
526 U1180 neural network    63 

Chapter 5 

Separation of Internal 

Representations of the Hidden 

Layer 
Abstract - We devise a method to separate the internal representations of the hidden 
layer where the Hamming distance between every two representations is required to 
be as large as possible. Each representation is isolated as far as possible from all 
others in the layer space. When the representations of certain patterns can be isolated 
within a Hamming radius, we can discriminate these patterns from all other patterns 
using a single neuron in the next upper layer. This space is a hypercube which is 
different from the grid plane used in a self-organizing map. Such representations will 
exhaust this hypercube uniformly and have tolerance for noisy patterns. This method 
directly resolves the ambiguous internal representation problem, which causes 
back-propagation learning\ to be inefficient. The layered network is developed as an 
adjustable kernel to separate multiple classes as much as possible. By employing this 
method along with the back-propagation learning algorithm, multilayer networks can 
be trained for various tasks. 
 

1 Introduction 

The multilayer networks (Rumelhart DE, and McClelland JL, 1986) have simple 
hierarchical architectures and are capable of pattern classification and recognition. 
Such networks consist of a set of sensory units that constitute the input layer, one or 
more hidden layers of computation units, and an output layer of computation units. 
The input signal propagates through the network in a forward direction from lower 
layers to upper layers. These networks are usually trained by the back propagation 
(BP) algorithm (Rumelhart DE, Hinton GE, and Williams RJ, 1986) (Werbos PJ, 
1974). This algorithm is a supervised algorithm where we provide the desired output 
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for each input pattern during training. This algorithm measures the difference between 
the desired output and the actual output and adjusts the weights to reduce this 
difference. The ambiguous internal representation problem or the unfaithful 
representation problem (Liou C-Y, and Yu W-J, 1995) (Mézard M, and Nadal J-P, 
1989) is severe for this algorithm. Patterns will be misclassified when patterns of 
different classes are mapped to a same internal representation in any hidden layer. 
This representation is called the ambiguous internal representation (AIR). When an 
AIR exists in a lower hidden layer, it is impossible to classify these patterns no matter 
how many neurons or layers we add on to its upper layers. The AIR may cause 
premature saturation (Lee Y, Oh S, and Kim M, 1991). One phenomenon is that the 
output error remains a significantly high constant for an unpredictable period during 
training. One may follow the instruction in (Liou C-Y, and Yu W-J, 1995) and modify 
the algorithm in (Diamantaras K I, and Strintzis M G, 1998) to construct a multilayer 
network forwardly without the occurrence of AIR as done in (Chen J-L, 2000). The 
tiling construction for the multilayer network in (Mézard M, and Nadal J-P, 1989) 
does not have the AIR problem. 
 Following the instruction in (Liou C-Y, and Yu W-J, 1995), we will resolve this 
AIR problem by constructing a network forwardly with enlarged basins as possible. 
One way to do this is to separate these representations as much as possible on each 
hidden layer from lower layers to upper layers such that each class has its own 
representation in each layer. The output of each hidden layer is in a hypercube space, 
and each output is a corner of this hypercube. The representations are the outputs of 
their corresponding patterns and are distributed at certain hypercube corners. These 
representations must be separated such that different classes have different 
representations. We may use all the corners freely to achieve this separation. We 
impose a requirement to isolate each representation. We require the basin of each 
representation to be as large as possible. This means that the distance between a 
representation and its closest neighbor representation is as large as possible. All 
representations are allowed to evolve in the hypercube and compete for basins under 
this requirement. We will develop this evolution in the next section. Note that when 
the internal representations are given, we can use the algorithms in (Liou C-Y, and 
Yuan S-K, 1999) to enlarge their basins for each neuron layer. 
 Another way to fully use the all the corners is to require that the topographic 
structure of these representations in the hypercube resemble that of the patterns in the 
input space. This is somewhat similar to the method in (Pedrycz W, and Waletzky J, 
1997). That method transforms the patterns into new representations on a grid plane 
according to the nonlinear mapping of a trained multilayer network. These new 
representations have the property that similar patterns have near representations in the 
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plane. It is expected that the topography (Kohonen T, 1990) of patterns can be 
perfectly preserved on the plane. That method combines both unsupervised learning 
and supervised learning to force the patterns to be mapped on a plane according to 
their geometric topography. Its goal is to accomplish a perfect topographic mapping 
on a grid plane such that one can manipulate many recognition and classification tasks 
on this plane (or display). To preserve topology, we may modify the method in 
(Pedrycz W, and Waletzky J, 1997) for each layer’s hypercube instead of the grid 
plane. This is not our goal. We will develop internal representations in each hidden 
layer’s hypercube which will facilitate operation of the network. 
 Our goal is to resolve the AIR problem by developing a self-organization 
evolution to separate the internal representations as much as possible. This is also the 
goal of the transformation kernels used in the support vector machine (Boser B, 
Guyon I, and Vapnik VN, 1992) (Cortes C, and Vapnik VN, 1995), which employs 
inner-product kernels to transform difficult patterns into high-dimensional 
representations and then attempts to construct an optimal hyperplane to separate these 
representations in the high-dimensional space. This high-dimensional space is not a 
hypercube, and these representations are not allowed to evolve in this hypercube 
freely. This is because this machine uses fixed and limited mapping kernels. We use 
the layered network as an adjustable and flexible kernel which can be trained by 
patterns. We formulate a simple case in the next section to demonstrate the method. 
An extended case is also included in the next section. We then present applications in 
the third section. Discussion is included in the last section. 
 

