)
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Justesen code — construction (3)

o Let h(r) 2 (g(r),rg(r)), then

E(w) < {h(M}trearey < {B),7() rearey (4)
is a Justesen code of v for |E(v)| = 2¢2¢.

e Analysis of case m < 21

£
o= EW)] > 220y
|v| ml

— Hamming distance: at least §(2° —m)2/.

— Compare with () we have ¢ > 1 — g because
6(28 —m)20 > 26ml > (1 — e)en > 4(1 — e)md.
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Protocol s.t. Csmm(EQ.) = O(y/n) — Step 1

Step 1:

(v, |v] = n)

\

(E(v), |[E(v)| = cn)

Figure 4: Encode v by Justesen code
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Protocol s.t. Csnmm(EQ.) = O(y/n) — Step 2

Step 2. Rearrange E(x) into a \/cn X /cn square:

(E(v), [E(v)] = cn
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Protocol s.t. Cspvi(EQ.) = O(y/n) — Step 3

Step 3:

)

E.;(y)

e Alice choose i € {1,2,...,+y/cn} and send E; .(x) to
Referee R.

e Bob choose j € {1,2,...,y/cn} and send E., ;(x) to
Referee R.
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Protocol s.t. Csnmm(EQ.) = O(y/n) — Step 4

Step 4 Referee R checks whether E; ;(x) = E; ;(y):

)

Eij(z) = Ei;(y)? )
Referee

E.;(y)
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Protocol s.t. Csmm(EQ.) = O(4/n) — Analysis

Analysis:
e v =y E;;(x) = E;i;{y)

e I # y: PI‘[EZ',J'(ZU) 7& Ez,](yﬂ > 1 —e.
(Because [d(E(z), E(y))] > (1 —€)cn)
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EQ.(x,y) Problem in Quantum World M

Idea. Recall that encoding v by Justesen code:

1

2

(v, |v

-\—; p—
(Sup

cn g
i=1Yi
erposition)
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Encode v in M (1)

Idea. Let = be encoded as |z), and y as |y) (in M).

Alice has z

Find a way of encoding s.t.
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Encode v in M (2)

Let m 2 cn = |E(v)|. Encode x into

Z 1) @ |Ei(z)),

and y into
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Encode v in M (3)

e Here, dim(|i)) = m and dim(|E;(v))) = 2.

e It’s easy to verify that when x £ y

because d[(E(x), E(y))] > (1 —e)m.

e What should Referee R do then?
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Referee's Circuit'

H T>H

c-OWAP

Figure 5: A circuit for testing if |x) = |y) or |{(x|y) | <e
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What is H? (1)

H
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What is H? (2)

H

Nov 4, 2003



Quantum Computing — Two Applications [Page 25]

What is c-SWAP? (1)
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What is c-SWAP? (2)
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Stage 3 I

Referee R regards |0) as x =y, |1) as © # y.
Apply the Projection operation Pjgy to

2) = 5 0@ (=) )+ @la) + 5 1) (Do)~ lol),

0) (500el ® 0l + W& a5 (oh © o) + ) 0 o)

o) (5041l P)
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Stage 3 (Cont.)
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EQ.(x,y) Protocol in M — Analysis

Figure 6: What is sent by Bob — classical vs quantum
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EQ.(x,y) Protocol in M — Analysis

Comparison

e Classically Bob sends j and E, ;(y): lgn + ¢/n bits
(©(y/n) de facto).

e Quantumly Bob sends |y): O(lgn) qubits.
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Reduce error'

: A
e — (Can we reduce the one side error € = %(1 +&2)?

— Naively, repeat the protocol k times, we have an

error bound (#)k

e Moreover it can be reduced to v wk(

1

e But it cannot be less than % (

1 1—|—€)2k.

2
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Reduce to vmk(+£=)% (0)

Idea:

e Know fact:
(z|y) <e (7)

e Duplicate |z) and |y) k times respectively we have
A k A k
X) = [2)™ and [Y) = |y) ™.
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Reduce to vmk(+£2)%* (1)

Prepare two kinds of quantum registers

e Permutation register |P).

e Data register |D) 2 | XY).

