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Chapter 8 

Polygonal Inequality 

1. Introduction 

The η-expansion is a powerful tool for the research of neural network’s behavior. 
Its coefficients are exhibited as solution of simple algebra equations. Polygonal 
inequality is one of the most useful methods for calculating them. 

2. Notation 

For a nets of N-elements, state of the nets: 
ξ = (ξ1 , ξ2 , … , ξN )  ξh = ±1 

Assume for each neuron h, the function is: 

ξh,m+1 = σ [ Fh (ξm) ]           …(1) 
or   ξm+1 = σ [ F(ξm) ]     in vector form.  
Here, Fh is any real function such that Fh ≠ 0 for any input. 

σ is the signum function ( σ(F) = 1 if F >0 and σ(F) = -1 if F <0 ) 
The vector ξ (dimension N) can be rewritten in tensor power space, which is now a 2N 
dimensional vector. One convenient definition is:  
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3. η-expansion 

By A. De Luca (1965), The most general Boolean function can be expanded as 

( )
2 1

0

N

F f
α

α ασ ξ η
−

=

⎡ ⎤ =⎣ ⎦ ∑
v

          …(3) 

with  [ ( )] [ ( )]f F Fα α αη σ ξ σ η ξ= < > = < >
v v

      …(4) 

where we define the trace operation : 
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      …(5) 

Beware that the trace operation (“< >”) stands for some kind of “average” of the 
function G. So it is not a function of particular ξ

v
. Because we just sum over all the 

possible states, but not particular one. The <G> (trace of G) reflects the structure of 
the function. 

The (3) and (4) equations can be written as such is shown by A. De Luca (1965), 
which in general: 
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The first 2 summations have C(N,0)+C(N,1)+C(N,2)+…..C(N,N) terms = 2N 
terms. Clearly (3) together with (4) is an compact expression for (6). 
 

4. General Nets and Self Duality 

For a general net, it can be described by: 
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where 1[ ] is the step function, and “s” is the threshold. With the condition AI = 2S, 

the vector form of (I) and (II) become: 1

1
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σ
σ

+
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=⎧
⎨ =⎩

v v

v v  

which means self-duality. This condition can simplify the discussion below 
remarkably. 

 

5. Coefficient of η-expansion 

There are totally 2N coefficients of the η-expansion, but of course, not all of them 
are independent. We can find constraints / equations for them to solve the problem. 
We did find the following three trivial but important remarks did help: 
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(a) gives the r.h.s equality of (4). 

By (b), we know that [ ]f fα α α ασ η η=∑ ∑  

By (c), 
2
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∑           …(7) 

so there are totally 2N equations for 2N unknown fα. 
In the above calculation, we can surely rearrange and merge the ηβηγ terms into a 

ηα terms that give the coefficients expression gα. But here we do not concern much 
about that because they are quadratic in fα , and so, not very useful (maybe except the 
g0 term) in resolving the fα . 

As an example, consider 1 2[ ( , )]Fσ ξ ξ  and 1 2 3[ ( , , )]Fσ ξ ξ ξ , both odd in ξ : 
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Note that the last 4 equations can be rearranged as to become: 

2
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In general, this kind of factorization can be done, illustrating as the following: 
Let Γ be the set {ξ1, ξ2,…ξN}. Now partition it into 2 subsets A and B. So A={ξi, 
ξj,…ξl} (can also be empty subset) and B=Γ-A. Make all the variables in A (in B) to 
be the same value =ξA (=ξB ). This partition can be done in 2N ways, or 2N-1 ways if A 
and B are considered exchangeable. 

Let 
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with these notation and ξA, ξB, one finds the following equations: 
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(here the first equation obtains if A or B is empty), they are indeed equivalent to (7)’s 
α=0..2N-1 equations. 

Their solutions: 
1 0

0 1
A A

B B

f f
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f f
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⎨ ⎨= = ±⎩ ⎩
 

So it totally gives 2N-1*2=2N equations, of course, the same as (7). 
From now, we will only consider linearly separable (l.s.) function. That is, 

functions of the form 
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It’s known that the fα  term vanishes if αη  is even (i.e., 0, , ...ij hklmη η η  ). Only odd 

term is left. For example, N=2, from η-expansion given by (3), (4): 
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Interestingly, we find that, 2 1 2 1 2 1( , ) ( , )f a a f a a=          …(10) 
This symmetry is indeed can be obtained from a more general conclusion for l.s. 
function. 

