
526 U1180 neural network 63

Chapter 5

Separation of Internal

Representations of the Hidden

Layer
Abstract - We devise a method to separate the internal representations of the hidden
layer where the Hamming distance between every two representations is required to
be as large as possible. Each representation is isolated as far as possible from all
others in the layer space. When the representations of certain patterns can be isolated
within a Hamming radius, we can discriminate these patterns from all other patterns
using a single neuron in the next upper layer. This space is a hypercube which is
different from the grid plane used in a self-organizing map. Such representations will
exhaust this hypercube uniformly and have tolerance for noisy patterns. This method
directly resolves the ambiguous internal representation problem, which causes
back-propagation learning\ to be inefficient. The layered network is developed as an
adjustable kernel to separate multiple classes as much as possible. By employing this
method along with the back-propagation learning algorithm, multilayer networks can
be trained for various tasks.

1 Introduction

The multilayer networks (Rumelhart DE, and McClelland JL, 1986) have simple
hierarchical architectures and are capable of pattern classification and recognition.
Such networks consist of a set of sensory units that constitute the input layer, one or
more hidden layers of computation units, and an output layer of computation units.
The input signal propagates through the network in a forward direction from lower
layers to upper layers. These networks are usually trained by the back propagation
(BP) algorithm (Rumelhart DE, Hinton GE, and Williams RJ, 1986) (Werbos PJ,
1974). This algorithm is a supervised algorithm where we provide the desired output

64 526 U1180 neural networks

for each input pattern during training. This algorithm measures the difference between
the desired output and the actual output and adjusts the weights to reduce this
difference. The ambiguous internal representation problem or the unfaithful
representation problem (Liou C-Y, and Yu W-J, 1995) (Mézard M, and Nadal J-P,
1989) is severe for this algorithm. Patterns will be misclassified when patterns of
different classes are mapped to a same internal representation in any hidden layer.
This representation is called the ambiguous internal representation (AIR). When an
AIR exists in a lower hidden layer, it is impossible to classify these patterns no matter
how many neurons or layers we add on to its upper layers. The AIR may cause
premature saturation (Lee Y, Oh S, and Kim M, 1991). One phenomenon is that the
output error remains a significantly high constant for an unpredictable period during
training. One may follow the instruction in (Liou C-Y, and Yu W-J, 1995) and modify
the algorithm in (Diamantaras K I, and Strintzis M G, 1998) to construct a multilayer
network forwardly without the occurrence of AIR as done in (Chen J-L, 2000). The
tiling construction for the multilayer network in (Mézard M, and Nadal J-P, 1989)
does not have the AIR problem.
 Following the instruction in (Liou C-Y, and Yu W-J, 1995), we will resolve this
AIR problem by constructing a network forwardly with enlarged basins as possible.
One way to do this is to separate these representations as much as possible on each
hidden layer from lower layers to upper layers such that each class has its own
representation in each layer. The output of each hidden layer is in a hypercube space,
and each output is a corner of this hypercube. The representations are the outputs of
their corresponding patterns and are distributed at certain hypercube corners. These
representations must be separated such that different classes have different
representations. We may use all the corners freely to achieve this separation. We
impose a requirement to isolate each representation. We require the basin of each
representation to be as large as possible. This means that the distance between a
representation and its closest neighbor representation is as large as possible. All
representations are allowed to evolve in the hypercube and compete for basins under
this requirement. We will develop this evolution in the next section. Note that when
the internal representations are given, we can use the algorithms in (Liou C-Y, and
Yuan S-K, 1999) to enlarge their basins for each neuron layer.
 Another way to fully use the all the corners is to require that the topographic
structure of these representations in the hypercube resemble that of the patterns in the
input space. This is somewhat similar to the method in (Pedrycz W, and Waletzky J,
1997). That method transforms the patterns into new representations on a grid plane
according to the nonlinear mapping of a trained multilayer network. These new
representations have the property that similar patterns have near representations in the

