
Quantum Information Theory

Scope:

1. Transmission of classical information over

quantum channels.

2. The tradeoff between acquisition of quan-

tum state information and disturbance of

the state.

3. Quantifying quantum entanglement.

4. Transmission of quantum information over

quantum channels.

Mainly accomplished by the interpretation and

application of the Von Neumann entropy.
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Classical Information Theory

A message is a string of letters chosen from

an alphabet of k letters

{a1, a2, . . . , ak}.

The letters are independent and occurs with

probability p(ax), and
∑k
x=1 p(ax) = 1.

A typical message of length n will contain np(ax)

ax’s for each x. So the number of typical

strings is

n!∏k
x=1(np(ax))!

.

By the Stirling approximation logn! = n logn−
n+O(logn) we have

log
n!∏k

x=1(np(ax))!

= logn!−
k∑

x=1

log(np(ax))!
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= n logn− n−
k∑

x=1

(np(ax) lognp(ax)− np(ax))

= n logn−
k∑

x=1

np(ax)(logn+ log p(ax))

= −n
k∑

x=1

p(ax) log p(ax)

= nH(X),

where

H(X) = −
k∑

x=1

p(ax) log p(ax)

is the Shannon entropy of the ensemble X =

{ax, p(ax)}.



So there are approximately

2nH(X)

typical strings of length n for the letter en-

semble X. Hence if we consider the typical

strings as the only strings that can appear,

then a string of length n can be compressed

to nH(X) bits, that is, only nH(X) bits are

needed to store any length n string.

The noiseless coding theorem states that the

optimal code compresses each letter to H(X)

bits asymptotically. It’s the highest compres-

sion rate given the requirement that messages

must be decoded without errors as n→∞.



Another Perspective

For a particular length n message

x1x2 . . . xn,

its prior probability is

P (x1x2 . . . xn) = p(x1)p(x2) . . . p(xn)

and

logP (x1x2 . . . xn) =
n∑
i=1

log p(xi).

By the central limit theorem, when n is large

enough most messages has probability P sat-

isfying

−
1

n
logP (x1x2 . . . xn) = −

1

n

n∑
i=1

log p(xi)

≈ 〈− log p(x)〉
≡ H(X),

where the random varaiable x represent a letter

chosen from X.
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So for the typical sequences its probability P

satisfies

H(X)− δ < −
1

n
logP (x1x2 . . . xn) < H(X) + δ,

or

2−n(H(X)−δ) > P (x1x2 . . . xn) > 2−n(H(X)+δ),

where δ > 0 is small.



Interpretation of Shannon Entropy

The Shannon entropy for a specific source X

can be seen as the amount of our ignorance

about the value of the next letter, or the amount

of indeterminancy of the unknownm letter. It

can also be seen as the amount of information

we gain after receiving one letter, in the usual

case where the logarithm in H is with base 2,

the unit of H is bits.
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Binary Entropy

Suppose that the alphabet is bits, that is, X =
{0,1}, with probability p0 = p and p1 = 1 − p.
The entropy for this case is

H(X) = H(p) = −p log p− (1− p) log(1− p).

When p0 = 1
2, the bit is completely random,

hence

H(
1

2
) = 1

is the maximum attainable value for the en-
tropy, that is, we are maximally ignorant about
the value of the next letter, or that we gain the
most information (one bit) by receiving one let-
ter. When p0 = 1 or p1 = 1, the next bit is
completely predictable, the entropy in this case
is

H(0) = H(1) = 0,

so we are not ignorant about the value of next
bit at all, it also means that we get no infor-
mation by receiving one letter. All other cases
have entropy between these two extremes.
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Generalize the result in the previous section

to general sources X, the entropy H is zero

whenever any one of the letters occurs with

certainty. That is,

Hmin(X) = − log 1 = 0.

And maximum entropy is achieved when all let-

ters occur with equal probability, that is, with a

uniform probability distribution. For a X with

d letters, the entropy of uniform probability is

Hmax(X) = −
∑
i

1

d
log

1

d
= − log

1

d
= log d.