2 Separable Internal Representation Method 

2.1 Single-layer perceptrons 

 We will now formulate the separable internal representation (SIR) method used 
to solve the AIR problem and derive its algorithm for the single-layer perceptron. 
Assume that the values of input units can only be -1 or 1. Consider the distance (or 
repellence) energy (Ripley B D, 1996) (Mao Jianchang, and Jain Anil K, 1995) (Webb 
AR, and Lowe D, 1990) (Ruck DW, Rogers SK, Kabrisky M, Oxley ME, and Suter 
BW, 1990), 
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where )( )2()( 1 pp yy is an M-dimensional output representation corresponding to the 
p1th (p2th) pattern. M is the number of neurons. This repellence energy will force the 
representations to evolve in an M-dimensional hypercube space. Instead of the 
Hamming distance, the Euclidean distance is used as the distance function d to ease 
the derivation. Consider P input patterns {x(1), x(2), …, x(p)}, where the rth pattern x(r) 

= [ ] tr
N

rr xxx )()(
2

)(
1 ...  is an N-tuple bipolar binary vector. In this case, each pattern has 

its own class. Therefore, there are P classes. The vector y(r) is the output vector of the 
hidden neurons corresponding to the input pattern x(r). The goal is to maximize the 
distance between every pair of output representations such that each representation is 
isolated from all others as far as possible. The balance of all distances is indicated by 
the extreme value of the energy. For example, to uniformly distribute three 
representations in a 3-cube as shown in Figure 1, { [-1 –1 –1 ]t, [1 1 –1]t, [-1 1 1]t } is 
one of the ideal solutions and { [1 1 1 ]t, [1 -1 –1]t, [-1 1 -1]t } is another. In this case, 
the balanced Hamming distance for all three representations is the same, which is 2 as 
shown in Figure 2. 

1,-1,-1-1,-1,-1
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Figure 1: The 3-cube. 
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Figure 2: The Hamming distance is 2 between any two corners {(-1 –1 –1), (-1 1 1), 
(1 1 –1)}. 
 
 To achieve this goal, we reduce the energy E by means of the gradient descent 
rule. The algorithm for adjusting the weights to decrease this energy is described 
below. 

