Review of Linear Algebra

October 7, 2003

Linear Algebra

- Linear algebra is the study of linear vector spaces and of linear operator on those vector spaces.
- Object: Descrive the standard notations (the Dirac notations) adopted for those comcepts in the study of Quantum mechanics.

review of Linear Algebra

- vector space
- bases and linear indepentence
- linear operator and matrices
- Pauli matrices
- inner product, outer product ,and tensor product
- eigenvalues, eigenvector, and singular value decomposition

Vector space

• axiom

Notation	Description
$ \psi angle$	Vector. 'ket' vector
$\langle \psi $	Vector dual to $ \psi angle$ 'bra' vector
$\langle \phi \psi angle$	inner product of $ \phi angle$ and $ \psi angle$
$ \phi angle\otimes \psi angle$	tensor product of $ \phi angle$ and $ \psi angle$
$ \phi angle \psi angle$	abbreviated notation for tensor product
\mathbf{A}^*	Complex conjugate of the Amatrix
$\mathbf{A}^{\mathbf{T}}$	Transpose of the Amatrix
\mathbf{A}^{\dagger}	Hermitian conjugate or adjoint. $A^{\dagger} = (A^{T})^{*}$
$\langle \phi {f A} \psi angle$	Inner product between $ \phi\rangle$ and $\mathbf{A} \psi\rangle$.
	Equivalently, inner product between $\mathbf{A}^{\dagger} \phi angle$ and $ \psi angle$.
Dirac notation	

Bases and linear independence

• C^2 space

•
$$|v_1\rangle \equiv \begin{bmatrix} 1\\0 \end{bmatrix}$$
; $|v_2\rangle \equiv \begin{bmatrix} 0\\1 \end{bmatrix}$.

- Any vector $|v\rangle \equiv \begin{bmatrix} a \\ b \end{bmatrix}$ can be written as a linear combination $|v\rangle = a|v_1\rangle + b|v_2\rangle$
- $|v_1
 angle$ and $|v_2
 angle$ span the vector space ${f C}^2$

- $|v_1\rangle,\ldots,|v_n\rangle$ are linearly dependent if $a_1|v_1\rangle+a_2|v_2\rangle+\ldots+a_n|v_n\rangle=0$, with at least $a_i\neq 0$
- $|v_1\rangle$ and $|v_2\rangle$ are linearly independent and span the C² space. We call them the basis of C² space.

linear operator and matrices

• A linear operator is defined to be function $A: V \to W$ which is linear in its inputs

$$A(\sum_{i} a_i | v_i \rangle) = \sum_{i} a_i A | v_i \rangle$$

• linear operator $A: V \to W$

 $-|v_1\rangle,\ldots,|v_m\rangle$ is a basis for V

- $|w_1
angle,\ldots,|w_m
angle$ is a basis for W

• For each j in the range $1, \ldots, m$, there exist complex numbers A_{1j} through A_{nj} such that

$$A|v_j\rangle = \sum_i A_{ij}|w_i\rangle$$

• the matrix whose entries are A_{ij} is the matrix representation of operator A.

Pauli matrices

$$X \equiv \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$$

$$Y \equiv \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right]$$

$$Z \equiv \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

Inner products

- inner product (|v
 angle, |w
 angle) is written $\langle v|w
 angle$
- a function (\cdot, \cdot) from $V \times V$ to C is an inner porduct if

– (\cdot, \cdot) is linear in the second argument

$$(|v\rangle, \sum_{i} a_{i} |w_{i}\rangle) = \sum_{i} a_{i} \langle v | w \rangle$$

$$-\langle v|w\rangle = (\langle w|v\rangle)^*$$

-
$$\langle v|v\rangle \geq$$
 0 with equality iff $|v\rangle =$ 0

ullet for ${
m C}^2$

$$\langle v|w\rangle \equiv v_1^*w_1 + v_2^*w_2 = \begin{bmatrix} v_1^* & v_2^* \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