526 U1180 neural network 65

plane. It is expected that the topography (Kohonen T, 1990) of patterns can be
perfectly preserved on the plane. That method combines both unsupervised learning
and supervised learning to force the patterns to be mapped on a plane according to
their geometric topography. Its goal is to accomplish a perfect topographic mapping
on a grid plane such that one can manipulate many recognition and classification tasks
on this plane (or display). To preserve topology, we may modify the method in
(Pedrycz W, and Waletzky J, 1997) for each layer’s hypercube instead of the grid
plane. This is not our goal. We will develop internal representations in each hidden
layer’s hypercube which will facilitate operation of the network.
 Our goal is to resolve the AIR problem by developing a self-organization
evolution to separate the internal representations as much as possible. This is also the
goal of the transformation kernels used in the support vector machine (Boser B,
Guyon I, and Vapnik VN, 1992) (Cortes C, and Vapnik VN, 1995), which employs
inner-product kernels to transform difficult patterns into high-dimensional
representations and then attempts to construct an optimal hyperplane to separate these
representations in the high-dimensional space. This high-dimensional space is not a
hypercube, and these representations are not allowed to evolve in this hypercube
freely. This is because this machine uses fixed and limited mapping kernels. We use
the layered network as an adjustable and flexible kernel which can be trained by
patterns. We formulate a simple case in the next section to demonstrate the method.
An extended case is also included in the next section. We then present applications in
the third section. Discussion is included in the last section.

2 Separable Internal Representation Method

2.1 Single-layer perceptrons

 We will now formulate the separable internal representation (SIR) method used
to solve the AIR problem and derive its algorithm for the single-layer perceptron.
Assume that the values of input units can only be -1 or 1. Consider the distance (or
repellence) energy (Ripley B D, 1996) (Mao Jianchang, and Jain Anil K, 1995) (Webb
AR, and Lowe D, 1990) (Ruck DW, Rogers SK, Kabrisky M, Oxley ME, and Suter
BW, 1990),

∑∑−=
P

p

P

p

pprep yydE
1 2

1 2)2()()),((
2
1

66 526 U1180 neural networks

∑∑=
P

p

P

p
ppE

1 2

21

∑∑∑
=

−−=
P

p

P

p

M

m

p
m

p
m

rep yyE
1 2

1

1

2)2()()(
2
1 (1)

where)()2()(1 pp yy is an M-dimensional output representation corresponding to the
p1th (p2th) pattern. M is the number of neurons. This repellence energy will force the
representations to evolve in an M-dimensional hypercube space. Instead of the
Hamming distance, the Euclidean distance is used as the distance function d to ease
the derivation. Consider P input patterns {x(1), x(2), …, x(p)}, where the rth pattern x(r)

= [] tr
N

rr xxx)()(
2

)(
1 ... is an N-tuple bipolar binary vector. In this case, each pattern has

its own class. Therefore, there are P classes. The vector y(r) is the output vector of the
hidden neurons corresponding to the input pattern x(r). The goal is to maximize the
distance between every pair of output representations such that each representation is
isolated from all others as far as possible. The balance of all distances is indicated by
the extreme value of the energy. For example, to uniformly distribute three
representations in a 3-cube as shown in Figure 1, { [-1 –1 –1]t, [1 1 –1]t, [-1 1 1]t } is
one of the ideal solutions and { [1 1 1]t, [1 -1 –1]t, [-1 1 -1]t } is another. In this case,
the balanced Hamming distance for all three representations is the same, which is 2 as
shown in Figure 2.

1,-1,-1-1,-1,-1

-1,1,-1 1,1,-1

1,-1,1
1,1,1-1,1,1

-1,-1,1

Figure 1: The 3-cube.

526 U1180 neural network 67

-1,-1,-1

-1,-1,1

1,-1,-1

-1,1,-1
1,-1,1

-1,1,1

1,1,-1

-1,1,1

1,-1,1

1,1,-1

1,1,1
1,1,1

Figure 2: The Hamming distance is 2 between any two corners {(-1 –1 –1), (-1 1 1),
(1 1 –1)}.

 To achieve this goal, we reduce the energy E by means of the gradient descent
rule. The algorithm for adjusting the weights to decrease this energy is described
below.