Let’s write ( ) ( ) ( )T Tx f x f xα α
α

σ ξ η η= =∑          …(11) 

If P is a permutation matrix on ξ, and Π is the corresponding permutation matrix on η. 

 then  
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x P f x f x

and x P P x f P x from
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∴ ( ) ( )T Tf x f P xΠ =  , clearly (9) is only the N=2 case. 
Consider the partition A, B again: 

 Let’s write 
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             …(12) 

Let ξA=1, ξB =-1 , by substituting them into 1 1 2 2[ ]x x fα ασ ξ ξ η+ = ∑ , together with (8) 

and the fact that all the even terms vanish (so 1 ( ), 1 ( )A Bα βη α η β= + ∈ = − ∈  ) , 

we get: 
[ ]A B A Bx x f fσ − = −               …(13) 

This equation, together with (9), completely gives all conditions for the l.s. function. 
Or you can use the equivalent expression: ( )( ) 0A B A Bx x f f− − >  
So together with (9), can be used to solve the problems: 

11 
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 ( , )h hx f x known find fα α⇒  
or  ( , )h hf x f known find xα α⇒  
 

6. Another approach : Polygonal Inequality  

The works above give the conditions for fα , that is, a set of equations. But 
generally they may not be solved easily. We will try another method, the polygonal 
inequality, which seems that it might be helpful. And finally we will show it indeed 
can solve for fα  of arbitrary l.s. function, after this method has been generalized. 

We only consider l.s. function ( ( ) h hF aξ ξ= ∑ ) with condition : 

1 2 ...... 0Na a a≥ ≥ >              …(14) 
This condition is indeed, the canonical form of self-duality. It simplifies the 
calculation by the way that it makes all the even terms in the η-expansion vanish. 

Then one readily has (Dertouzos, 1965) : 
1 2 ...... 0Nf f f≥ ≥ ≥              …(15) 

Let’s introduce new notation : 
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        …(16) 

recall that only the odd term left, the η-expansion of (3) (4), subjects to condition (14), 
can be written as: 
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    …(18) 

From the second equations of (18), its clear that the non-zero contribution to hf come 
only from the configurations 1 2 1 1( , ,... , ,... )h h Nξ ξ ξ ξ ξ− +  such that  

( ) ( )h
hF aξ <

v
               …(19) 
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Otherwise the two terms in the second equations will be cancelled out. 

So  1

1
2h hNf −= �               

where h�  denotes the number of configurations for which (19) holds. 
For example, If 1 2 3 ...... Na a a a> + + +           …(20) 

then (19) always holds for h=1; thus, h� =2N-1,  1f =1, and all other 0hf fα= = . 
(20) means that it is impossible to construct a polygon with sides 1 2 3, , ,......, Na a a a . 
Otherwise, in general, h� is twice the number of distinct triangles which one can 
construct by taking ha as base side, and aligning along the two other sides with all the 
remaining i ha a≠ (their ordering on each of these sides is immaterial). 

To see how it is counted, let consider an example of N=4 : 
First show all the possible configurations ( here =8) of (1) ( )F ξ

v
 : 

2 3 4

(1 )

1 1 1
1 1 1
1 1 1

( ) 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

a a a

F ξ

⎧ ⎫
⎪ ⎪−⎪ ⎪

−⎪ ⎪
⎪ ⎪= − −⎪ ⎪
⎨ ⎬−⎪ ⎪
⎪ ⎪− −
⎪ ⎪
− −⎪ ⎪

⎪ ⎪− − −⎩ ⎭

1 2 3 4

1 3 4 2

( )
( )

a a a a
a a a a

← > − +
← > + −

       …(21) 

for a triangle with 1a as base side, assume we can construct a triangle like the one 
above, then we can write down their triangular inequalities : 

1 2 3 4

2 1 3 4

3 4 1 2

( )
( )

( ) ( )

a a a a
a a a a
a a a a

< + +⎧
⎪ < + +⎨
⎪ + < +⎩

   rearrange as 
1 2 3 4

1 2 3 4

1 3 4 2

( )
( )

( )

a a a a
a a a a
a a a a

< + +⎧
⎪ > − +⎨
⎪ > + −⎩

     …(22) 

The first equation of (22) is useless, but the second and third equations are 
identical to the configuration 4 and 5 in (21). So with ai given, the number of states 
which satisfies (19) can be counted by the number of constructed triangles, then we 
can calculate the hf . 

For l.s. functions, the hf  or h�  are not independent from one another. For 
example: 

If 1 2 3 0a a a≥ ≥ > , then [ ]1 1 2 2 3 3 1 2 3 1 2 3
1 1 1 1
2 2 2 2

a a aσ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + = + + −  

If 1 2 3a a a> + , then [ ]1 1 2 2 3 3 1a a aσ ξ ξ ξ ξ+ + =  
 

 a2    a3 
    a4

a1
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7. Nonlinear coefficient  

It’s known that l.s. function is uniquely determined by its linear coefficients hf . 
So all the higher terms should also be determined by them. Lets consider the trilinear 
terms of (17): 

[ ( )]hkl h k lf Fξ ξ ξ σ ξ=  

together with lower terms, after cancellations, one finds: 

( , , )
3

1[ ( )]
2

h k l
hkl h k l h k l hklNf f f f a a a Fσ ξ −+ + + = + + + = �      …(23) 

Again we use the trick and can show that the hkl� is twice the number of distinct 
triangles by stretching on the base side the segments , ,h k la a a  as before. If no such a 

triangle is possible, that is, 
, ,

h k l i
i h k l

a a a a
≠

+ + > ∑  

then hkl� = 2N-3, 1hkl h k lf f f f+ + + = . So, get higher terms if lower terms are 
already known. 