 \bullet norm of a vector $|v\rangle$

$$|||v
angle||\equiv \sqrt{\langle v|v
angle}$$

Gram-Schmidt procedure

- $|w_1\rangle, \ldots, |w_n\rangle$ is a basis set for V
- to produce an orthonormal basis $|v_1\rangle, \ldots, |v_n\rangle$
- $|v_1\rangle \equiv |w_1\rangle/||w_1\rangle||$

$$|v_{k+1}\rangle = \frac{|w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1} \rangle | v_i \rangle}{\||w_{k+1}\rangle - \sum_{i=1}^{k} \langle v_i | w_{k+1} \rangle | v_i \rangle\|}$$

outer product

- $|v\rangle$ is a vector in an inner product space V
- $|w\rangle$ is a vector in an inner product space W
- outer product $|w\rangle\langle v|$:

$$(|w\rangle\langle v|)(|v'\rangle) \equiv |w\rangle(\langle v|v'\rangle) = \langle v|v'\rangle|w\rangle$$

completeness relation

• suppose $|\cdot\rangle$ is an orthonormal basis for V, so an arbitrary vector $|v\rangle=\sum_i v_i|i\rangle$

$$\left(\sum_{i}|i\rangle\langle i|\right)|v\rangle = \sum_{i}|i\rangle\langle i|v\rangle = \sum_{i}v_{i}|i\rangle = |v\rangle, \qquad \sum_{i}|i\rangle\langle i| = \mathbf{I}$$

• $A: V \to W$

$$A = I_W A I_V = \sum_{ij} |w_j\rangle \langle w_j | A | v_i \rangle \langle v_i | = \sum_{ij} \langle w_j | A | v_i \rangle | w_j \rangle \langle v_i |$$

eigenvalue and eigenvector

- $A|v\rangle = v|v\rangle$, v : eigenvalue and $|v\rangle$: eigenvector
- characteristic function : $c(\lambda) \equiv \det |A \lambda I|$
- A diagonal representation for an operator A on space V is a representation $A = \sum_i \lambda_i |i\rangle \langle i|$, ex.

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|$$

Adjoints and hermitian operators

- Suppose A is any linear operator on a Hilbert space V. A^{\dagger} is adjoint or Hermitian conjugate of A if for all vecrot $|v\rangle, |w\rangle \in V$, $(|v\rangle, A|w\rangle) = (A^{\dagger}|v\rangle, |w\rangle)$.
- operator H is Hermitian or self-adjoint operator if $H^{\dagger} = H$.
- operator U is said to be unitary if $U^{\dagger}U = I$
- operator M is said to be normal if $MM^{\dagger} = M^{\dagger}M$
- any operator can be diagonalized iff it is normal

tensor product

- a tensor product is a larger vector space formed from two smaller ones simply bycombining elements from each in all possible ways theat preserve both linearity and scalar multiplication
 - If V is a vector space of dimension n $|v\rangle$
 - and W is a vector space of dimension m $|w\rangle$
 - then $V \otimes W$ is a vector space of dimension mn $|v\rangle \otimes |w\rangle$
- e.g. $|0\rangle \otimes |0\rangle = |00\rangle$ $|1\rangle \otimes |0\rangle = |10\rangle$ are elements of $V \otimes V$ and so is $|00\rangle + |10\rangle$

tensor product(2)

• define the linear operator $A\otimes B$ on $V\otimes W$ by the equation

 $(A \otimes B)(|v\rangle \otimes |w\rangle) \equiv A|v\rangle \otimes B|w\rangle$

 \bullet the tensor product of the Pauli matrices X and Y is

$$X \otimes Y = \begin{bmatrix} 0 \cdot Y & 1 \cdot Y \\ 1 \cdot Y & 0 \cdot Y \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix}$$

The commutator and anti-commutator

• the commutator between two operators A and B is

$$[A,B] \equiv AB - BA$$

• the anti-commutator is

$$\{A,B\} \equiv AB + BA$$

theorem: (Simultaneous diagonalization theorem) Suppose A and B are Hermitian operators. The [A, B] = 0 if and only if there exists an orthonormal basis such that both A and B are diagonal with respect to that basis. We say thet A and B are simultaneously diagonalizable.

The polar and singular value decomposition

• (Polar decomposition) For any linear operator acting on a vector space we can write

$$A = U\sqrt{A^T A}$$
 (left polar decomposition)

where U is a unitary matrix – it is unique if A has an inverse.

• Alternatively

$$A = \sqrt{AA^T}U$$
 (right polar decomposition)

• (Singular-value decomposition) For all square matrices can weite

$$A = U'J = U'(TDT^{\dagger}) = (U'T)DT^{\dagger} = UDV$$

where U and V are unitary matrices and D is diagonal matrix with non-negative entries