By differentiation, the gradient descent of each individual energy Ep1p2 is

()

()

() ()() ()(){ } ,11
2
1

)(
)(
)()(

)(
)(

)2(2)2()1(2)1()2()1(

1

)2(

)2(

)2()1(

)1(

)1(
)2()1(

1

)2()1(
)2()1(21

p
j

p
i

p
j

p
i

p
i

p
i

M

m ij

p
m

p
m

p
m

ij

p
m

p
m

p
mp

m
p

m

M

m ij

p
m

ij

p
mp

m
p

m
ij

pp

xyxyyy

w
net

net
netf

w
net

net
netf

yy

w
y

w
y

yy
w

E

−−−−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

−
∂

∂
∂
∂

−−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−
∂
∂

−−=
∂

∂

∑

∑

=

=

where

∑
=

==
N

j
jijiii xwnetnetfy

1
,),(and

.
)exp(1
)exp(1

)5.0tanh()(
i

i
ii net

net
netnetf

−+
−−

==

Note that

68 526 U1180 neural networks

 .;0
)()()2()1(

imfor
w

net
w

net

ij

p
m

ij

p
m ≠=

∂
∂

=
∂

∂

The updating equations for the weights are

,
ij

ijij w
Eww

∂
∂

−← η (2)

where η is a positive learning constant. The threshold values wi(N+1) are updated in
exactly the same way as are the weights. Their updating equations are

,))())(((
2

2)2(2)1()2()1(
)1()1(

p
i

p
i

p
i

p
iNiNi yyyyww −−+← ++

η

and the fixed input is of value x{N+1}= -1.
 The initial weights are set as wij = 0 for all i≠j and wij = 1 for i = j. These are
orthogonal weights. All the patterns will map to themselves using these weights. We
then feed patterns one by one into the network and save their corresponding output
vectors in an array. We calculate the Euclidean distance between every pair of output
vectors. We use a square matrix D to store these distances. The value of its entry Drs is
the distance between the output vector y(r) and the output vector y(s) (in response to the
rth pattern and the sth pattern). Thus, the distance matrix D is symmetric and has
zeros in all its diagonal entries. Among all the pairs of output vectors, we find one pair
that has the minimum distance. Then we use this pair of output vectors (indexed as p1
and p2) together with their corresponding patterns in Equation 2 to increase their
distance.
 For the next iteration, we feed all the patterns into the network again. We update
the distance matrix D and increase the minimum distance. We repeat this procedure
until the minimum distance cannot be increased or it is greater than a predetermined
value.
 We can extend this algorithm to the case of noisy patterns. Assume the patterns
belong to classes X1, X2, … XK, where class Xk contains Pk patterns { x(1), x(2) , …,
x(Pk) }. The goal is to maximize the distance between every pair of output vectors that
belong to different classes and minimize the distance between every pair of output
vectors that belong to the same class. To achieve this goal, we need an algorithm that
can provide the attraction force for the same class patterns. This can be done by
reversing the sign of the energy function, Equation 1. We include the algorithm below.
 The energy function and the attraction force (Ripley B D, 1996) (Mao Jianchang,
and Jain Anil K, 1995) {cite} (Webb AR, and Lowe D, 1990) (Ruck DW, Rogers SK,
Kabrisky M, Oxley ME, and Suter BW, 1990), are

 ∑ ∑∑∑ ==
k

k

k

k

k

k
k

i
k

k

k

k
i
k

P

p

P

p

P

p
pp

P

p

ppatt EyydE
1 1 2

2
2

2 2)()()),((
2
1 (3)

526 U1180 neural network 69

and

},))(1())(1){(()(2)()(2)()()(22112121
kkkkkkkk p

j
p

i
p

j
p

i
p

i
p

i
ij

pp xyxyyy
w

E
−−−−=

∂

∂
 (4)

where

 ∑
=

−==
M

i

p
i

p
i

pp
pp

k
i
kkk

kk
yyyydE

1

2)()(2)()(.)(
2
1)),((

2
1 221

21

To minimize Eatt, we update the weights using the method of steepest descent as
follows:

,
21

ij

pp
ijij w

E
ww kk

∂

∂
−← η (5)

for k = 1,...,Pk. The thresholds are adjusted in a similar way as that for Erep.
 The procedure for operating this algorithm is similar as the former one. We
randomly pick a pair of patterns from class X(||). We use these two patterns as input

vectors (denoted as)(1
kpx and)(2

kpx) and feed them into the network to obtain

output responses (denoted as)(1
kpy and)(2

kpy). We calculate the distances between

every pair of output vectors, which are produced by patterns in the same class. We
find the pair which has the maximum distance use this pair of output vectors and their
corresponding input patterns in Equation 5 to decrease the distance.
 We employ a mixed strategy to operate the repellence force in Equation 2 and the
attraction force in Equation 5 in a sequential mode. We randomly select two patterns
from all classes. When these two patterns come from a same class, we use Equation 5
to pull them close together; when they come from different classes we use Equation 2
to push them far apart from each other. The network is trained until the following two
conditions are satisfied: (1) The maximum distance among all the pairs of output
vectors belonging to the same class is below a predetermined threshold. (2) The
minimum distance among all the pairs of output vectors belonging to different classes
exceeds a predetermined threshold. Otherwise, the training will continue until no
more improvement in either the maximum or minimum distance can be achieved.