[Page 35]
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Reduce to vrk(+£2)% (2)

Permutation register |s):

e Defined by the permutition group Sy for o5 € Sop.
(Note s = 0: the index of identity permutition)

e Define C' = | Sy

e Initially, we prepare |s) = |O>(C) .
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Reduce to vmk(+£2)% (3)

H T>H

PERN

Figure 7: The algorithm for reducing err tovmk(:L

26)2k
(I1D) = |XY) = |2)" [y ™)
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PERN

Figure 8: |P) = % Zfz_ol s): generate all possible permuta-

tion uniformly
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H
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Reduce to vrk(+£2)%* (6)

PERN

P)

Figure 9: We only care whether |P) = ]O>(C) thus measure
the permutation register
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Reduce to vmk(+£2)% (7)
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Reduce to vmk(+£2)?* (8)

Because (z|y) < e and C' = |Sar| = (2k)!, we have

11

S (e
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Cannot be smaller than i

Extremal case:

° |p) = |$1>(k) \y1>(k)

o Set cos(@) = <IE2 \y2> = &, ‘5’71> —

j22) = cos(5) [0) + sin(3) |1),
[y2) = cos(3) [0) — sin(g) |1).

o () =cos?(3) = (FF)* = (

[Page 45]
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Cannot be smaller than 1(+£2)%* (2)

0)

/ )
Ino)

Figure 10: Indistinguishable case for |¢) and |))
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Cannot be smaller than 1 (+£2)%* (3)

e |yes): |¢) and [¢)) are the same.
lno): |¢) and |¢) are different.

Pr[Answer yes when different]

+Pr|[Answer no when the same]

1 1
= 5t )+ gy
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Cryptography I
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Goldreich Levin Theorem'

OWF': one-way function f:{0,1}" — {0,1}"

HCP: hardcore predicate h : {0,1}" — {0, 1}
Predicting a HCP is as hard as inverting a OWF.

We only care about the efficeincy of the reduction from

OWF to HCP.
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Main Results'

The efficeincy of the reduction:

e Classical world: Q(i—?)

e Quantum world: O(2)

Modified

Reduction/Problem:

[Page 50]

e EQ query corresponds to computing (b, ) 2 (f(a),x).

e IP query corresponds to computing h(a, ) 24z
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The Problem '

Input: a € {0,1}"
(given but kept confidential in a black box.)

Output: a (rechieve it from the black box!)
Allowed operations: black-box queries only.

Goal: determine a with a minimun number of black-box

queries.
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Classical black boxes'

1. IP. for a set S(C {0,1}") which satisfies
S| > (0.5 +¢)2™:

A |la-z, €S,

IP(z
(@) a-x, x&A5.

Alternative speaking, Prycso 13»[IP(z) =a-2] > 0.5 +¢
2. EQ.
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Classical Theorem '

Given
e success probability: 6(> 0) and
e c>/n27%,

We should determine a by

o at lease 22 EQ queries; or

o (%) IP queries.

[Page 53]
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From randomized to deterministic'

o Let

— 7. the set of all possible inputs;
p: chosen distribution of all possible algorithms;

R.: a randomized algorithm with err prob e.

— A: the set of all possible algorithms.
q: chosen distribution of all possible inputs;

Ds.: a deterministic algorithm with err prob 2e.

Then we have

.
21y ol Fel 2 iy Bl
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From randomized to deterministic'

e a deterministic algorithm with error inputs can lower

bounded corresponding randomized ones.

e That’s the reason we define IP which might have error

string in.
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Classical black box aIgorithmI

Do IP queries for m times first.

Then do EQ queries for 22 times.

Analyze the conditional mutual information about a:
— Lower bound: determined by IP queries.
— Upper bound: determined by EQ queries.

estimate m from the conditional mutual information

about a.

Nov 4, 2003



Quantum Computing — Two Applications [Page 57]

H(A‘Yl, c. 7Ym—17 Ym)

e the quality of information on the input a € {0,1}"

(which corresponds to the random variable A)

we gained after applying m queries.

e Y;: the {0,1}-valued random variable corresponding to

the output of the i-th time IP query.
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Conditional and Joint Entropy'

e Let X and Y are two random variables, then

e Conditional Entropy:

H(X|Y) = -3 Prly] ) Prle|y]lg(PrlelyiL5)
yGY veX
= H(X,Y)-H() (16)

e Joint Entropy:

H<X7Y) o Z Z PI‘[ZE,y] 1g<Pr[$7y]) 17)
yEY reX
H(X)+ H(Y|X) (18)
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H(A Y™
(Ym—l))
H(AY™ )+ H(Y™ )

(HY Y™ )+ HY™ )
HY oA Y™ Y+ HAY™ Y — HY ,,|Y™ 1)9)
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Compute H(A|Y 4, ...

