
106 526 U1180 neural networks

Chapter 7

Neuronic Equations

1 Introduction

The synthesis problem of Boolean network is, by giving a series of patterns, to
make the net transits in that ordered sequence. Many works in neural network theory
in the past concerned mainly about nets whose elements related only to the state of the
last time interval. In other words, a state is function of the last moment only, i.e.,

 x(t+1) = F [x(t)] …(1)
But in general, neuronic equations can be formed like:

⎥
⎦

⎤
⎢
⎣

⎡
−−=+ ∑∑

= =
j

L

r

N

i
i

r
jij Srtxwtx

0 1

)()()(τστ …(2)

where i means the i-th neuron, τ is the time interval, and r is the time index.
It means that the states of a nets should be described generally, related to its past, not
only one but up to L times iterations before. So the first one (1) is just a special case
of (2) with L = 0. But it has been showed that (not provided here), we can always
reduce the general case (L ≠ 0) to the first one (L = 0) by enlarging the number of
neurons.
 Another significant aspect is that any neuronic equation (NE) of the form
proposed by E.R. Caianiello in 1961 can be completely linearized in tensor space.
 By the above two, the Boolean function neural nets discussed below are indeed
general case. All the properties of those NEs covered above should also be found in
nets of the simpler ones (L = 0 and linearized).

2 Linearized in tensor space

For a net of N elements, the state of the net is:
x = (x1 , x2 , … , xN) xi = ±1.

Assume for each neuron i, the function is:
xi,t+1 = σ [gi (xt)] …(3)

or xt+1 = σ [g(xt)] in vector form. Here, gi is any real function such that gi ≠ 0 for

526 U1180 neural networks 107

any input. σ is the hard-limiting activation function (σ(g) = 1 if g >0 and σ(g) = -1 if
g <0).

The vector x (N dimension) can be rewritten in tensor power space, which is now
a 2N dimensional vector. One convenient definition is:

 ()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
××⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−

N

productdirectedcall

NN

N

xx

xx
x
xx

x
x

xxx

timesN

N

L

M

4444 34444 21

L

M

M

1

31

3

21

2

1

11

2

2

0

0

1

111
1

η

η

η
η

η
α

 …(4)

Then one has the η- expansion:

 ()[]∑
−

=

==+

12

0
,,1,

N

titi
xgfx ti

α
αα

ση …(5)

That is, a nonlinear function in x-space can be expanded into linear function in
η-space. The expansion (5) can be obtained by the three trivial remarks:

Now for the N-d vector state x = (x1, x2, …, xN), as xi = ±1, there are totally 2N
possible states. You can write them all down, e.g, for N=3 :

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−−
−−−−
−−−−

11111111
11111111
11111111

 one column = 1 possible x-state.

So we define matrix ϕN in the same way (it’s a N x 2N matrix)

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−−

⎟
⎠
⎞⎜

⎝
⎛=ϕ

111
11

111
111

2
1

OO

OOOM

MOOOMM

OOO

OO

N
N …(6)

In the η-space, one get another matrix, ΦN, by specifying the value xi = ±1 to the
direct product in (4) :

() () ()
()() ()
()[]⎪⎩

⎪
⎨

⎧

=σ
σ=σσ
σσ=σ

12F
FF

GFFG

108 526 U1180 neural networks

Direct product definition:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=×⇒

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

Baa

Baa
BA

bb

bb
B

aa

aa
A

mnm

n

nln

ln

mnm

n

B

B

L

MOM

L

L

MOM

L

L

MOM

L

1

111

1

11

1

111

&

so
444444 3444444 21

LL

timesN

N
N

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

××⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞⎜

⎝
⎛=

11
11

11
11

11
11

Φ
2

1 …(7)

Then ΦN has properties: ΦN = (ΦN) T = (ΦN)-1
 (ΦN)2 = I
 det (ΦN) = (-1)N
e.g, for N=3, ΦN is an 8x8 symmetric square matrix:

()

31

3

31

3

21

2

1

3

2

2

2
1

1

11111111
11111111
11111111
11111111

11111111
11111111
11111111

11111111

xxx
xx
xx

x
xx

x
x

N

L

L

L

L

L

L

L

L

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−
−−−−

=Φ …(8)

Particularly, one will find that ϕN is included in ΦN .i.e., ϕN corresponds to the rows of
ΦN which are related to xi alone (rather than xixj…). Or you can also say by
expanding each x-column in ϕN to η-column instead.
So ϕN and ΦN are related as:

NNNNN
Pf ttt ,,1, ϕϕ =Φ=+ …(9)

where fN is a Nx2N matrix with component fi,α in (5). PN is a permutation matrix. By
definition, permute ϕN,t into ϕN,t+1.

But for computation convenience, we can enlarge (9) to :

NNNNN
PF ttt ,,1, Φ=Φ=Φ + …(10)

FN is now a 2Nx2N matrix. Here is again, fN corresponding to some rows of FN just
like the ϕN to ΦN.