By differentiation, the gradient descent of each individual energy Ep1p2 is 
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where η is a positive learning constant. The threshold values wi(N+1) are updated in 
exactly the same way as are the weights. Their updating equations are 
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and the fixed input is of value x{N+1}= -1. 
 The initial weights are set as wij = 0 for all i≠j and wij = 1 for i = j. These are 
orthogonal weights. All the patterns will map to themselves using these weights. We 
then feed patterns one by one into the network and save their corresponding output 
vectors in an array. We calculate the Euclidean distance between every pair of output 
vectors. We use a square matrix D to store these distances. The value of its entry Drs is 
the distance between the output vector y(r) and the output vector y(s) (in response to the 
rth pattern and the sth pattern). Thus, the distance matrix D is symmetric and has 
zeros in all its diagonal entries. Among all the pairs of output vectors, we find one pair 
that has the minimum distance. Then we use this pair of output vectors ( indexed as p1 
and p2) together with their corresponding patterns in Equation 2 to increase their 
distance. 
 For the next iteration, we feed all the patterns into the network again. We update 
the distance matrix D and increase the minimum distance. We repeat this procedure 
until the minimum distance cannot be increased or it is greater than a predetermined 
value. 
 We can extend this algorithm to the case of noisy patterns. Assume the patterns 
belong to classes X1, X2, … XK, where class Xk contains Pk patterns { x(1), x(2) , …, 
x(Pk) }. The goal is to maximize the distance between every pair of output vectors that 
belong to different classes and minimize the distance between every pair of output 
vectors that belong to the same class. To achieve this goal, we need an algorithm that 
can provide the attraction force for the same class patterns. This can be done by 
reversing the sign of the energy function, Equation 1. We include the algorithm below. 
 The energy function and the attraction force (Ripley B D, 1996) (Mao Jianchang, 
and Jain Anil K, 1995) {cite} (Webb AR, and Lowe D, 1990) (Ruck DW, Rogers SK, 
Kabrisky M, Oxley ME, and Suter BW, 1990), are 
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To minimize Eatt, we update the weights using the method of steepest descent as 
follows: 
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for k = 1,...,Pk. The thresholds are adjusted in a similar way as that for Erep. 
 The procedure for operating this algorithm is similar as the former one. We 
randomly pick a pair of patterns from class X(||). We use these two patterns as input 

vectors (denoted as )( 1
kpx  and )( 2

kpx  ) and feed them into the network to obtain 

output responses (denoted as )( 1
kpy  and )( 2

kpy ). We calculate the distances between 

every pair of output vectors, which are produced by patterns in the same class. We 
find the pair which has the maximum distance use this pair of output vectors and their 
corresponding input patterns in Equation 5 to decrease the distance. 
 We employ a mixed strategy to operate the repellence force in Equation 2 and the 
attraction force in Equation 5 in a sequential mode. We randomly select two patterns 
from all classes. When these two patterns come from a same class, we use Equation 5 
to pull them close together; when they come from different classes we use Equation 2 
to push them far apart from each other. The network is trained until the following two 
conditions are satisfied: (1) The maximum distance among all the pairs of output 
vectors belonging to the same class is below a predetermined threshold. (2) The 
minimum distance among all the pairs of output vectors belonging to different classes 
exceeds a predetermined threshold. Otherwise, the training will continue until no 
more improvement in either the maximum or minimum distance can be achieved. 
 

2.2 Multilayer perceptrons 

 There are two ways to apply the above idea to a multilayer perceptron. Let us 
start with the one used to solve the AIR problem. The training process starts from the 
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bottom layer of the network. At the beginning, we focus on the input layer and the 
first hidden layer. They are viewed as a single-layer perceptron, and we use the SIR 
method for the single-layer perceptron to adjust the weights between these two layers. 
When the training is finished, we collect all the output responses of the first hidden 
layer as the first group of internal representations for the patterns. Then we shift to the 
second hidden layer. We train the weights between the first hidden layer and the 
second hidden layer using the collected first internal representations as inputs and 
using the SIR method for the single-layer perceptron. We then collect the second 
group of internal representations of the second hidden layer as inputs to train the 
weights between the second hidden layer and the 3rd layer. We proceed from the 
bottom hidden layer to the top layer until the output layer is completed. In this 
procedure the updating equations Equation 2 and Equation 5 are used repeatedly layer 
after layer with refined internal representations. We use forward training for the 
network and refine the representations layer after layer. After the training is finished, 
the representations of different classes are separated as much as possible, and 
representations of a class are clustered (or merged) together as closely as possible. 
This is different from the BP approach. This forward training is free from the 
premature saturation problem and the AIR problem. We may add other kinds of forces 
to obtain certain desired outputs gradually. 

x y z o

1 k j i

u v w  
Figure 3: A Multilayer network. 
 
