
526 UU1180 Lecture Notes Chapter 3

Supplementary Material

Setting the Weights in Multilayer Perceptron

Lectruer Cheng-Yuan Liou

Department of Computer Science and Information Engineering,

National Taiwan University, Republic of China

Abstract

Instead of training the weights, this note shows that the weights in

Chapter 3 can be preset and used in the multilayer perceptron. It has a

perfect performance for any training datasets. Its performance is compa-

rable to that of SVM for the testing datasets. I illustrate an example in

this material.

1 Designing the weights

Let the set of all patterns be X = {xp, p = 1, . . . , P}. Each pattern xp is a

D-dimensional column vector. The label function, C : RD → N , maps each

pattern, xp, to its class identity number, cp. Suppose there are 3 hidden layers

1



in the network, {m = 1, 2, . . . , L}, refer Figure 1(c). Let nm be the total number

of neurons in the mth layer.

The method in Chapter 3 provids a design for the initial weights for the

MLP. It is a civide-and-conquer design. I will show that a general-position two-

class classification problem can be solved perfectly with three hidden layers.

This design is very different from all BP algorithms that solve the complexity,

Σ
nm−1
k=0

¡
nm
k

¢
[6], in the succeeding MLP layers. It is also a divide-and-conquer

design. Figure 1(a) illustrates the network for a two-class problem, c1 = 1 and

c2 = 2, in a two dimensional space, D = n0 = 2.

In this D space, a center line of a strip, xpxq, is allocated for two near

patterns, xp and xq, that are in a same class c1, x
p ∈ c1 and x

q ∈ c1. We

assume that c1 contains fewer number of patterns than that of c2. Then, this

center line is split into two parallel lines, line a and line b. They are in the two

opposite sides of the center line and parallel to the center line, akxpxqkb.

For a, pick a pattern xr, xr ∈ c2, where x
r is closest to xpxq. xr and a

are in the same side of xpxq. (Note that this xr may not exist. The line xpxq

is suffice for the strip.border.) Plot a parallel line ar, arkxpxq, that passes the

pattern xr. Pick a pattern xs, xs ∈ c1, that is in between the two lines, a
r

and xpxq, and is the closest pattern to the line ar. Plot a parallel line, as,

askxpxq, that passes the pattern xs. (Note that this xs may not exist. We will

use the xpxq as the as line.) Plot a decision border line, ars, right in between

the two parallel lines, ar and as. ars has wide margin between the pair (xr, xs).

The two patterns, xrand xs, serve as the margin-limiting stops of the region in

2



between the two lines, ar and as.

The decision border line b
uv
for b can be accomplished in a similar way on

the other side of xpxq. These two decision lines are used as the two neurons in

the first hidden layer. All patterns in between the two lines ars and b
uv
belong

to the same class c1. These patterns will be substracted from the pattern set c1

and will not be used for the determination of all other strips. This is a divide-

and-conquer scheme.

Note that the width between the two decision lines, ars and b
uv
, is useful in

the dertermination of the significance of the two neurons. Those neurons with

large width are preferable and will be preserved with high priority in certain

training operations. Small width neurons will be eliminated occasionally.

The patterns in between the two lines, ars and b
uv
, are well isolated from

the patterns in the other class c2. The stops x
r and xs are different from the

support vectors in SVM . The space in between the two parallel lines, ars and

b
uv
, is a sector of the D space. An example of the typical decision regions is

illustrated in the Figure 1(b). The decision regions contain four bar-like strips.

There exists physiological evidences on receptive fields, D = 2, for the bar-like

strips, [2, 3]. Note that there are many techniques to pick the center patterns

xp and xq to build a strip. One way to do this is to select all patterns, {xp,

xq, xr, xs, xu and xv}, in a predefined neighborhood region. The size of the

neighborhood region can be tuned during the training process. One may include

a penality cost to set the borders ars and b
uv
in a way similar to that for SVM.

As for the general-position two-class classification problem, a single ‘AND’

3



function is used for a neuron in the second hidden layer, n2, to represent the

patterns in one individual strip, see Figure 1(c). A global ‘OR’ function is used

for the output neuron, n3, to represent all patterns in class c1 that are in all

strips. To our knowlede, this is the simplest MLP architecture in many aspects.

Alternatively, one can fix the two hidden layers, n2 and n3, with ‘OR’ and

‘AND’ functions and use the BP to train the n1 layer only. In the n1 layer we

set D + 1 neurons connected to each n2 neuron, or each ‘AND’ neuron. There

are n1 = n2(D + 1) neurons in the n1 layer. These D + 1 neurons can enclose

an isolated polyhedron region (cell) and represent all patterns in that cell. All

patterns in a single cell must belong to the same class after the training process.

In Figure 1(c) there are n1 = 2n2 in the first hidden layer and each strip is

enclosed by two parallel hyperplanes.

This article shows a divide-and-conquer design. Both the number of neu-

rons and the number of layers in the tiling algorithm [5] are highly sensitive to

the setting of the origin, the absolute coordinates, of the patterns. The rela-

tive distances between patterns are used in Chapter 3 and this material. This

relative distance gives the classification quality. The network in Fig. 1(c) will

give a perfect performance for any training datasets. To our knowledge, the

performance of this network is comparable to that of SVM [1] for any testing

datasets. Note that this network can be extended to an isolated polyhedral

region that is encompassed by (D + 1) neorons. It is easy to extend the design

to the multiple-class problem. It is easy to obtain all positive weights as those

obtained by the NMF method.

4



Figure 1: The concept of the weight design method in [4].

5



References

[1] Boser, B.E., Guyon, I.M., and Vapnik, V.N.: A training algorithm for op-

timal margin classifiers. In: Proceedings of the Fifth Annual Workshop on

Computational Learning Theory (1992) 144—152

[2] Daugman, J.: Two-dimensional spectral analysis of cortical receptive field

profiles. Vision Research 20 (1980) 847—856

[3] Dobbins, A., Zucker, S.W., and Cynader, M.S.: Endstopped neurons in the

visual cortex as a substrate for calculating curvature. Nature 329 (1987)

438—441

[4] Liou, C.-Y. and Yu, W.-J.: Initializing the weights in multilayer network

with quadratic sigmoid function. In: Proceedings of the International Con-

ference on Neural Information Processing (1994) 1387—1392

[5] Mézard, M. and Nadal, J.P.: Learning in feedforward layered networks: the

tiling algorithm. Journal of Physics A22 (1989) 2191—2203

[6] Mirchandini, G. and Cao, W.: On hidden nodes in neural nets. IEEE Trans-

action Circuits and Systems 36 (1989) 661—664

6