In the general case of source X with d letters,

its information per letter is

0 ≤ H(X) ≤ log d.

6



Relative Entropy

If p(x) and q(x) are two probability distributions
over the same index set x (or a given set of
letters), then the relative entropy of p(x) to
q(x) is defined as

H(p(x)||q(x)) ≡
∑
x
p(x) log

p(x)

q(x)

= −H(X)−
∑
x
p(x) log q(x).

The relative entropy is a measure of the close-
ness of these two probability distributions. Since
ln y ≤ y − 1, we have

H(p(x)||q(x)) = −
∑
x
p(x) log

q(x)

p(x)

≥
1

ln 2

∑
x
p(x)

(
1−

q(x)

p(x)

)

=
1

ln2

∑
x

(p(x)− q(x))

= 0.

With equality when p(x) = q(x) for all x.
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Mutual Information

Suppose a message composed from X are trans-

mitted through a noisy channel, and a mes-

sage composed from Y is received, that is, the

channel distorts a letter x ∈ X into y ∈ Y with

conditional probability p(y|x). When the mes-

sage is received, the probability distribution for

x can be updated to

p(x|y) =
p(y|x)p(x)

p(y)
,

where p(y|x) represent properties of the chan-

nel, p(x) the a priori probabilities of ensemble

X, and p(y) =
∑
x p(y|x)p(x). So the message

composed from Y contains some information

about the original message from X. Using the

p(x|y)’s we can defined the conditional entropy

as

H(X|Y ) = 〈− log p(x|y)〉 = −
∑
xy
p(x, y) log p(x|y).
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Note that

H(X|Y ) = 〈− log p(x, y) + log p(y)〉
= 〈− log p(x, y)〉 − 〈− log p(y)〉
= H(X,Y )−H(Y ),

where H(X,Y ) ≡ −
∑
xy p(x, y) log p(x, y), simi-

larly

H(Y |X) = H(X,Y )−H(X).

We need H(X) bits per letter to decode mes-

sages from X, after receiving via the noisy

channel a message from Y , we need H(X|Y )

more bits per letter to decode the message. In

other words

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y )

= H(Y )−H(Y |X).

bits of information per letters is gained by re-

ceiving the distorted message. I(X;Y ) is the

mutual information, which is symmetric.



From the properties of the logarithm we have

H(X) ≥ H(X|Y ) ≥ 0,

H(Y ) ≥ H(Y |X) ≥ 0,

so

I(X;Y ) ≥ 0,

H(X) +H(Y ) ≥ H(X,Y ).

That is, we will not lose any knowledge of a
message from X by receiving a message from
Y .
Equality occurs when X and Y is independent,
then

I(X;Y ) = H(X)−H(X|Y )

= H(X)− 〈− log p(x|y)〉

= H(X)−
〈
− log

p(x, y)

p(y)

〉

= H(X)−
〈
− log

p(x)p(y)

p(y)

〉
= H(X)− 〈− log p(x)〉
= 0



The Noisy Coding Theorem

With X = {x, p(x)} for the input letters, we

send a length n message through a memory-

less noisy channel specified by p(y|x)’s. The

output letters Y = {y, p(y)} can be found by

knowledge of X and the channel.

Intuitively it seems we can send no more than

I(X;Y ) bits per letter over the noisy chan-

nel, the value of which depends on the p(y|x)’s
(channel) and p(x)’s (input ensemble). This is

the noisy coding theorem.
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Coding and Transmission of Messages
Using Quantum States

The quantum equivalent of the previous situa-
tion is to replace message letters with quantum
states. Suppose for a particular physical sys-
tem we have the states |ψx〉 each occuring with
probability p(x), where

∑
x p(x) = 1. Then the

density operator for a particular state (letter)
is

ρ =
∑
x
p(x)|ψx〉〈ψx|.

Since the states |ψx〉 may not be mutually or-
thogonal, different states are not completely
distinguishable, that is, they overlap in the
state space, hence the entropy for this case
is not

H(X) = −
∑
x
p(x) log p(x).