Thus (19) can be spreaded as follows:

H(A|Y1,...,Y.m)
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Compute H(A|Y 4, ...

Recursively plug the above equations into (19|, we have

m

H(A|Y1,...,Y ) H(A)+) H(Y A Yy,....Y )

We will analyze the above terms.
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Analyze (X)

Because A is a random variable

(which corresponds to the input a of our algorithm)

uniformly chosen from {0,1}", it’s trivial that

- — Z Pr(a]1g(Pr[a])
a€e{0,1}"

1 1
—2n2—nlg(—> =n
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Analyze (9)): algorithm IPQUERY

IPQUERY(m)
U«—{0,1}"
S « NIL, S « NIL
g0
for 1+ 1 tom
doxer U
w.p. ((0.5+¢)2" —7)/(2" — (i — 1))
do S — SUx
Jg—J+1
or S— SUxz
U —U\{z}

1
2
3
4
5
6
7
8
9

p—
-]
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Analyze ()

e S can be regarded as the success set {x | IP(x) = a - x}

and
S as the fail set {z | IP(z) = a-7}.

e Let p; be the probability that x is put into the success
set at the i-th query, then

(05+e)2" —(i—1) _
on — (i — 1)

0.50—2¢ <
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Analyze (%))

Thus, the information on the output of the i-th query

(when a and the information on the output of previous

queries are known) has a lower bound determined by (22)

because | H(p) is convex for p € [0, 1], max when p = 0.5.
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Analyze ()

\ H(p)

0 0.5

Figure 11: H(p) is convex for p € [0, 1]
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Analyze (9))

H(Y|AY1,....Y,_1)
H(0.5 —2¢) (= H(0.5 + 2¢))

—(0.5 — 2¢) 1g(0.5 — 2¢) — (0.5 + 2¢) 1g(0.5 + 2¢)

16
1 — E€2 (Taylor expansion)

m

16
2HnAY.”ﬁ_ > (1 — ——£2
L ( | ) 1, 3 1) - ( 1Il2€
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Analyze (3)

Because Y; is a random variable chosen from {0, 1}

(which corresponds to the output y; after the ith query) and

the entropy of an 1-bit string is at most 1, we have

H(Yz’Y17 . '7Yi—1) < 1

m

ZH<Y7L‘Y17---7Y’£—1> §m (24)
1=1
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Lower bound of H(A|Y 4, ...

Substituting (21

Y

23

H(A|Y1,...,Y.m)
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Two tuned parameters'

e the number of EQ queries: 272

e the upper bound of e: §,/n2"3
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Upper bound of H(A|Y 1,...,Y .1, Y )

Achieve maximum entropy when 6(> 0) is fixed:

e 27/2 clements each have EQUAL probability 2,5%.

o 2 — 2/2 glements each have EQUAL probability

1-46
on_9gn/2 "
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Therefore,

HAYq, . ... Y 1Y)
0 0 1—-9 1—9
\2?1/2’”. ’ 2n/2; om _2n/2’”. > on _2n/2)

7

H{(

~~ ~

on/2 oan _9gn/2
§1g(2%) + H(8) + (1 — §) 1g(2™ — 2/?)
m/24+1+(1—-0)n=n—9m/2+1
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Estimate m: the number of queries to IP I

Combine with (26|, we have

Finally,
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The Problem in quantum modeII

Input: a € {0,1}"
(given but kept confidential in a black box.)

Output: a (rechieve it from the black box!)
Allowed operations: quantum black-box queries only.

Goal: determine a with a minimun number of quantum

black-box queries.
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Quantum black boxes.
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What is UEQ?I

For z,a € {0,1}" and b € {0,1},

e if |a) |0) is in the form of a 2" !-dimention column

—
vector ey ﬂ

then Ugg can be represented as the following
21+ L 5 27t matrix: (for the first 0 in the frame box

0 1
0

is located at (K, K))

2 Fori € {1,2,...,2""1} ex; = 1 (ifi=K)or O (otherwise).
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The circuit C"

UIP

X
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GOAL '

Circuit input: [0™,0™,0).
Ideal output: |a,0™,1), actual output: C'|0™,0™,0).
Prove that

(a,0™,1| - C'|0"™,0™,0) > 2, or
{a, 0™, 1] - C'|0™, 0™, 07 > 4¢?

