
Positive Operator-Valued Measure
(POVM)

From the third postulate of quantum mechan-

ics, if we define

Em ≡ M†
mMm,

then ∑
m

Em = 1 and p(m) = 〈ψ|Em|ψ〉.

The positive operators Em are the POVM ele-

ments associated with the measurement, and

the set {Em} is a POVM.

Since the POVM elements sum to identity,

they provide a partition of identity. In the

special case of projective measurements, the

Em’s are orthogonal projections, and the di-

rect sum of the subspaces they project onto is

the Hilbert space of the measured system.
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Schmidt Decomposition

For any state |ψ〉AB of a composite system AB,

there exists orthonormal states |i〉A and |i〉B for

systems A and B respectively such that

|ψ〉AB =
∑
i

λi|i〉A|i〉B,

where the λi’s are non-negative real numbers

satisfying
∑
i λ

2
i = 1.

So for any pure state |ψ〉AB, the density oper-

ator for systems A and B are

ρA = trB (|ψ〉AB) =
∑
i λ

2
i |i〉AA〈i|

ρB = trA (|ψ〉AB) =
∑
i λ

2
i |i〉BB〈i|

They have the same eigenvalues.
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The λi’s are the Schmidt coefficients, the

bases {|i〉A} and {|i〉B} are called the Schmidt

bases for A and B respectively, and the num-

ber of non-zero λi’s is called the Schmidt num-

ber. The Schmidt number provide a definition

and measure for entanglement.

Entanglement between A and B can be defined

as when the Schmidt number of |ψ〉AB is larger

than one, since then the states are not sepa-

rable. The value of the Schmidt number also

reflect the degree of entanglement in that local

operations cannot change its value. If unitary

operation U is performed on A only, then the

new composite state is

|ψ〉AB =
∑
i

λi(U|i〉A)|i〉B,

the Schmidt number remains constant.



Purifications

Given a state ρA in system A, we can introduce

a system R and define a pure state |Ψ〉AR of

the composite system AR such that

ρA = trR (|Ψ〉ARAR〈Ψ|) .

That is, the mixed state ρA becomes the pure

state |Ψ〉ARAR〈Ψ|. This is a purely mathemat-

ical procedure known as purification. System

R is called the reference system, and has no

physical reality.

Given an arbitrary state ρA of system A, ac-

cording to the basic properties of density ma-

trices, we can diagonalize it:

ρA =
∑
i

pi|i〉AA〈i|,

where the |i〉A’s are mutually orthogonal and

pi ≥ 0,
∑
i pi = 1.
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Take system R to have the same state space

as A, and define an orthonormal basis {|i〉R},
then the pure state

|Ψ〉AR =
∑
i

√
pi|i〉A|i〉R

is a purification for ρA.

Taking the partial trace

trR (|Ψ〉ARAR〈Ψ|)

= trR

∑
i

√
pi|i〉A|i〉R

∑
j

(
√
pj)

∗
A〈j|R〈j|


= trR

∑
ij

√
pipj (|i〉A ⊗ |i〉R) (A〈j| ⊗ R〈j|)


=

∑
ij

√
pipj|i〉AA〈j|tr (|i〉RR〈j|)

=
∑
ij

√
pipj|i〉AA〈j|δij

=
∑
i

pi|i〉AA〈i|

= ρA



The purification process defines a pure state by

its Schmidt decomposition, that is |i〉A and |i〉R
are the Schmidt bases for A and R respectively.

The Schmidt coefficients are
√
pi.

So the pure state produced by purification us-

ing the same reference system R is unique up

to a local unitary transformation. That is, for

|Ψ′〉AR =
∑
i

√
pi|i〉A ⊗U|i〉R,

trR
(
|Ψ′〉ARAR〈Ψ′|

)
= trR

∑
i

√
pi|i〉A ⊗U|i〉R


∑

j

(
√
pj)

∗
A〈j| ⊗ R〈j|U†


= ρA.
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Relations Between the Physical States
of Two Systems

For systems A and B, if their states are classi-

cally correlated, then their state vectors have

some algebraic relation to each other; if they

are entangled, then the relation between their

state vectors becomes inseparable.

If system A is in the state |x〉A = a|0〉A+ b|1〉A,

then the states of the composite system when

there are some classical corrrelations with sys-

tem B are (for equality and reverse in the Bloch

sphere):

|x〉A|y〉B = (a|0〉A + b|1〉A)⊗ (a|0〉B + b|1〉B),

|x〉A|y〉B = (a|0〉A + b|1〉A)⊗ (b|0〉B + a|1〉B).

