
Properties of the Von Neumann
entropy

1. Purity. A pure state ρ = |ϕ〉〈ϕ| has S(ρ) =

0.

2. Invariance. The entropy is unchanged by

a unitary change of basis

S(UρU†) = S(ρ),

because the entropy depends only on the

eigenvalues of the density matrix.

3. Maximum. If ρ has D non-vanishing eigen-

values, then

S(ρ) ≤ logD,

with equality when all nonzero eigenvalues

are equal (maximum randomness).
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4. Concavity. For λi ≥ 0 and
∑

i λi = 1,

S(
∑
i

λiρi) ≥
∑
i

λiS(ρi).

That is, the Von Neumann entropy is larger

if we know less about how the state was

prepared.

5. Entropy of measurement. If we measure

A =
∑

y ay|ay〉〈ay| in ρ, then outcome ay oc-

curs with probability p(ay) = 〈ay|ρ|ay〉. The

Shannon entropy for the ensemble of mea-

surements outcomes Y = {ay, p(ay)} satis-

fies

H(Y ) ≥ S(ρ),

with equality when A and ρ commute. By

measuring a non-commuting observable the

results would be less predictable.



6. Entropy of preparation. For ρ =
∑

x px|ϕx〉〈ϕx|
and X = {|ϕx〉, px},

H(X) ≥ S(ρ),

with equality when the |ϕx〉’s are mutually

orthogonal. When the different states are

not orthogonal then information received

would be less then when different charac-

ters are fully distinguishable.

7. Subadditivity. For a bipartite system AB

in the state ρAB,

S(ρAB) ≤ S(ρA) + S(ρB),

with equality when ρAB = ρA⊗ρB. Entropy

is additive for independent subsystems, but

for correlated subsystems total entropy is

less than the sum of the entropy of the

subsystems. Similarly H(X, Y ) ≤ H(X) +

H(Y ).



8. Strong subadditivity. For any state ρABC

of a tripartite system,

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC).

When B is one dimensional this property

reduces to subadditivity. This property may

be viewed as the fact that the sum of the

entropies of two systems’ union and inter-

section does not exceed the sum of the

entropies of the two systems.

9. Triangle inequality (Araki-Lieb inequal-

ity). For a bipartite system

S(ρAB) ≥ |S(ρA)− S(ρB)|,

in contrast to Shannon entropy

H(X, Y ) ≥ H(X), H(Y )

or

H(X|Y ), H(Y |X) ≥ 0.



There exists more information in the whole

classical system than any part of it. But

for quantum systems and Von Neumann

entropy, we could have S(ρA) = S(ρB) and

S(ρAB) = 0 in the case of a bipartite pure

state. That is, for the whole system the

state is completely known, yet consider-

ing only one of the subsystems the mea-

surement result could be complete random.

This is the consequence of quantum entan-

glement.

If we could somehow define a conditional

Von Neumann entropy, then negative en-

tropies should result, leading to insights

into quantum entanglement and measure-

ment.



Quantum Data Compression

Consider a message composed of n letters,
each chosen at random from the ensemble of
pure states {|ϕx〉, px}, where the states may not
be orthogonal. Then each letter is described
by the density matrix

ρ =
∑
x

px|ϕx〉〈ϕx|,

and the entire message by

ρn = ρ ⊗ ρ ⊗ · · · ⊗ ρ.

The message can be compressed to a Hilbert
space of nS(ρ) dimensions, without decreasing
the fidelity of the message.

So the Von Neumann entropy can be seen as
the number of qubits of quantum information
carried per letter by the message. Analogous
to the classical case, when ρ = 1

21, the (com-
pletely random) message could not be com-
pressed.
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Schumacher encoding

Similar to classical compression in which we
only consider typical sequences, typical sub-
spaces are considered in quantum messages.
That is, we can represent a given quantum
message in the typical subspace of its Hilbert
space, and throw away the orthogonal compo-
nent.

Consider a quantum message ρn = ρ⊗ρ⊗· · ·⊗ρ,
where ρ =

∑
x px|ϕx〉〈ϕx|. In the orthonormal

basis that diagonalizes ρ, the message can be
seen as a classical source in which each letter
is chosen from ρ’s eigenstates, with probabil-
ity given by the eigenvalues. Then the typi-
cal sequence of ρ eigenstates appearing in the
message ρn forms a typical subspace. That is,
we need only consider the typical eigenstates
of ρn. Specifically, the eigenstates with eigen-
value λ satisfying

2−n(S(ρ)−δ) ≥ λ ≥ 2−n(S(ρ)+δ).
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Each eigenstate of ρn is a sequence of eigen-

states of ρ, with eigenvalues given by the prod-

uct of the corresponding eigenvalues of ρ.

There are 2nS(ρ) typical sequences, each with

probability (eigenvalue) λ satisfying (for a spec-

ified δ)

2−n(S(ρ)−δ) ≥ λ ≥ 2−n(S(ρ)+δ).

For any δ and ε > 0 sufficiently large, the

sum of the above typical eigenvalues satisfies

tr (ρnE) > 1 − ε, (where E is the projection

onto the typical subspace spanned by the typi-

cal eigenstates of ρn) and the dimension of the

typical subspace Λ satisfies

2nS(ρ)+δ ≥ dimΛ ≥ 2n(S(ρ)−δ).



The coding strategy is to send messages in

the typical subspace faithfully. First the sender

performs a unitary transformation that rotates

the typical eigenstates of the message to the

form U|Ψtyp〉 = |Ψcomp〉|0rest〉, where |Ψcomp〉 is

a state of n(S(ρ)+ δ) qubits, and |0rest〉 repre-

sent |0〉’s for all remaining qubits. The |Ψcomp〉
is send, and the receiver appends |0rest〉 and

apply U−1 to recover the original message.


