
The First Postulate of Quantum
Mechanics

Associated with any isolated physical system is

a complex vector space with inner product (a

Hilbert space) known as the state space of

the system. The physical state of the system

is completely described by its state vector,

which is a unit vector in the system’s state

space.

The simplest quantum mechanical system is

the qubit, which has a 2-d state space. With

an orthonormal basis {|0〉, |1〉} the most general

state vector of a qubit can be expressed as

|ψ〉 = a|0〉+ b|1〉,

where a, b ∈ C and 〈ψ|ψ〉 = 1 (or |a|2+|b|2 = 1).
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Phase

The two states eiθ|ψ〉 and |ψ〉 are considered

the same physical state.

〈ψ|e−iθEeiθ|ψ〉 = 〈ψ|E|ψ〉

The factor eiθ is called the global phase, which

has no physical significance.

The two qubit states a|0〉+ beiθ|1〉 and a|0〉+
b|1〉 differ by relative phase between |0〉 and

|1〉, and are not the same physical state. For

example, the two states |0〉+|1〉√
2

and |0〉−|1〉√
2

are

orthogonal.
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Bloch Sphere

The most general state vector of a qubit can

be expressed as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉,

where θ is the polar angle and ϕ is the az-

imuthal angle of a unit vector n̂ in 3-d real

vector space.

Correspondence between 3-d real unit vectors

and qubit states

n̂ θ ϕ |ψ〉
ẑ 0 0 |0〉

−ẑ π 0 |1〉
x̂ π

2 0 1√
2
(|0〉+ |1〉)

−x̂ π
2 π 1√

2
(|0〉 − |1〉)

ŷ π
2

π
2

1√
2
(|0〉+ i|1〉)

−ŷ π
2 −π

2
1√
2
(|0〉 − i|1〉)
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The Second Postulate of Quantum
Mechanics

The evolution of a closed quantum system is
described by a unitary transformation. The
state vector |ψ〉 of a system at time t1 is related
to its state vector |ψ′〉 at time t2 by a unitary
operator U which depends on t1, t2,

|ψ′〉 = U|ψ〉.

The Pauli matrices and the Hadamard gate

H = 1√
2

(
1 1
1 −1

)
are all 2×2 unitary matrices,

and so describe valid qubit transformations.

The evolution of a closed quantum system in
continuous time is described by the Schrödinger
equation,

i
d|ψ〉
dt

= H|ψ〉.

H is a fixed self-adjoint operator known as the
Hamiltonian of the system. The state at time
t is |ψ(t)〉 = U|ψ(0)〉 = e−iHt|ψ(0)〉.
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The Third Postulate of Quantum
Mechanics

Quantum measurements are described by a set

{Mm} of measurement operators acting on

the state vector of the measured system. If

the state of the system before measurement is

|ψ〉, then outcome m occurs with probability

p(m) = 〈ψ|M†
mMm|ψ〉,

and the new state in this case is

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
.

The probabilities of all outcomes sum to one:

1 =
∑
m
p(m) =

∑
m
〈ψ|M†

mMm|ψ〉,

so that ∑
m

M†
mMm = 1.
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Measuring a qubit to be |0〉 or |1〉 is thus a

measurement with

M0 = |0〉〈0| =
(

1 0
0 0

)
,M1 = |1〉〈1| =

(
0 0
0 1

)
.

The state |ψ〉 = a|0〉+ b|1〉 then has probability

p(0) = 〈ψ|M†
0M0|ψ〉 = 〈ψ|M0|ψ〉 = |a|2

of yielding |0〉, and probability

p(1) = 〈ψ|M†
1M1|ψ〉 = 〈ψ|M1|ψ〉 = |b|2

of yielding |1〉 after the measurement, with new

states

M0|ψ〉
|a|

=
a

|a|
|0〉,

M1|ψ〉
|b|

=
b

|b|
|1〉

respectively.