2.2 Multilayer perceptrons

 There are two ways to apply the above idea to a multilayer perceptron. Let us
start with the one used to solve the AIR problem. The training process starts from the

70 526 U1180 neural networks

bottom layer of the network. At the beginning, we focus on the input layer and the
first hidden layer. They are viewed as a single-layer perceptron, and we use the SIR
method for the single-layer perceptron to adjust the weights between these two layers.
When the training is finished, we collect all the output responses of the first hidden
layer as the first group of internal representations for the patterns. Then we shift to the
second hidden layer. We train the weights between the first hidden layer and the
second hidden layer using the collected first internal representations as inputs and
using the SIR method for the single-layer perceptron. We then collect the second
group of internal representations of the second hidden layer as inputs to train the
weights between the second hidden layer and the 3rd layer. We proceed from the
bottom hidden layer to the top layer until the output layer is completed. In this
procedure the updating equations Equation 2 and Equation 5 are used repeatedly layer
after layer with refined internal representations. We use forward training for the
network and refine the representations layer after layer. After the training is finished,
the representations of different classes are separated as much as possible, and
representations of a class are clustered (or merged) together as closely as possible.
This is different from the BP approach. This forward training is free from the
premature saturation problem and the AIR problem. We may add other kinds of forces
to obtain certain desired outputs gradually.

x y z o

1 k j i

u v w
Figure 3: A Multilayer network.

 The other approach to applying the single-layer method to the multilayer
perceptron shown in Figure 3 is to extend this algorithm backwards to a deep bottom
layer as the BP algorithm does. The reason for doing so is that we can take advantage
of the nonlinear mapping ability of a multilayer perceptron to obtain ideal
representations in the output layer. We expect that a multilayer perceptron will have
the potential to uniformly distribute the representations on hypercube corners and to
map the fewest corners for each class of noisy patterns. The derivation is similar to
that for the BP algorithm. As before, we require that the distances between the output
representations of different classes must be maximized. The weights between the
output layer and the top hidden layer are adjusted based on the same updating rule
used in Equation 2. All the lower hidden layers are trained backwards without any free

526 U1180 neural network 71

evolution. The local gradient of the upper layer is propagated to the next lower layer,
and their weights are adjusted accordingly. The energy function is

 ∑∑
= =

−=
P

p

P

p

pprep oodE
1 1

2)2()(

1 2

1)),((
2
1

∑∑
= =

=
P

p

P

p
ppE

1 11 2

21

∑∑∑
= = =

−−=
P

p

P

p

I

i

p
i

p
i

rep ooE
1 1 1

2)2()(

1 2

1)(
2
1 (6)

The local gradient δoi for the output neuron oi is defined as

 ,
i

i

i
o net

o
o
E

i ∂
∂

∂
∂

=δ

where oi is obtained much as in Equation (2). We calculate the local gradients for
different input patterns p1 and p2. They are

)).)(1(
2
1)((

)))(1(
2
1)((

2)2()2()1()2(

2)1()2()1()1(

p
i

p
i

p
i

p
oi

p
i

p
i

p
i

p
oi

ooo

andooo

−−=

−−=

δ

δ

Accordingly, the local gradients for hidden neurons are obtained as

.)(1(
2
1

,)(1(
2
1

;)(1(
2
1

,)(1(
2
1

)2(2)2()2(

)1(2)1()1(

)2(2)2()2(

)1(2)1()1(

∑

∑

∑

∑

−=

−=

−=

−=

r
rk

p
zr

p
k

p
yk

r
rk

p
zr

p
k

p
yk

r
rj

p
or

p
j

p
zj

r
rj

p
or

p
j

p
zj

vy

vy

wz

wz

δδ

δδ

δδ

δδ

The equations listed above show that the local gradients are the weighted sums of the
local gradients of their connected upper layer. Then the weights can be updated by the
local gradient:

.