The r.h.s. of (23) can also be obtained from the η-expansion of a l.s. function of 
N-2 variables: 

, ,

( )i i h k l m
i h k l

a a a aσ ξ ξ
≠

⎡ ⎤
+ + +⎢ ⎥

⎣ ⎦
∑            …(24) 

now the l.h.s. of (23) is the coefficient the linear term mξ . 
For all higher terms, E.R. Caianiello (1981) gives the equations: 

1 1

1 2 1 2 2 1 2 1

1 2 2 1 2 3 1

( ... ) ( ... )

... ... 3 ...
...

1...
2

k k k

k k k

k

h h h h h

h h h i i i i i i i h hN k
i i i i i i i h

f f f f
−

−

−
< < < < =

+ + + + =∑ ∑ ∑ �      …(25) 

where 
1... 2

k

N k
h h

−=�  if (20) hold with 1a  replace by 
1 2

( ... )
kh h ha a a+ + + ,or equals 

twice the number of triangles with base side 
1 2

( ... )
kh h ha a a+ + + . 

8. General case 

First let’s extend to the case with threshold, that is, adding an extra constant 
terms a0, and replacing the self dual condition (14) by simply 0ha ≥  (for h>=0 ). 
Then the η-expansion can also include the even terms. But indeed nothing changes for 

the polygonal inequality principle, except that now 
1 2 ... kh h h�  count the number of 
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triangles (not twice now) which can be constructed by adding a0 into the set {a1,…aN}. 
If a0=0, clearly reduce to the previous case. 

Again, paper of E.R. Caianiello (1981) gives the whole equations (which is quite 
long …) for this general case (a0 take into account) as an generalization of equation 
(25). 

 

9. Calculating arbitrary l.s. functions 

Previously we depend on condition (14) to save us a lots of labor. Although we 
have generalized it a little, but how to calculate an arbitrary l.s. function? In here 
show a transformation that help to transform any function into a special form (which 
then can be easily calculated ). 

Consider a special form of l.s. function : 

[ ]
2 1

1

( )
n

h
h

Fσ ξ σ ξ
+

=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑              …(27) 

where N=2n+1 guarantees that F≠0 always. And clearly  

1 2 2 1... 1,2,...2 1 (2 1)nh h h n nf f f
+ + +≡ ≡  

this reduces the number coefficients very much. 

Then [ ] 31 2

1 2 3

1 2 2 1
(1) (3) (2 1)( ) ... ...hh hh n

n
h h h

F f f fσ ξ ξ ξ ξ ξ ξ ξ ξ +
+

< <

= + + +∑ ∑         …(28) 

It’s coefficients equations given by (26) then can be much more simple, so that even 
it’s solution can be write down immediately!! 

(1) 2

(3)

(2 1)

21 (2 1)!!
2 (2 )!!
...

(2 2 1)!!(2 1)!!( 1)
(2 )!!

n

h
h

n nf
n n

f
n h hf

n+ =

⎧ ⎛ ⎞ −
= =⎪ ⎜ ⎟

⎝ ⎠⎪⎪ =⎨
⎪ − − −⎪ −
⎪⎩

          …(29) 

and by 1
( ) (2 2 )( 1)n
k n kf f+

+ −= −              …(30) 

even save half of the works of (28)!! So, η-expansion of l.s. functions of the form as 
(27) are indeed, can be easily solved. 

For an arbitrary l.s. function 
1

N

h h
h

aσ ξ
=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  with ah real and 

1

0
N

h h
h

a ξ
=

≠∑  always. 

There exists a ε such that :
1

0 min
N

h h
h

N aε ξ
=

< < ∑  
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and, for any ah , two positive integer nh,, lh such that 0 h
h h

h

n a
l

ε ε≤ − = ≤   

so 
1 1

min
N N

h h h h
h h

N aε ξ ε ξ
= =

≤ <∑ ∑  

The l.h.s. is so small that, add to the l.s. function , will not change the result, that is,  

1 1 1
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N N N

h h h h h h
h h h

N N
h

h h h
h hh
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          …(31) 

here 
1..N

h h k
k h

m n l
≠

= ∏  is an integer. So any function can be map to the corresponding 

mh>=0 function. 
Then we reduce the function farther as following: 

1
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N
N mN N

N m N m N m n
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as given by (28). 

The general algorithms for calculating 
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that is , from the coefficients of 
( )
f
�

 to coefficients 
( )N
f . 

The Λ is a 2 2N × � matrix, with element λα,β =1 or 0, with notation: 

α ≡ (i1, i2…ih)   is index of 
( )N
f  

β ≡ (j1, j2…jh)   is index of 
( )
f
�

 

β’ ≡ (j’1, j’2…j’h)   is the reduce index from β given by rules (32) 
 
Then λα,β =1 ( if α=β’ )  and  λα,β =0 ( if α≠β’ ). 
So here are the steps for solving the most general case: 
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