The First Postulate of Quantum Mechanics

Associated with any isolated physical system is a complex vector space with inner product (a **Hilbert space**) known as the **state space** of the system. The physical state of the system is completely described by its **state vector**, which is a unit vector in the system's state space.

The simplest quantum mechanical system is the **qubit**, which has a 2-d state space. With an orthonormal basis $\{|0\rangle, |1\rangle\}$ the most general state vector of a qubit can be expressed as

 $|\psi\rangle = a|0\rangle + b|1\rangle,$

where $a, b \in \mathbb{C}$ and $\langle \psi | \psi \rangle = 1$ (or $|a|^2 + |b|^2 = 1$).

Phase

The two states $e^{i\theta}|\psi\rangle$ and $|\psi\rangle$ are considered the same physical state.

$$\langle \psi | e^{-i\theta} \mathbf{E} e^{i\theta} | \psi \rangle = \langle \psi | \mathbf{E} | \psi \rangle$$

The factor $e^{i\theta}$ is called the **global phase**, which has no physical significance.

The two qubit states $a|0\rangle + be^{i\theta}|1\rangle$ and $a|0\rangle + b|1\rangle$ differ by **relative phase** between $|0\rangle$ and $|1\rangle$, and are not the same physical state. For example, the two states $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ are orthogonal.

Bloch Sphere

The most general state vector of a qubit can be expressed as

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle,$$

where θ is the polar angle and φ is the azimuthal angle of a unit vector \hat{n} in 3-d real vector space.

Correspondence between 3-d real unit vectors and qubit states

\widehat{n}	θ	arphi	$ \psi angle$
\hat{z}	0	0	$ 0\rangle$
$ -\hat{z} $	π	0	1 angle
\hat{x}	$\frac{\pi}{2}$	0	$rac{1}{\sqrt{2}}(\ket{0}+\ket{1})$
$\left -\hat{x} \right $	$\frac{\pi}{2}$	π	$rac{1}{\sqrt{2}}(\ket{0}-\ket{1})$
\widehat{y}	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{1}{\sqrt{2}}(0\rangle + i 1\rangle)$
$-\widehat{y}$	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	$rac{1}{\sqrt{2}}(0 angle-i 1 angle)$

The Second Postulate of Quantum Mechanics

The evolution of a closed quantum system is described by a unitary transformation. The state vector $|\psi\rangle$ of a system at time t_1 is related to its state vector $|\psi'\rangle$ at time t_2 by a unitary operator U which depends on t_1, t_2 ,

$$|\psi'\rangle = \mathbf{U}|\psi\rangle.$$

The Pauli matrices and the Hadamard gate $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ are all 2×2 unitary matrices, and so describe valid qubit transformations.

The evolution of a closed quantum system in continuous time is described by the **Schrödinger** equation,

$$i\frac{d|\psi\rangle}{dt} = \mathbf{H}|\psi\rangle.$$

H is a fixed self-adjoint operator known as the **Hamiltonian** of the system. The state at time t is $|\psi(t)\rangle = \mathbf{U}|\psi(0)\rangle = e^{-i\mathbf{H}t}|\psi(0)\rangle$.

4

The Third Postulate of Quantum Mechanics

Quantum measurements are described by a set $\{M_m\}$ of **measurement operators** acting on the state vector of the measured system. If the state of the system before measurement is $|\psi\rangle$, then outcome *m* occurs with probability

$$p(m) = \langle \psi | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi \rangle,$$

and the new state in this case is

$$rac{\mathbf{M}_m |\psi
angle}{\sqrt{\langle \psi | \mathbf{M}_m^\dagger \mathbf{M}_m |\psi
angle}}.$$

The probabilities of all outcomes sum to one:

$$1 = \sum_{m} p(m) = \sum_{m} \langle \psi | \mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} | \psi \rangle,$$

so that

$$\sum_{m} \mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} = \mathbf{1}.$$

5

Measuring a qubit to be $|0\rangle$ or $|1\rangle$ is thus a measurement with

 $\mathbf{M}_0 = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \mathbf{M}_1 = |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$

The state $|\psi\rangle=a|0\rangle+b|1\rangle$ then has probability

$$p(0) = \langle \psi | \mathbf{M}_0^{\dagger} \mathbf{M}_0 | \psi \rangle = \langle \psi | \mathbf{M}_0 | \psi \rangle = |a|^2$$

of yielding $|0\rangle,$ and probability

$$p(1) = \langle \psi | \mathbf{M}_{1}^{\dagger} \mathbf{M}_{1} | \psi \rangle = \langle \psi | \mathbf{M}_{1} | \psi \rangle = |b|^{2}$$

of yielding $|1\rangle$ after the measurement, with new states

$$\frac{\mathbf{M}_{0}|\psi\rangle}{|a|} = \frac{a}{|a|}|0\rangle, \frac{\mathbf{M}_{1}|\psi\rangle}{|b|} = \frac{b}{|b|}|1\rangle$$

respectively.

Distinguishing Quantum States by Measurement

For mutually orthogonal states $|\psi_i\rangle$, performing measurement with $\mathbf{M}_i = |\psi_i\rangle\langle\psi_i|$ and \mathbf{M}_0 satisfying

$$\mathbf{M}_{0}^{\dagger}\mathbf{M}_{0} = \mathbf{1} - \sum_{i \neq 0} |\psi_{i}\rangle \langle \psi_{i}|,$$

then for each state $|\psi_i\rangle$ outcome *i* occurs with probability $p(i) = \langle \psi_i | \mathbf{M}_i | \psi_i \rangle = 1$. So the states can be distinguished from each other.