,

,

)2()2()1()1(

)2()2()1()1(

)2()2()1()1(

p
l

p
yk

p
l

p
ykkl

p
k

p
zj

p
k

p
zjjk

p
j

p
oi

p
j

p
oiij

xxu

yyv

zzw

δδ

δδ

δδ

−=∆

−=∆

−=∆

 We may reverse the sign of Erep to obtain the attraction energy. This energy
provides attraction forces among representations in the same class. We omit its
algorithm. We operate these two kind energies for every two patterns according to
their class membership.

72 526 U1180 neural networks

3 Simulations

3.1 Characters Recognition

In this section we test the proposed method with experiments. The first
experiment is recognition of characters. The pattern set contains 52 characters (A to Z
and a to z). Each character is stored as a binary image of size of 16 pixels × 16
pixels as shown in Figure 4. Each pattern is a vector containing one image. Each
pattern is a class of its own. We construct a single-layer perceptron with 256+1 input
units and 256 output neurons. Each output neuron is fully connected with all input

units and a
Figure 4: A character image.

threshold unit. The training results are shown in Figure 5, Figure 6 and Figure 7. In
Figure 5, we plot the sorted 52 minimum Hamming distances for all 52 characters
where each minimum distance is the distance between one pattern and its closest
pattern. For each output representation, we calculate the Hamming distances to all
other 51 output vectors and record the minimum one. We plot the performances of the
SIR method under different initial conditions. As shown in Figure 5, the minimum
distances for all patterns are all less than 90 (the curve marked with -input-). The
minimum distances of the output representations are all greater than 100. The
performance curve marked with -output 1- is obtained by using the orthogonal initial
weights. The curve marked with -output 2- is obtained by using the small random
initial weights. We also use the multilayer perceptron as in Figure 3 to do this
experiment and plot the performances in this figure. In this multilayer perceptron,
each layer has 256 neurons. The performance curve marked with -output 3- is
obtained by setting the orthogonal initial weights for all layers. The curve marked
with -output 4- is obtained by setting the random initial weights. From this figure, the
representations have larger distances than those of patterns. It will be relatively easier
to separate these representations in the hidden layer space than separate the image
patterns in the input space.
 To see the distribution of these representations, we assume each representation
shares equal number of basin corners, (2256/52), in the hidden hypercube and these
corners are connected neighbors in this hypercube. The output representation of each

526 U1180 neural network 73

pattern is considered as the center of these corners. Therefore, a center should be at a
222 Hamming distance to another center. The radius of the basin is less than 111

because 52/2)(256256111
0 >∑ = ii . Thus the distance between two centers is

approximately 222. These kind round basins are ideal. The experiments show that we
can separate the representations with a distance more than half the idea radius. To
show the sizes of these trained basins, we plot the maximum Hamming distance
between a representation and all others in Figure 6. We also plot the averaged
Hamming distance for each representation in Figure 7. As shown in Figure 6, several
maximum Hamming distances approach the ideal radius 222. With such well
separated representations, one can restore noisy representations using the Hamming
distance.
 When we use the output representations obtained by this single layer perceptron
as inputs to train the second hidden layer. Then use the output representations of the
second hidden layer as inputs to train the third hidden layer. The output
representations of the third hidden layer will approach to the performance curve, the
-output 4-. In this case all layers have 256 neurons.

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

120

130

140

Output 1

Output 2
Output 3

Output 4

Input

Figure 5: The minimum Hamming distances for the 52 representations by SIR
method.

74 526 U1180 neural networks

0 10 20 30 40 50 60

60

80

100

120

140

160

180

200

220

Output 1

Output 2
Output 3

Output 4

Input

Figure 6: The maximum distances for the 52 representations by SIR method.

0 10 20 30 40 50 60
0

50

100

150

Output 1

Output 2

Output 3

Output 4

Input

Figure 7: The averaged Hamming distances for the 52 representations by SIR

526 U1180 neural network 75

method.

= x'x'Mx'1 x'2

= xxMx 1 x 2

= yy Ny 1 y 2

feedback

Figure 8: The recurrent network

3.2 Recurrent Associative Memory

In this test, we use the SIR method to develop the network shown in Figure 8 as
an associative memory. There are three layers in this network, the input units, the
hidden layer, and the output layer. This network is similar to the replicator network
(Hecht-Nielsen R, 1995) with feedbacks. The response of the output layer will be send
back to the input layer in the next iteration. There are only two layers with sigmoid
function neurons. The input layer distributes signals to the hidden layer directly
without any modification. The input layer and the hidden layer are used to develop
highly separable international representations for the above 52 patterns to tolerate
noisy patterns. The output layer is used to index these representations to their
corresponding patterns. As an associative memory, the output will evolve to a stable
state gradually. This stable state is the place where we store the pattern. Given a
corrupted pattern (search argument), one corresponding stored pattern will be recalled
through the association of this corrupted pattern and this memorization mechanism.

