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Quantum bits – Single qubit
What is a Qubit ?

• a qubit is a vector in 2D complex vector space

• a classicl bit has a state - either 0 or 1

• a qubit can in a state other |0〉 or |1〉
it can in a linear combination of state : superposition

|ψ〉 = α|0〉 + β|1〉

• |0〉 and |1〉 are two orthenormal basis of the 2D vector space

(|0〉, |1〉) = 〈0|1〉 = 0



• matrix representation:

|0〉 =

[

1
0

]

|1〉 =

[

0
1

]

|ψ〉 = α|0〉 + β|1〉 =

[

α

0

]

+

[

0
β

]

=

[

α

β

]



Measurement

• A measurement on the qubit

|ψ〉 = α|0〉 + β|1〉
would give EITHER

|0〉 with the probability |α|2 ,or

|1〉 with the probability |β|2 .

• normalization : |α|2 + |β|2 = 1

• the state becomes what you measured after measurement



multiple qubit
How about 2 Qubits ?

• classically, 4 possible states 00, 01, 10, and 11

• QM: a superposition of 4 states |00〉, |01〉, |10〉, and |11〉

• assuming the state vector describing 2 qubits is

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉

• normalization:
∑

x∈{0,1}2 |αx|2 = 1



• measuring the 1st qubit give 0 with the probability

|α00|2 + |α01|2

• the post-measurement state

|ψ′〉 =
α00|00〉 + α01|01〉
√

|α00|2 + |α01|2



Bell state or EPR pair
An important two qubit state

|00〉 + |11〉√
2

• measuring 1st qubit gives 2 possible results

– 0 with the probability 1/2, and the post-measurement

state |00〉

– 1 with the probability 1/2, and the post-measurement

state |11〉

• measuring 2nd qubit ALWAYS gives the same result with the

1st measuement



N qubits
A superposition of the 2n states

|ψ〉 =
∑

xn=0,or1

α···|x1x2 · · ·xn〉



Quantum computation
Single qubit gates

• classical NOT gate:

0 → 1 , and 1 → 0

• quantum NOT gate:

|0〉 → |1〉 , |1〉 → |0〉

• how about superposition state ?

α|0〉 + β|1〉 → β|0〉 + α|1〉



Matrix representation

• the matrix representation of quantum NOT gate is:

X ≡
[

0 1
1 0

]

•

X|0〉 =

[

0 1
1 0

] [

1
0

]

=

[

0
1

]

= |1〉

•

X(α|0〉 + β|1〉) =

[

0 1
1 0

] [

α

β

]

=

[

β

α

]

= β|0〉 + α|1〉



What kinds of matrix can be a quantum gate ?

• We requires the normalization condition

|α|2 + |β|2 = 1 , for |ψ〉 = α|0〉 + β|1〉

• This will be hold after acting of the quantum.

|ψ′〉 = α′|0〉 + β′|1〉

• It turns out the matrix repersenting the gate is the unitary

matrix U

U†U = I



Another single qubit gates

• Z gate

Z ≡
[

1 0
0 −1

]

• Hadamard gate

H ≡ 1√
2

[

1 1
1 −1

]



•

H(|0〉) =
|0〉 + |1〉√

2

H(|1〉) =
|0〉 − |1〉√

2

•

H(H|ψ〉) = (HH)|ψ〉 = I|ψ〉 = |ψ〉



multiple gubit gates
the controlled-NOT(CNOT) gate

• if the control qubit is set to 0, then the target qubit left

alone.

• if the control qubit is set to 1, then the target qubit is flipped.

• |00〉 → |00〉 ; |01〉 → |01〉 ; |10〉 → |11〉 ; |11〉 → |10〉 .

• |A,B〉 → |A,B ⊕A〉, where ⊕ is addition modulo two



Controlled-NOT gate

matrix representation

UCN =











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0











U
†
CNUCN = I



Measurement gate

• a measurement gate performs the measurement

• measurement of a sigle qubit in the state α|0〉 + β|1〉 yields

the result 0 or 1

• the state after measurement becomes |0〉 or |1〉

• the respective probabilities is |α|2 and |β|2



Quantum circuits

• swap circuit

|a, b〉 → |a, a⊕ b〉
→ |a⊕ (a⊕ b), a⊕ b〉 = |b, a⊕ b〉
→ |b, (a⊕ b) ⊕ b〉 = |b, a〉



Quantum circuits

• no clone theory

– if gate U could clone any quantum state |α〉

U(|α〉|0〉) = |α〉|α〉

– U did not depend on |α〉 alone

U(|β〉|0〉) = |β〉|β〉

– what will happen if we want to clone |γ〉 = |α〉 + |β〉 ?

U(|γ〉|0〉) = U(|α〉 + |β〉)|0〉 = |α〉|α〉 + |β〉|β〉 6= |γ〉|γ〉



Quantum circuits

• example: circuit to creat Bell state

• target state

|β00〉 =
|00〉 + |11〉√

2

|β01〉 =
|01〉 + |10〉√

2

|β10〉 =
|00〉 − |11〉√

2

|β11〉 =
|01〉 − |10〉√

2