If they are entangled, then the composite states

are:

a|0〉A|0〉B + b|1〉A|1〉B,
a|0〉A|1〉B + b|1〉A|0〉B.
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There is no unitary transformation on the com-

posite system AB that produces classical cor-

relations between the states of A and B for

arbitrary states of A. The best one can do

is to produce an entangled state. This is the

basis of the no-cloning theorem.

The purpose of cloning is to produce an inde-

pendent copy of data. Entanglement causes

the copy to be dependent on future values of

the source data, this defeats the purpose of

cloning, yet it can be seen as the ultimate copy

mechanism.



Bell Inequality

Two particles are prepared, particle 1 is mea-

sured for physical properties PQ or PR by ran-

dom, while particle 2 is measured for physical

properties PS or PT by random. All measure-

ment results are either 1 or −1. The measure-

ment results are denoted Q, R, S, and T for

PQ, PR, PS, and PT respectively.

Since

Q,R, S, T = ±1

we have

QS +RS +RT −QT

= (Q+R)S + (R−Q)T = ±2.
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Let p(q, r, s, t) denote the probability that be-

fore measurement the particles have value

Q = q,R = r, S = s, T = t,

then

〈QS +RS +RT −QT 〉
=

∑
qrst

p(q, r, s, t)(qs+ rs+ rt− qt)

≤
∑
qrst

2p(q, r, s, t)

= 2.

So we have

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 ≤ 2.

This is an instance of Bell inequality.



Now suppose the two particles sent are in the

qubit state

1√
2
(|0〉|1〉 − |1〉|0〉),

and the measurements are projective measure-

ments where

Q =

(
1 0
0 −1

)
= σ3, S = 1√

2

(
−1 −1
−1 1

)

R =

(
0 1
1 0

)
= σ1, T = 1√

2

(
1 −1
−1 −1

)

Simple calculation shows that

〈QS〉 =
1√
2
, 〈RS〉 =

1√
2
, 〈RT 〉 =

1√
2
, 〈QT 〉 = −

1√
2
,

thus

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2
√

2.

The Bell inequality is violated.



Projective Measurements of the Qubit

In the qubit system, a projective measurement

of the spin on axis n̂ (on the Bloch sphere) is

represented by

M = n̂ · ~σ = n1σ1 + n2σ2 + n3σ3 =
2∑

m=1

λmPm,

where

λ1 = 1, P1 = E(n̂,+) = 1
2(1 + n̂ · ~σ),

λ2 = −1, P2 = E(n̂,−) = 1
2(1− n̂ · ~σ),

and the probabilities for obtaining spin up and

spin down are

p(1) = 〈ψ|P1|ψ〉,
p(2) = 〈ψ|P2|ψ〉,

respectively.
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Another Bell Inequality

The Bell state |ψ−〉 = 1√
2
(|0〉|1〉 − |1〉|0〉) satis-

fies

((n̂ · ~σ)⊗ 1 + 1⊗ (n̂ · ~σ))|ψ−〉 = 0.

This means that if we measure the first qubit

along n̂ and the second along −n̂, their results

will always be anticorrelated:

〈(n̂ · ~σ)⊗ 1〉
= 〈ψ−|((n̂ · ~σ)⊗ 1)|ψ−〉
= −〈ψ−|(1⊗ (n̂ · ~σ))|ψ−〉
= 〈ψ−|(1⊗ (−n̂ · ~σ))|ψ−〉
= 〈1⊗ (−n̂ · ~σ)〉
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If we measure the spin of the first qubit along

n̂, and the spin of the second qubit along m̂

(The measurement (n̂ · ~σ) ⊗ (m̂ · ~σ)), then the

probability of obtaining the same or different

results for the two qubits is

〈ψ−| (E(n̂,+)⊗ E(m̂,+)) |ψ−〉
= 〈ψ−| (E(n̂,−)⊗ E(m̂,−)) |ψ−〉

=
1

4
(1− cos θ)

〈ψ−| (E(n̂,+)⊗ E(m̂,−)) |ψ−〉
= 〈ψ−| (E(n̂,−)⊗ E(m̂,+)) |ψ−〉

=
1

4
(1 + cos θ)

So we have probabilities 1
2(1−cos θ) of obtain-

ing the same result and 1
2(1+cos θ) of obtain-

ing different results.



