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This article is an appendix of the bi-perceptron paper. It shows how to 

operate the bi-perceptron technique with half strips to accomplish the 

classification tasks.  

. 

Uni-perceptron (augmented bi-perceptron, see paper C.42)  

Case 1: for discretized binary patterns. 

 

Data set MNIST; {pn , n=1 ~ 60000=N} ;  

Number of dimensions (attributes)=D=28*28 pixels=784 pixels (B/W).   

https://scidm.nchc.org.tw/dataset/mnist (handwritten digits; 0,1,..,9) 

There are total 10 classes in the data set,{C0, C1, C2, .., Cj, … , CJ=9} 

 

We plan to construct multiple perceptrons to discriminate one digit ‘0’ from 

all other digits, ‘1’,..,’9’. The whole procedure is in the following context. 

We iteratively operate the following 5 Steps for the class of digit ‘0’ 

 

 

Step 1. 

Construct two sets, {pn
1} and { pn

 2}, for each. pattern, pn ∈ Cj . Here we set 

Cj =C0 .  

Set {pn
1} contains 784 patterns. These 784 patterns are in the classes that 

are different from Cj and they are the nearest neighboring patterns to pn. 

Set {pn
1}={pm ; pm ∈ {min |pn -pm

 |, m=1~784} and pm ∉ Cj}. 

Construct an ancillary hyperplane (784 dimensions), Wa, that passes 

these784 patterns in {pn
1}. Let pn on the positive side of this ancillary 

hyperplane. Construct a normal vector that passes the pattern pn and is 

perpendicular to this ancillary hyperplane Wa. Let pn be the end point of 

this normal vector. 

 

Step 2. 

Construct a set, {pn
 2}, that contains all patterns that belong to the same 

class Cj and are on the same positive side of this ancillary hyperplane as pn. 

Suppose the number of patterns in the set {pn
 2} is |{pn

 2}|. So, there are 

total number, |Cj|, of such sets as {pn
1} for the class Cj and total number, 

http://ieeexplore.ieee.org/document/7881511/
https://scidm.nchc.org.tw/dataset/mnist


|Cj|, of sets {pn
 2}. 

 

Step 3. 

For the class Cj, pick the set that has the largest amount of patterns,  

|{pn
 2}1 |= max{|{pn

 2}|; pn ∈ Cj}. We will construct the first 

perceptron for the class Cj by using the patterns in { pn
 2}1 . 

 

Step 4. 

Find the pattern, pu, in { pn
 2}1 that is the nearest pattern to its ancillary 

hyperplane, pu ∈ {pn
 2}1. Construct a discrimination hyperplane, W, that 

passes the middle point of the normal vector and parallels the ancillary 

hyperplane. Note that the end point of the normal vector is the pattern pu. 

The hyperplane, W1, is right on the middle point of the normal vector. The 

weights of a neuron can be obtained from the hyperplane W. 

 

Step 5, Delete all patterns {pn
 2}1 from the class Cj and construct a 

reduced set Cj
1 for the class Cj. Then, use the reduced set Cj

1 in the five 

steps from Step 1 to Step 5 to construct the next discrimination 

perceptron W2 from {pn
 2}2.  

 

Iteratively operate the five steps to further reduce the set Cj, {Cj
1, Cj

2, 

Cj
3,…, Cj

T}, and obtain discrimination perceptrons, W1, W2, W3,.., WT,  

where T denotes the last iteration. 

Note that {pn
 2}a ∩ {pn

 2}b =Ø for a ≠ b, and |{pn
 2}1 |≥ |{pn

 2}2 |≥|{pn
 2}3|  

≥…. |{pn
 2}T|. The union of all reduced sets contain all patterns in the class 

Cj, {{pn
 2}1∪{pn

 2}2∪{pn
 2}3∪…∪{pn

 2}T}=Cj. This procedure is similar  

to that for the bi-perceptron in paper C.42.  

 

Case 2: for analog patterns. 

 

When the pattern is not in discretized form, one can use the same 

technique as that of bi-perceptron with half strips.  

 

The procedure starts from the construction of an ancillary hyperplane, Wa,  

for the outmost pattern, poutmost, which is the most distant pattern from the 

average center of all patterns. Let poutmost ∈ Cj . Let Wa be perpendicular to  

the line between the pattern, poutmost, and the center. Note Wa passes the 

pattern poutmost. Then parallelly shift this hyperplane, Wa, to its limit to the 



patterns in the set {poutmost
 1}1, that are in the different classes from the 

outmost pattern class, Cj, and are the nearest patterns to Wa. All patterns on 

the same side of this ancillary hyperplane as the outmost patter will be 

included in a set, {poutmost
 2}1 = {p; p ∈ on the same side of Wa as poutmost}. 

Note that all patterns in the set {poutmost
 2}1 belong to the class Cj. Then find 

a pattern from this set, pu ∈ {poutmost
 2}1, that is the nearest pattern to the 

ancillary perceptron Wa. Construct a hyperplane, W, for the set {poutmost
 2}1 

that is right on the middle point between this nearest pattern, pu, and Wa.  

Note that W is parallel to Wa. 

  

We then delete all patterns in {poutmost
 2}1 from Cj and obtain a reduced set  

Cj
1, Cj=Cj

1 ∪ {poutmost
 2}1. Apply the same procedure for the reduced set 

Cj
1, one can construct the next perceptron for the outmost pattern in the 

reduced set Cj
1.  

 

We iteratively operate this procedure to further reduce the set Cj, Cj
1 , Cj

2  

, Cj
2 , Cj

3 …., Cj
T. This procedure stops with an empty set Cj

T+1 =Ø.  

All constructed perceptrons will be used in the first hidden layer in the 

network.  

The outputs of the first hidden layer are all discretized binary digits with 

faithful representations (homogeneous representations in Chapter 4). One 

can apply the same technique as that for the discretized binary patterns  

for the binary outputs of the first hidden layer to construct the succeeding 

layer. The positive direction of the normal vector of each discriminative 

perceptron, W, in the first hidden layer is flexible.  