 The other approach to applying the single-layer method to the multilayer 
perceptron shown in Figure 3 is to extend this algorithm backwards to a deep bottom 
layer as the BP algorithm does. The reason for doing so is that we can take advantage 
of the nonlinear mapping ability of a multilayer perceptron to obtain ideal 
representations in the output layer. We expect that a multilayer perceptron will have 
the potential to uniformly distribute the representations on hypercube corners and to 
map the fewest corners for each class of noisy patterns. The derivation is similar to 
that for the BP algorithm. As before, we require that the distances between the output 
representations of different classes must be maximized. The weights between the 
output layer and the top hidden layer are adjusted based on the same updating rule 
used in Equation 2. All the lower hidden layers are trained backwards without any free 
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evolution. The local gradient of the upper layer is propagated to the next lower layer, 
and their weights are adjusted accordingly. The energy function is 

 ∑∑
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The local gradient δoi for the output neuron oi is defined as 
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where oi is obtained much as in Equation (2). We calculate the local gradients for 
different input patterns p1 and p2. They are  
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Accordingly, the local gradients for hidden neurons are obtained as  
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The equations listed above show that the local gradients are the weighted sums of the 
local gradients of their connected upper layer. Then the weights can be updated by the 
local gradient:  
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 We may reverse the sign of Erep to obtain the attraction energy. This energy 
provides attraction forces among representations in the same class. We omit its 
algorithm. We operate these two kind energies for every two patterns according to 
their class membership. 
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3 Simulations 

3.1 Characters Recognition 

In this section we test the proposed method with experiments. The first 
experiment is recognition of characters. The pattern set contains 52 characters (A to Z 
and a to z). Each character is stored as a binary image of size of 16 pixels ×  16 
pixels as shown in Figure 4. Each pattern is a vector containing one image. Each 
pattern is a class of its own. We construct a single-layer perceptron with 256+1 input 
units and 256 output neurons. Each output neuron is fully connected with all input 

units and a  
Figure 4: A character image. 
 

threshold unit. The training results are shown in Figure 5, Figure 6 and Figure 7. In 
Figure 5, we plot the sorted 52 minimum Hamming distances for all 52 characters 
where each minimum distance is the distance between one pattern and its closest 
pattern. For each output representation, we calculate the Hamming distances to all 
other 51 output vectors and record the minimum one. We plot the performances of the 
SIR method under different initial conditions. As shown in Figure 5, the minimum 
distances for all patterns are all less than 90 (the curve marked with -input-). The 
minimum distances of the output representations are all greater than 100. The 
performance curve marked with -output 1- is obtained by using the orthogonal initial 
weights. The curve marked with -output 2- is obtained by using the small random 
initial weights. We also use the multilayer perceptron as in Figure 3 to do this 
experiment and plot the performances in this figure. In this multilayer perceptron, 
each layer has 256 neurons. The performance curve marked with -output 3- is 
obtained by setting the orthogonal initial weights for all layers. The curve marked 
with -output 4- is obtained by setting the random initial weights. From this figure, the 
representations have larger distances than those of patterns. It will be relatively easier 
to separate these representations in the hidden layer space than separate the image 
patterns in the input space. 
 To see the distribution of these representations, we assume each representation 
shares equal number of basin corners, (2256/52), in the hidden hypercube and these 
corners are connected neighbors in this hypercube. The output representation of each 
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pattern is considered as the center of these corners. Therefore, a center should be at a 
222 Hamming distance to another center. The radius of the basin is less than 111 

because 52/2)( 256256111
0 >∑ = ii . Thus the distance between two centers is 

approximately 222. These kind round basins are ideal. The experiments show that we 
can separate the representations with a distance more than half the idea radius. To 
show the sizes of these trained basins, we plot the maximum Hamming distance 
between a representation and all others in Figure 6. We also plot the averaged 
Hamming distance for each representation in Figure 7. As shown in Figure 6, several 
maximum Hamming distances approach the ideal radius 222. With such well 
separated representations, one can restore noisy representations using the Hamming 
distance. 
 When we use the output representations obtained by this single layer perceptron 
as inputs to train the second hidden layer. Then use the output representations of the 
second hidden layer as inputs to train the third hidden layer. The output 
representations of the third hidden layer will approach to the performance curve, the 
-output 4-. In this case all layers have 256 neurons. 
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Figure 5: The minimum Hamming distances for the 52 representations by SIR 
method. 
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Figure 6: The maximum distances for the 52 representations by SIR method. 
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Figure 7: The averaged Hamming distances for the 52 representations by SIR 
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method. 
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Figure 8: The recurrent network 
 

3.2 Recurrent Associative Memory 

In this test, we use the SIR method to develop the network shown in Figure 8 as 
an associative memory. There are three layers in this network, the input units, the 
hidden layer, and the output layer. This network is similar to the replicator network 
(Hecht-Nielsen R, 1995) with feedbacks. The response of the output layer will be send 
back to the input layer in the next iteration. There are only two layers with sigmoid 
function neurons. The input layer distributes signals to the hidden layer directly 
without any modification. The input layer and the hidden layer are used to develop 
highly separable international representations for the above 52 patterns to tolerate 
noisy patterns. The output layer is used to index these representations to their 
corresponding patterns. As an associative memory, the output will evolve to a stable 
state gradually. This stable state is the place where we store the pattern. Given a 
corrupted pattern (search argument), one corresponding stored pattern will be recalled 
through the association of this corrupted pattern and this memorization mechanism. 