Two overlapping letters are not exactly two
letters, they are effectively less than two let-
ters, although always more or same as one let-
ter.
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Von Neumann Entropy

The Von Neumann entropy for the density
operator defined previously is defined as

S(ρ) ≡ −tr (ρ log ρ) .

The logarithm of a matrix is defined as the
inverse of the exponential of a matrix. For
matrices A and B if

eA =
∞∑
n=0

An

n!
= B,

then

logB = A.

The logarithm of a matrix is normally very hard
to calculate, but for diagonal matrix A where
Aij = δijai, its exponential is

(eA)ij = δije
ai = Bij,

so B is diagonal, with Bij = δijbi we have

(logB)ij = δij log bi.
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Since any density operator can be diagonalized,
suppose the eigenvalues of ρ is λi, that is,

ρ =
∑
i

λi|ϕi〉〈ϕi|,

where the |ϕi〉’s are mutually orthonormal, then

S(ρ) = −
∑
i

λi logλi.

This is the same as the entropy of an ensem-
ble of letters each with probabilities λi, since all
density operators have unit trace. This equal-
ity is not surprising since orthogonal states are
completely distinguishable, hence can be treated
as classical letters.

Density operators can also be treated as let-
ters, for the ensemble X = {ρx, p(x)}, the den-
sity operator for each letter is

ρ =
∑
x
p(x)ρx.

This is the most general case in which even
individual letters are in a mixed state, but how
can such a message be sent?



The Von Neumann entropy represents three

physical quantities:

1. The quantum information per letter.

2. The classical information per letter.

3. The amount of entanglement.

Yet the theories and methods developed by use

of the Von Neumann entropy may somehow be

limited due to large correspondence with clas-

sical information theory. For example, letters

are generally represented physically as mixed

states rather than pure states, that is, without

relative phase information. The Von Neumann

entropy may be a special case of a more gen-

eral complex entropy?



Quantum (Von Neumann) Relative
entropy

This is the quantum version of relative entropy.

For density matrices ρ1 and ρ2, the relative

entropy of ρ1 to ρ2 is defined as

S(ρ1||ρ2) ≡ tr (ρ1 log ρ1)− tr (ρ1 log ρ2) .

The relative entropy is likewise non-negative,

and equals zero when ρ1 = ρ2.

Diagonalize both ρ1 and ρ2:

ρ1 =
∑
i

pi|ψi〉〈ψi|, ρ2 =
∑
i

qi|ϕi〉〈ϕi|,

then

S(ρ1||ρ2)
= S(ρ1)− tr (ρ1 log ρ2)

=
∑
i

pi log pi −
∑
i

〈ψi|ρ1 log ρ2|ψi〉

=
∑
i

pi log pi −
∑
i

pi〈ψi| log ρ2|ψi〉
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=
∑
i

pi log pi −
∑
i

pi〈ψi|

∑
j

(log qj)|ϕj〉〈ϕj|

 |ψi〉
=

∑
i

pi log pi −
∑
i

pi
∑
j

∣∣∣〈ψi|ϕj〉∣∣∣2 log qj

=
∑
i

pi

log pi −
∑
j

∣∣∣〈ψi|ϕj〉∣∣∣2 log qj


Since the logarithm is strictly concave, we have

∑
j

∣∣∣〈ψi|ϕj〉∣∣∣2 log qj ≤ log

∑
j

∣∣∣〈ψi|ϕj〉∣∣∣2 qj
 ,

with equality if and only if ∀i∃j|ϕj〉 = |ψi〉, so

S(ρ1||ρ2) =
∑
i

pi

log pi −
∑
j

∣∣∣〈ψi|ϕj〉∣∣∣2 log qj


≥

∑
i

pi

log pi − log

∑
j

∣∣∣〈ψi|ϕj〉∣∣∣2 qj


in the case of equality,

S(ρ1||ρ2) =
∑
i

pi (log pi − log qi) ≥ 0,

since S becomes a (classical) relative entropy.