The training algorithm of this network is divided into two stages. In the first
stage, we evolve the weights between the input units and the hidden layer by the SIR
method. In the second stage, we train the weights between the hidden layer and the
output layer by the BP algorithm using the 52 internal representations as inputs and
their corresponding patterns as the desired outputs. In this case, each layer contains
256 neurons plus one fixed unit with value -1. All neurons in a layer are fully
connected to the neurons of the next upper layer. In the first stage, we use small
random numbers as initial weights to start the training of the weights between the
input units and the hidden layer. The results of the SIR training are included in the

76 526 U1180 neural networks

former section. We then save the 52 internal representations as inputs and their
corresponding patterns as the desired outputs, {(yp, xp), P=1,..,52}, and use them to
train the weights between the hidden layer and the output layer. In the second stage,
all trained weights between the input units and the hidden layer must be fixed. In this
stage, we only train the weights between the hidden units and the output layer using
the BP algorithm:

 .)'(1)('(
2
1)(2 p

ikk
p
kkiki yxxxvv −−+← η

This is the delta training rule for the bipolar continuous activation function. The
desired output for the representation yp is xp and the network output is x’. The training
will stop when the network outputs are the same as the their corresponding patterns.
 After training, we feed corrupted patterns to the network. The corrupted patterns
are generated by randomly reversing 30% of the 256 image pixels. Successive
responses of the output layer are recorded in Figure 9. Figure 9 shows the refined
characters for the first five iterations. Most corrupted patterns will evolve to stable
patterns within five iterations.

The SIR method has been used as the side direction method in (Liou C-Y, and
Yang H-C, 1999) to solve the handprinted character recognition problem. This method
has been used to solve the uniform resource placement problem (Chiu G-M, and
Raghavendra C S, 1990) (Livingston M, and Stout Q F, 1988).

4 Discussions

 The SIR method will exhaust the hidden space and maximize the utility of all
neurons to accomplish highly separable representations of patterns. We can develop
refined representations for patterns layer after layer or train a multilayer network
backwardly to obtain such representations. We use the network as an adjustable kernel
to transform the patterns to a hypercube space with much isolated representations. We
summarize the relations between the SIR method and other methods.

526 U1180 neural network 77

Figure 9: Evolutionary recall of characters. The training character is in the first
column. The 30% corrupted character is in the second column. The recalled characters
for the first five iterations are in the rest five columns.

4.1 Hebbian Learning

In the updating equations, the terms))(1(2)1(p
iy− and))(1(2)2(p

iy− have

nonnegative values. These two terms are the derivatives of the activation function

f(neti))=tanh(0.5neti) . Their values approach 1 when)1(p
iy and)2(p

iy approach -1

or 1. If we substitute 1 for these terms, the learning rule becomes

))()())(()((

)()1(
)2()1()2()1(nxnxnyny

nwnw
p

i
p

i
p

i
p

i

ijij

−−

+←+

η
 (7)

78 526 U1180 neural networks

which is in some similar to the Hebbian learning. The activation strength is
proportional to the difference between two patterns and between postsynaptic
responses (output vectors). The increase of the strength of a synapse is proportional to
such differences on both sides of that synapse synchronously. To compare, a Hebbian
learning form is

)()()()1(nxnynwnw jiijij η+←+ (8)

Another interesting form called the covariance hypothesis was introduced in
(Sejnowski TJ, 1977) (Sejnowski TJ, 1997). According to this hypothesis, the learning
applied to the synaptic weight wij is defined by

))()())(()(()()1(nxnxnynynwnw iiijij −−+←+ η (9)

where)(nx and)(ny denote the time-averaged values of and iy , respectively.