The training algorithm of this network is divided into two stages. In the first 
stage, we evolve the weights between the input units and the hidden layer by the SIR 
method. In the second stage, we train the weights between the hidden layer and the 
output layer by the BP algorithm using the 52 internal representations as inputs and 
their corresponding patterns as the desired outputs. In this case, each layer contains 
256 neurons plus one fixed unit with value -1. All neurons in a layer are fully 
connected to the neurons of the next upper layer. In the first stage, we use small 
random numbers as initial weights to start the training of the weights between the 
input units and the hidden layer. The results of the SIR training are included in the 
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former section. We then save the 52 internal representations as inputs and their 
corresponding patterns as the desired outputs, {(yp, xp), P=1,..,52}, and use them to 
train the weights between the hidden layer and the output layer. In the second stage, 
all trained weights between the input units and the hidden layer must be fixed. In this 
stage, we only train the weights between the hidden units and the output layer using 
the BP algorithm: 

 .)'(1)('(
2
1 )(2 p

ikk
p
kkiki yxxxvv −−+← η  

This is the delta training rule for the bipolar continuous activation function. The 
desired output for the representation yp is xp and the network output is x’. The training 
will stop when the network outputs are the same as the their corresponding patterns. 
 After training, we feed corrupted patterns to the network. The corrupted patterns 
are generated by randomly reversing 30% of the 256 image pixels. Successive 
responses of the output layer are recorded in Figure 9. Figure 9 shows the refined 
characters for the first five iterations. Most corrupted patterns will evolve to stable 
patterns within five iterations. 

The SIR method has been used as the side direction method in (Liou C-Y, and 
Yang H-C, 1999) to solve the handprinted character recognition problem. This method 
has been used to solve the uniform resource placement problem (Chiu G-M, and 
Raghavendra C S, 1990) (Livingston M, and Stout Q F, 1988). 
 

4 Discussions 

 The SIR method will exhaust the hidden space and maximize the utility of all 
neurons to accomplish highly separable representations of patterns. We can develop 
refined representations for patterns layer after layer or train a multilayer network 
backwardly to obtain such representations. We use the network as an adjustable kernel 
to transform the patterns to a hypercube space with much isolated representations. We 
summarize the relations between the SIR method and other methods. 
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Figure 9: Evolutionary recall of characters. The training character is in the first 
column. The 30% corrupted character is in the second column. The recalled characters 
for the first five iterations are in the rest five columns. 

4.1 Hebbian Learning 

In the updating equations, the terms ))(1( 2)1( p
iy−  and ))(1( 2)2( p

iy−  have 

nonnegative values. These two terms are the derivatives of the activation function 

f(neti))=tanh( 0.5neti) . Their values approach 1 when )1( p
iy  and )2( p

iy  approach -1 

or 1. If we substitute 1 for these terms, the learning rule becomes 
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p
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ijij

−−
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η
       (7) 
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which is in some similar to the Hebbian learning. The activation strength is 
proportional to the difference between two patterns and between postsynaptic 
responses (output vectors). The increase of the strength of a synapse is proportional to 
such differences on both sides of that synapse synchronously. To compare, a Hebbian 
learning form is 

)()()()1( nxnynwnw jiijij η+←+   (8) 

Another interesting form called the covariance hypothesis was introduced in 
(Sejnowski TJ, 1977) (Sejnowski TJ, 1997). According to this hypothesis, the learning 
applied to the synaptic weight wij is defined by 

 ))()())(()(()()1( nxnxnynynwnw iiijij −−+←+ η   (9) 

where )(nx  and )(ny  denote the time-averaged values of  and iy , respectively. 

Comparing Equation 8 with the Equation 9, the differences between them are the 
presynaptic and postsynaptic reference thresholds, which determine the sign of 
synaptic modification. In Equation 7, instead of the time-averaged references, the 
presynaptic signal and the postsynaptic signal use the other signals as the references. 
From Equation 7 we see that the synaptic weight wij is enhanced when (a) the 

conditions )2()1( p
j

p
j xx >  and )2()1( p

i
p

i yy >  are satisfied or (b) the conditions 

)2()1( p
j

p
j xx <  and )2()1( p

i
p

i yy <  are satisfied. 