Thus when repeating | the quantum algorithm ﬂfor

O(Z%) times, the input a can be found w.h.p.

2That is, feed |0™,0™ 0) into the circuit C
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Decompose C I

?
4
N4
Ch Cs Cs

Figure 13: Decompose C
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GOAL in detall '

(a,0™, 1] -] C'||0™, 0™, 0)

<a,0m,1| : 0504030201 |On,0m,0>

c;lCs ! ({a, 0m 1) -

C5C5Cy ||0™, 0™, 0)

Cy Cs {al (0™] (1]

| C3C2C [0™) [0™) [0)

() - (B) = 2¢

Nov 4, 2003



Quantum Computing — Two Applications [Page 83]

Compute (°B): stage ()

07) <

&

Figure 14: Apply H to the first n qubits and NOT to the last qubit.
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Compute (°B): stage (5

07)
Usp

&

Figure 15: Apply Urp to the first n + m qubits.
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Compute (°B): stage C;

0°) T
UIP

?

4
N4
C

Figure 16: Apply controlled-Z to the last 2 qubits.
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(a |vz) |- x) + Be |we) [a~T))
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Compute (): stage Cj

i
Urp

Figure 17: Apply H to the first n qubits.
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(32)
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Compute (21): stage C;

)

)

Cy

Figure 18: Apply U;p to the first n 4+ m qubits.

Nov 4, 2003



Quantum Computing — Two Applications [Page 92]

> (=1™fx)j0™) (1))

xe{0,1}"

(=) |z) (az |vz) [a - 2)) |1)

)“ " |x) (B lwa) [a=77)) [1)

(33)
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Compute () - (B): warmup!

Y (=D @) [v,) a2 1)
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Compute (2A) - (°B)
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Boosting: achieve the GOAL in another way'

e Previously known: repeat the quantum algorithm for
O(e7?) times.

e More effeciently: do the quantum algorithm once then

apply | the boosting algorithm |:

Q=2 -CUy2 O U, @ 1)

for O(¢™1) times. That is, compute Q® - (C 0™, 0™, 0))
for t = O(e™1).
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Revise C s.t. ({a,0™,1])- (C|0™,0™,0)) = 2e.
U, or Uy: apply to the first n qubit.

I: apply to the last m + 1 qubits.
U,:

A lz) T #a,

—lzr) x=a.

U, |x)

Alternative speaking, U, = I — 2|a){a|.
Up: a kind of U, when a = 0.
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;V

al®)

Figure 19: U,: refection in the hyperplane sp{|a)"}
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e For z € {0,1}""":
(C(U @ I)C™Y) - C|0", 2)
=C(UyaI)(C~'C) 0™, z) CU, |0, 2)

=|C(—1]0",z2)) —C'|0",z)  (35)

e For y € {0,1}" and y # 0™:
(C(hoDC™) - Cly, 2) CUy®I)(C™'C) |y, 2)

=|CUy |y, 2) C'ly, 2) (36)

e Thus, C(Up ® I)C ™" = Ugjon )
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sp{C|0)"}

Figure 20: —Ug|on): rotate |¢) to alternative direction.

e Recall that Q = —C(Uy @ I)C~1 (U, @ I)
e After querying @ for k times, |0™) rotates by (2k + 1)6.
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Ratate towards |a)

A a)

o) = C10%)

/
/

,V

Ua|®)

Figure 21: 0 = sin™ ' ({(a| - C'|0™)) = sin™*(2¢)
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Boost the probability that |a) happens

e When sin((2k + 1)0) = 1, Q¥ [0™,0™,0) = |a, 0™, 1).

e The minimun k which satisfies

sin((2k +1)0) =1 < (2k+1)9:g (37)

m—sin~ (2¢)
2sin—1(2¢) -

1S

e Because sin~'(2¢) > 2¢ holds for small €, we can
estimate that

T —sin”*(2¢) T 2e
2sin"1(2) T 2-2
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