Comparing Equation 8 with the Equation 9, the differences between them are the
presynaptic and postsynaptic reference thresholds, which determine the sign of
synaptic modification. In Equation 7, instead of the time-averaged references, the
presynaptic signal and the postsynaptic signal use the other signals as the references.
From Equation 7 we see that the synaptic weight wij is enhanced when (a) the

conditions)2()1(p
j

p
j xx > and)2()1(p

i
p

i yy > are satisfied or (b) the conditions

)2()1(p
j

p
j xx < and)2()1(p

i
p

i yy < are satisfied.

4.2 Mutual Information

The proposed algorithms are based on the maximization the representations’
distances among the different class representations and the minimization the distances
among the same class representations. There is a similar network (Becker S, and
Hinton GE, 1992) with two modules and a different goal. It maximizes the mutual
information, I(Ya; Yb), where Ya and Yb are the output vectors corresponding to the
input patterns Xa and Xb. This mutual information is defined as

)(
)(

log5.0
ba

ba

YYV
YYV

I
−
+

=

where V is the variance over the responses of the training samples. This network is
shown in Figure10. The goal of this network is to make the outputs Ya and Yb of the
two modules to agree closely (i.e., to have a small expected squared difference)

526 U1180 neural network 79

hidden
units

hidden
units

Y a Y b

X a X b

max I

Figure 10: The two-module network.

corresponding to a closely related pair of input patterns Xa and Xb. In the same time,
the two modules cannot just produce constant outputs that is unaffected by the input
patterns, otherwise, they convey no information. The outputs of these two modules
should vary as the inputs are varied. If we replace this two-module network with a
single-module network as shown in Figure 11 and confine the output responses in a
hypercube space. We then train this network to maximize the object information
function)(log5.0' ba YYVI −= for different class patterns and minimize this function
for patterns in the same class. We obtain similar results as those using the SIR
method.

hidden
units

Y a Y b

X a X b

maximizing
Hamming distance

Figure 11: The single-module network

 Note that this object function will weight frequent patterns. In our experiments
all patterns have equal appearance (uniform probability distribution). The mean value
of the vector)()2()1(pp yy − is zero. Assume each pattern of {x(1), x(2), …, x(P)} has

its own representation,)2()1(pp yy ≠ for p1 ≠ p2, and equal probability of

appearance, 1−P . Then PEI rep log}2log{5.0' −−= . The information function, I’, is
coherent with the repellence energy or the attraction energy. These two energies also

80 526 U1180 neural networks

have mutual information content.

Since ,)(
2
1 2)2()1(

121
p

m
p

m
M
m

P
p

P
p

rep yyE ∑ ∑∑ −−= = the SIR method tends to

maximize (or minimize) the variance of each neuron’s output difference,

),()2()1(p
m

p
m yyV − evenly for all pairs of different class patterns (or same class patterns).

All neurons will be devoted to these class patterns. All neurons are sensitivitive to
these patterns only. Any unknown pattern will be included in one of these patterns’
representations. In other words, these representations exhaust the pattern space.
 Several advanced methods further develop this two-module network with
modified object functions to accomplish various tasks (Ukrainec A, and Haykin S,
1992) (Ukrainec AM, and Haykin S, 1996) (Schmidhuber J, and Prelinger D, 1993).
The method in (Schmidhuber J, and Prelinger D, 1993) uses a similar object function
as Equation 1 to match the outputs of the two modules.
 The differences between support vector machine and the SIR method. As for a
support vector machine, there is only one hyperplane to answer the ‘yes/no’ question.
A multi-class classification task (polychotomy) must be decomposed into a set of
simpler two-class classification tasks (dichotomies). Each dichotomy is implemented
using one such machine independently. The outputs of these dichotomizes are
reconstructed in classification. Advanced techniques have been developed in
decomposition of polychotomy into dichotomies and reconstruction of the outputs.
The SIR method attempts to simultaneously divide the whole representation space for
all classes with multiple hyperplanes (neurons). The SIR method use the internal
space of a perceptron and develop it as a single monolithic classifier, where each
internal dichotomy (hyperplane) learns in a way dependent of each other. This SIR
learning will exhaust the hidden layer space and maximize the utility of all neurons to
accomplish highly separated representations in each layer. Such representations have
large basins and facilitate the operations of error correction (Chiu G-M, and
Raghavendra C S, 1990) (Livingston M, and Stout Q F, 1988). One can follow the
SIR method and develop refined representations for patterns layer after layer
feedforwardly or train a multilayer network backwardly to obtain such representations.
We use the network as an adjustable kernel to transform the patterns to a hypercube
space with much separated representations.