Assume starting with time t=0, then from (10):

 () ()tt
t NNNNN

NNNNN

PF

PF

0,0,,

0,0,1,

Φ=Φ=Φ⇒

Φ=Φ=Φ

If we let the initial set of states ΦN,0 = ΦN in (7), immediately:

526 U1180 neural networks 109

 NNNN PF ΦΦ= …(11)
It means that FN can be constructed, if PN is given.

3 Permutation Function

PN is a permutation matrix and can be used to describe the state transition of the
net. It describes transition in this way: (from (10))

i

P

jij

NNN tt

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Φ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Φ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

01
0

0

,1,

LL

M

Recall that each column = a possible state η (which is expanded from x).
If at time t+1, the state of column j = the state of column i at time t. Then it’s a
transition from j to i (j → i). The element (PN)i ,j is set to 1, and all other elements in
the same row / column should be zero.

For transition of a series of pattern, e.g. N=3, index the patterns with columns of
initial matrix ΦN. For example, you want the column in ΦN to transit in order:

1→5→3→2→4→7→6→8→1→5→…. (loop again)
PN will look like this:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00100000
00001000
01000000
00000001
00000010
00010000
00000100
10000000

3P

Then, as long as you “sit on” one particular column of ΦN and see it’s transition by
applying PN , it will reproduce the wanted sequence you specified. e.g.:

()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−
−−−−

=Φ=Φ

11111111
11111111
11111111
11111111

11111111
11111111
11111111

11111111

2
1

0,33

N

110 526 U1180 neural networks

()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−−−
−−−−
−−−−

−−−−
−−−−

=Φ

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

2
1

1,3

N ()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−
−−−−
−−−−

−−−−
−−−−
−−−−

=Φ

11111111
11111111
11111111
11111111

11111111
11111111
11111111
11111111

2
1

2,3

N

()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=Φ

11111111
11111111

111111111
11111111
11111111
11111111

11111111
11111111

2
1

3,3

N ()

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=Φ

11111111
11111111
11111111

11111111
11111111

11111111
11111111

11111111

2
1

4,3

N

As it has been showed, the first column (or any column) repeats the wanted sequence
of patterns.
 So, by this method, one can generate any wanted sequence of maximal length 2N,
with no repetition in the sequence.
 For a more direct approach, one can use the wanted, ordered sequence η1, η2,
ηα…η2^N, (expand the sequence x1,x2,…, x2^N into η-space first!) to form the matrix
Φ directly, i.e., each pattern ηα is a column of Φ. This time Φ no longer share the
properties with ΦN , but it do still satisfy equation similar to (11):

1ΦΦ −= NN PF …(12)

The PN here, is like:

Because it only need to shift the columns once a time. But Φ is not normalized and
Hermitian any more, so you need to find Φ’s inverse first.

The advantage of this approach is that the pattern ηα need not be distinct (when
we can’t find the Φ-1, we use the pseudoinverse instead). Also the length of sequence
can be less than 2N. (e.g. you want η1, η2,…ηk , then just add any other (2N-k) states
(indeed any η can do, they doesn’t matter!) to form the 2Nx2N Φ matrix. And just
change the PN correspondingly.)

The main concern of us about synthesis is, not how the matrixes permute the
wanted sequence, but is how those matrixes relates to the real neural network
configuration. As mention before, FN can be obtained by (11) or (12). And the Nx2N

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

010

10
001
1000

LL

MOOM

MO

L

526 U1180 neural networks 111

matrix fN can be extracted by
NNNN Pf Φϕ= , …(13)

then one immediately get (5) ∑
=

=+

N

ti
fx ti

2

0
,,1,

α
αα

η . We can claim that the synthesis

problem is solved.

4 Discussions

Among the computation,
NNNNN

PF ttt ,,1, Φ=Φ=Φ + , PN is the key to

move/transit the whole column of ΦN. Without the middle part of the above equations,
the transition done by matrix permutation is purely mathematics and nothing to do
with the neural. (For example, you can construct an Φ matrix, which is not an
expansion of the ϕ matrix, i.e., those η-states can not map to any possible x-states,
and you can still permute this Φ in the way you like.)
The critical point is, from PN ⇒ FN . Although its just move from the L.H.S of ΦN to
R.H.S, but the left/right product meaning are so different, that:

t

N

t

N

tt

j

F

j

P

ij

Φ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

Φ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Φ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Φ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

1

1

 For the product with FN, any column-j related only to itself (in the past). So you
can drop all the other dummy states but one. You can also shorten the column (from
2N →N) by only taking N rows among them. Finally it’s realized that the resulting

equation, is identical to ∑
=

+
=

N

titi
fx

2

0
,,1,

α
αα

η

Which is the tensor expansion introduced in (5).
So, it is the case:

112 526 U1180 neural networks

We expand first in order to get a more powerful description about the nets (i.e.,
linearity), then compute and reduce it to the tensor expansion of fN . But in general we
can’t go any further. We can’t find general solution of gi in (5), which represented the
real physical network configuration. On the other hand, this method to solve synthesis
problems is error intolerable.

Neural(NxN)

ϕN (Nx2 N)

ΦN (2 N x2 N)

fN (Nx2 N)