But when the states are not orthogonal, then $|\psi_j\rangle = a|\psi_i\rangle + b|\psi_i^{\perp}\rangle$ where $a \neq 0$, measurement may yield $|\psi_i\rangle$ for both states.

Projective Measurements

A projective measurement is described by an observable \mathbf{M} , which is a self-adjoint operator on the state space of the measured system, and has spectral decomposition

$$\mathbf{M} = \sum_{m} \lambda_m \mathbf{P}_m,$$

where \mathbf{P}_m is the projection onto the eigenspace of \mathbf{M} with eigenvalue λ_m . When $|\psi\rangle$ is measured, outcome m occurs with probability

$$p(m) = \langle \psi | \mathbf{P}_m | \psi \rangle,$$

and the new state is

$$\frac{\mathbf{P}_m|\psi\rangle}{\sqrt{p(m)}}.$$

This is the special case of postulate 3 where the \mathbf{M}_m 's are orthogonal projectors. That is, the \mathbf{M}_m 's are self-adjoint, and $\mathbf{M}_m\mathbf{M}_n = \delta_{mn}\mathbf{M}_m$. When outcome m occurs, we say the measured value is λ_m . So the expected value of the projective measurement M is

$$\begin{split} \langle \mathbf{M} \rangle &= \sum_{m} \lambda_{m} p(m) \\ &= \sum_{m} \lambda_{m} \langle \psi | \mathbf{P}_{m} | \psi \rangle \\ &= \langle \psi | \left(\sum_{m} \lambda_{m} \mathbf{P}_{m} \right) | \psi \rangle \\ &= \langle \psi | \mathbf{M} | \psi \rangle. \end{split}$$

The variance is

$$egin{array}{rcl} (\Delta \mathbf{M})^2 &=& \left\langle (\mathbf{M} - \langle \mathbf{M}
angle)^2
ight
angle \ &=& \left\langle \mathbf{M}^2
ight
angle - \langle \mathbf{M}
angle^2 . \end{array}$$

The Fourth Postulate of Quantum Mechanics

The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. For systems 1 through n, if system i has state space \mathcal{H}_i , then the state space of their composite system is

$$\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2\otimes\ldots\otimes\mathcal{H}_n,$$

which has dimension

 $\dim(\mathcal{H}) = \dim(\mathcal{H}_1) \times \dim(\mathcal{H}_2) \times \ldots \times \dim(\mathcal{H}_n);$

if system *i* is in state $|\psi_i\rangle$, then the state of the composite system is

$$|\psi_1\rangle\otimes|\psi_2\rangle\otimes\ldots\otimes|\psi_n\rangle.$$

The Measurement Process I

Quantum system Q in the state $|\psi\rangle$ is to be measured by operators M_m . We use an **ancilla system** A with orthogonal states $|m\rangle$ corresponding to the measurement results m. The initial state of A is $|0\rangle$, a fixed state. We perform a unitary operation U on the composite system QA

$$\mathbf{U}|\psi
angle|\mathsf{0}
angle\equiv\sum_{m}\mathbf{M}_{m}|\psi
angle|m
angle.$$

Then the projective measurement $\mathbf{P}_m \equiv \mathbf{1}_Q \otimes$ $|m\rangle\langle m|$ is performed, outcome m occurs with probability

$$p(m) = \langle \psi | \langle 0 | \mathbf{U}^{\dagger} \mathbf{P}_{m} \mathbf{U} | \psi \rangle | 0 \rangle$$

$$= \sum_{m'm''} \langle \psi | \mathbf{M}_{m'}^{\dagger} \langle m' | (\mathbf{1}_{Q} \otimes | m \rangle \langle m |) \mathbf{M}_{m''} | \psi \rangle | m'' \rangle$$

$$= \sum_{m'm''} \langle \psi | \mathbf{M}_{m'}^{\dagger} \mathbf{M}_{m''} | \psi \rangle \times \langle m' | m \rangle \langle m | m'' \rangle$$

$$= \langle \psi | \mathbf{M}_{m}^{\dagger} \mathbf{M}_{m} | \psi \rangle,$$

where system A is in state $|m\rangle$ and the state of system Q is

$$rac{\mathbf{M}_m |\psi
angle}{\sqrt{\langle \psi | \mathbf{M}_m^\dagger \mathbf{M}_m |\psi
angle}}.$$

So after the unitary evolution of QA the measurement result can be obtained by measuring the ancilla A with projective measurement $\mathbf{P}_m \equiv |m\rangle\langle m|$ and $\mathbf{P}_0 = \mathbf{1} - \sum_m |m\rangle\langle m|$. In this way all measurements can be accomplished with projective measurements.

Review

Postulate 1 The state of a physical system is a unit vector in a Hilbert space (its state space).

Postulate 2 The evolution of physical systems is unitary.

Postulate 3 Quantum measurement of $|\psi\rangle$ by operators \mathbf{M}_m yields result m with

$$p(m) = \langle \psi | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \psi \rangle,$$

and new state

$$\frac{\mathbf{M}_m|\psi\rangle}{\sqrt{\langle\psi|\mathbf{M}_m^{\dagger}\mathbf{M}_m|\psi\rangle}}.$$

Postulate 4 The state space of a composite system is the tensor product of its component systems' state spaces.

All information is stored in the state vector.

There is no passive observation.