Consider measuring along three co-plane axes

60◦ apart, measuring the first qubit along n̂1

with result r1 and the second along −n̂2 with

result r2 we can conclude that if we could

somehow measure the first qubit along n̂1 and

n̂2 we would obtain the results r1 and r2. The

sum of the probabilities that the same result is

obtained for any two axes is

Psame(n̂1, n̂2) + Psame(n̂2, n̂3) + Psame(n̂1, n̂3)

= 3 · 1
2(1− cos 60◦) = 3

4.

Since there are only two possible results, the

Bell inequality in this case is

Psame(n̂1, n̂2)+Psame(n̂2, n̂3)+Psame(n̂1, n̂3) ≥ 1,

which is violated in this particular instance.



Two assumptions made in the proof of the Bell

inequality need to be reconsidered:

1. Realism. The physical properties have def-

inite values that exist independent of ob-

servation.

2. Locality. The measurement of the two par-

ticles does not influence each other’s re-

sult.

That is, the world may not be locally realistic.

The concept of entanglement is the key to un-

derstanding non-locality.
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The Collapse of the State Vector

In quantum measurement, we let the measured

system Q interact with the measurement de-

vice A, the state of the composite system be-

comes ∑
n
an|ψn〉Q|ϕn〉A.

The {|ϕn〉A}’s represent values that could be

read out on the measurement device. The

classical nature of the measurement device im-

plies that after measurement, the state (read-

ings) of the measurement device takes on a

well defined value. The state of the compos-

ite system would then be

|ψn〉Q|ϕn〉A
for a particular value of n, or∑

n
|an|2

(
|ψn〉Q|ϕn〉A

) (
Q〈ψn|A〈ϕn|

)
,

the state has collapsed (become mixed).
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The Copenhagen interpretation of measure-

ment is based on the state collapse of a quan-

tum system due to interaction with a macro-

scopic, classical, measurement device. But

interaction with a classical system cannot be

part of a consistent quantum theory.

Von Neumann separates the measurement pro-

cess into two stages. The first stage (“Von

Neumann measurement”) describes the inter-

action between Q and A that gives rise to

the entangled composite state. The second

stage (“observation”) is the state collapse af-

ter which a definite read out on the measure-

ment device is obtained.

In our formulation the realization of general

measurements as projective measurements is

combined with the first stage of quantum mea-

surement according to von Neumann. (See

The Measurement Process I.)



Views on the Collapse of the State
Vector

During the collapse, a completely known state

vector seems to have evolved into one of sev-

eral possible outcome states (a mixed state

when the result is not known). Yet such a pro-

cess is not describable with unitary evolution,

giving rise to the third postulate of quantum

mechanics and two distinct ways for a system

to evolve; one deterministic and linear, and the

other probabilistic.

Von Neumann divided the measurement pro-

cess in an attempt to resolve the paradox, yet

the observation (interaction with a classical

system) must occur at some stage, the para-

dox still exists. Von Neumann brings the hu-

man consciousness into the picture.

The Everett-DeWitt interpretation suggests that

the observation stage never takes place, only
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one of each possibility is available for one (con-

scious or mechanical) observer, each observer

records a possible version of reality. Thus this

unprovable proposition states that the universe’s

state branches at each quantum event. The

universe observes itself?

Environment decoherence is also used to ex-

plain the paradox. But while irreversibility is

accounted for by the interpretation, the col-

lapse is still not explained, thus the cat is still

a paradox.



Decoherence I: Depolarization

Decoherence is the process in which a pure

(coherent) state becomes mixed due to in-

teraction with another system (environment).

That is, it becomes entangled with another

system.

In the depolarization of a qubit system, such

an entanglement is manifested in the form of

qubit errors:

1. Bit flip error:
|0〉 → |1〉
|1〉 → |0〉 (σ1).

2. Phase flip error:
|0〉 → |0〉
|1〉 → −|1〉 (σ3).

3. Both errors:
|0〉 → +i|1〉
|1〉 → −i|0〉 (σ2).
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Suppose the qubit system A becomes entan-

gled with the environment E, since there are

four situations of interest (no error and three

kinds of errors), we can set the state space of E

to four dimensions with basis {|0〉, |1〉, |2〉, |3〉},
representing no error, σ1 (error 1), σ2 (error

3), and σ3 (error 2) respectively.