Distinguishing Quantum States by
Measurement

For mutually orthogonal states |ψi〉, perform-

ing measurement with Mi = |ψi〉〈ψi| and M0

satisfying

M†
0M0 = 1−

∑
i6=0

|ψi〉〈ψi|,

then for each state |ψi〉 outcome i occurs with

probability p(i) = 〈ψi|Mi|ψi〉 = 1. So the states

can be distinguished from each other.

But when the states are not orthogonal, then

|ψj〉 = a|ψi〉+ b|ψ⊥i 〉 where a 6= 0, measurement

may yield |ψi〉 for both states.
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Projective Measurements

A projective measurement is described by an

observable M, which is a self-adjoint operator

on the state space of the measured system,

and has spectral decomposition

M =
∑
m
λmPm,

where Pm is the projection onto the eigenspace

of M with eigenvalue λm. When |ψ〉 is mea-

sured, outcome m occurs with probability

p(m) = 〈ψ|Pm|ψ〉,

and the new state is

Pm|ψ〉√
p(m)

.

This is the special case of postulate 3 where

the Mm’s are orthogonal projectors. That is,

the Mm’s are self-adjoint, and MmMn = δmnMm.
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When outcome m occurs, we say the measured

value is λm. So the expected value of the pro-

jective measurement M is

〈M〉 =
∑
m
λmp(m)

=
∑
m
λm〈ψ|Pm|ψ〉

= 〈ψ|
(∑
m
λmPm

)
|ψ〉

= 〈ψ|M|ψ〉.

The variance is

(∆M)2 =
〈
(M− 〈M〉)2

〉
=

〈
M2

〉
− 〈M〉2 .



The Fourth Postulate of Quantum
Mechanics

The state space of a composite physical sys-

tem is the tensor product of the state spaces

of the component physical systems. For sys-

tems 1 through n, if system i has state space

Hi, then the state space of their composite

system is

H = H1 ⊗H2⊗ . . .⊗Hn,

which has dimension

dim(H) = dim(H1)× dim(H2)× . . .× dim(Hn);

if system i is in state |ψi〉, then the state of

the composite system is

|ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉.
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The Measurement Process I

Quantum system Q in the state |ψ〉 is to be

measured by operators Mm. We use an ancilla

system A with orthogonal states |m〉 corre-

sponding to the measurement results m. The

initial state of A is |0〉, a fixed state. We per-

form a unitary operation U on the composite

system QA

U|ψ〉|0〉 ≡
∑
m

Mm|ψ〉|m〉.

Then the projective measurement Pm ≡ 1Q ⊗
|m〉〈m| is performed, outcome m occurs with

probability

p(m) = 〈ψ|〈0|U†PmU|ψ〉|0〉
=

∑
m′m′′

〈ψ|M†
m′〈m′|

(
1Q ⊗ |m〉〈m|

)
Mm′′|ψ〉|m′′〉

=
∑
m′m′′

〈ψ|M†
m′Mm′′|ψ〉 × 〈m′|m〉〈m|m′′〉

= 〈ψ|M†
mMm|ψ〉,
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and the new state is

PmU|ψ〉|0〉√
〈ψ|〈0|U†PmU|ψ〉|0〉

=
Mm|ψ〉|m〉√
〈ψ|M†

mMm|ψ〉
.

where system A is in state |m〉 and the state

of system Q is

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
.

So after the unitary evolution of QA the mea-

surement result can be obtained by measur-

ing the ancilla A with projective measurement

Pm ≡ |m〉〈m| and P0 = 1 −
∑
m |m〉〈m|. In this

way all measurements can be accomplished with

projective measurements.



Review

Postulate 1 The state of a physical system

is a unit vector in a Hilbert space (its state

space).

Postulate 2 The evolution of physical systems

is unitary.

Postulate 3 Quantum measurement of |ψ〉 by

operators Mm yields result m with

p(m) = 〈ψ|M†
mMm|ψ〉,

and new state

Mm|ψ〉√
〈ψ|M†

mMm|ψ〉
.

Postulate 4 The state space of a composite

system is the tensor product of its component

systems’ state spaces.
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All information is stored in the state vector.

There is no passive observation.
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