 

4.2 Mutual Information 

The proposed algorithms are based on the maximization the representations’ 
distances among the different class representations and the minimization the distances 
among the same class representations. There is a similar network (Becker S, and 
Hinton GE, 1992) with two modules and a different goal. It maximizes the mutual 
information, I(Ya; Yb), where Ya and Yb are the output vectors corresponding to the 
input patterns Xa and Xb. This mutual information is defined as 

   
)(
)(

log5.0
ba

ba

YYV
YYV

I
−
+

=  

where V is the variance over the responses of the training samples. This network is 
shown in Figure10. The goal of this network is to make the outputs Ya and Yb of the 
two modules to agree closely (i.e., to have a small expected squared difference)  
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Figure 10: The two-module network. 
 
corresponding to a closely related pair of input patterns Xa and Xb. In the same time, 
the two modules cannot just produce constant outputs that is unaffected by the input 
patterns, otherwise, they convey no information. The outputs of these two modules 
should vary as the inputs are varied. If we replace this two-module network with a 
single-module network as shown in Figure 11 and confine the output responses in a 
hypercube space. We then train this network to maximize the object information 
function )(log5.0' ba YYVI −=  for different class patterns and minimize this function 
for patterns in the same class. We obtain similar results as those using the SIR 
method. 
 

hidden
units

Y a Y b

X a X b

maximizing
Hamming distance

 
Figure 11: The single-module network 
 
 Note that this object function will weight frequent patterns. In our experiments 
all patterns have equal appearance (uniform probability distribution). The mean value 
of the vector )( )2()1( pp yy −  is zero. Assume each pattern of {x(1), x(2), …, x(P)} has 

its own representation, )2()1( pp yy ≠  for p1 ≠ p2, and equal probability of 

appearance, 1−P . Then PEI rep log}2log{5.0' −−= . The information function, I’, is 
coherent with the repellence energy or the attraction energy. These two energies also 
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have mutual information content.  

Since ,)(
2
1 2)2()1(

121
p

m
p

m
M
m

P
p

P
p

rep yyE ∑ ∑∑ −−= =  the SIR method tends to 

maximize (or minimize) the variance of each neuron’s output difference, 

),( )2()1( p
m

p
m yyV − evenly for all pairs of different class patterns (or same class patterns). 

All neurons will be devoted to these class patterns. All neurons are sensitivitive to 
these patterns only. Any unknown pattern will be included in one of these patterns’ 
representations. In other words, these representations exhaust the pattern space. 
 Several advanced methods further develop this two-module network with 
modified object functions to accomplish various tasks (Ukrainec A, and Haykin S, 
1992) (Ukrainec AM, and Haykin S, 1996) (Schmidhuber J, and Prelinger D, 1993). 
The method in (Schmidhuber J, and Prelinger D, 1993) uses a similar object function 
as Equation 1 to match the outputs of the two modules. 
 The differences between support vector machine and the SIR method. As for a 
support vector machine, there is only one hyperplane to answer the ‘yes/no’ question. 
A multi-class classification task (polychotomy) must be decomposed into a set of 
simpler two-class classification tasks (dichotomies). Each dichotomy is implemented 
using one such machine independently. The outputs of these dichotomizes are 
reconstructed in classification. Advanced techniques have been developed in 
decomposition of polychotomy into dichotomies and reconstruction of the outputs. 
The SIR method attempts to simultaneously divide the whole representation space for 
all classes with multiple hyperplanes (neurons). The SIR method use the internal 
space of a perceptron and develop it as a single monolithic classifier, where each 
internal dichotomy (hyperplane) learns in a way dependent of each other. This SIR 
learning will exhaust the hidden layer space and maximize the utility of all neurons to 
accomplish highly separated representations in each layer. Such representations have 
large basins and facilitate the operations of error correction (Chiu G-M, and 
Raghavendra C S, 1990) (Livingston M, and Stout Q F, 1988). One can follow the 
SIR method and develop refined representations for patterns layer after layer 
feedforwardly or train a multilayer network backwardly to obtain such representations. 
We use the network as an adjustable kernel to transform the patterns to a hypercube 
space with much separated representations. 
 