For initial state |ψ〉A|0〉E = (a|0〉A+ b|1〉A)|0〉E,

and probability of error p with each kind of

error equally possible, then the state of system

AE evolves as

|ψ〉A|0〉E
→

√
1− p|ψ〉A|0〉E +

√
p

3
(σ1|ψ〉A|1〉E

+σ2|ψ〉A|2〉E + σ3|ψ〉A|3〉E) .

The state of system A becomes mixed (entan-

gled with system E). Measuring E puts A in a

definite state and any errors can be correct by

consulting the measured value.



Without loss of generality, we can assume |ψ〉A =

|0〉A, which has spin pointing in the (0,0,1) di-

rection, the initial density matrix is 1
2(1 + σ3),

and the evolved density matrix is(
1− p+ p

3 0
0 2p3

)

=
1

2

(
1 + (1−

4p

3
)σ3

)
,

which is a mixed state with Bloch ball repre-

sentation (0,0,1− 4p
3 ). With enough evolution

cycles the state would become 1
21, which is

a completely random state. In other words,

when the qubit has depolarized from the state

|0〉AA〈0| to 1
21, information is completely lost

to the environment.



Decoherence II: Phase-damping

In phase-damping decoherence, the state of

the system is not changed after entanglement

with the environment, yet the relative phase

information is lost, resulting in a mixed state.

For a qubit system A and environment E, phase-

damping occurs as the unitary transformation

|0〉A|0〉E →
√

1− p|0〉A|0〉E +
√
p|0〉A|1〉E

|1〉A|0〉E →
√

1− p|1〉A|0〉E +
√
p|1〉A|2〉E

The environment occasionally gets changed to

states |1〉E and |2〉E when qubit A is in |0〉A
and |1〉A respectively. The basis {|0〉A, |1〉A}
is preferred by the environment in this case in

that they are the only states that does not

change due to environment interaction, any

other state will be changed in the process.
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For the initial state |ψ〉A|0〉E = (a|0〉A+b|1〉A)|0〉E
of system AE, evolution produces the new state

a
√

1− p|0〉A|0〉E + a
√
p|0〉A|1〉E

+ b
√

1− p|1〉A|0〉E + b
√
p|1〉A|2〉E

The initial density matrix of A is

ρA =

(
|a|2 ab∗

a∗b |b|2

)
.

We obtain the state of A by partial trace

ρ′A = |a|2|0〉AA〈0|+ ab∗(1− p)|0〉AA〈1|
+a∗b(1− p)|1〉AA〈0|+ |b|2|1〉AA〈1|

=

(
|a|2 ab∗(1− p)

a∗b(1− p) |b|2

)
.

The off-diagonal elements would decrease af-
ter evolution, with enough evolution cycles the
density matrix would become

ρ′′A =

(
|a|2 0
0 |b|2

)
= |a|2|0〉AA〈0|+ |b|2|1〉AA〈1|.

Phase information is lost and we are left with
classical probabilities of the preferred basis states.



Phase-damping can be used to explain the for-

mulation of the unnatural Schrödinger cat state,

but it still remains to explain why only one of

the outcome is preceived.

Initially the cat and the atom is not entangled:

|0〉A|Alive〉Cat,

After interaction they are entangled:

1√
2
|0〉A|Alive〉Cat +

1√
2
|1〉A|Dead〉Cat,

The environment prefers either a live cat or a

dead cat, but not any combination of these

two, so the whole Atom-Cat system phase-

damps to the density matrix state

1
2((|0〉A|Alive〉Cat)(A〈0|Cat〈Alive|)
+(|1〉A|Dead〉Cat)(A〈1|Cat〈Dead|))

The cat has probability 1
2 to be dead or alive,

but what does that mean?



N. J. Cerf and C. Adami’s Views on
the Quantum Measurement Process

The collapse of the physical state in the quan-

tum measurement process is an illusion brought

about by the observation of part of a com-

posite system that is quantum entangled and

thus inseparable. Rather than collapsing, the

state of a measured system becomes entangled

with the state of the measurement device. The

fact that no state collapse or quantum jump

occured is implicit in the quantum eraser phe-

nomenon.

Due to the absence of state collapse, the uni-

tary description of quantum measurement is

reversible. But in a general measurement situ-

ation where the measured system is entangled

with a macroscopic system, it is practically im-

possible to track all the atoms involved, thus

it is practically irreversible.
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