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Chapter 6 

Synthesis of Associative Memory 
Abstract - We present a new approach to enlarging the basin of attraction of 
associative memory, including auto-associative memory and temporal associative 
memory. The memory trained by means of this method can tolerate and recover from 
seriously noisy patterns. Simulations show that this approach will greatly reduce the 
number of limit cycles. 
 

1 Introduction 

Associative memory (AM) is a mechanism used to store patterns: when a 
reasonable subset of a certain pattern is received with the other part corrupted, it has 
the ability to recover the original pattern. The fully connected network is a common 
architecture for the AM. The interconnections between processing neurons provide 
feedback, which enables the whole network to recurrently evolve into equilibrium. 
Many well-developed models (Gardner 1987, 1988; Kanter and Sompolinsky 1987) 
and algorithms have been devised to train the fully connected AM to improve its 
accuracy, efficiency and capacity. The Hopfield model (HM) (Hopfield, 1982) applies 
the Hebb's (1949) postulate of learning to generate interconnected weights. It has the 
advantage of easy training and guarantees convergence when operation is in 
asynchronous mode, but it also has the vital drawback that it has numerous limit 
cycles in synchronous mode due to its zero-diagonal, symmetric weight matrix, and 
zero threshold. The unexpected limit cycle restrains its ability to operate in 
synchronous mode. There is no reason to exclude synchronous mode evolution among 
neurons. 
 According to the relation between input patterns and output patterns, AM can be 
divided into two classes: the auto-AM is able to recall a pattern which is the same as 
the input pattern while the hetero-AM is able to present an output pattern which is 
different from the input pattern. HM is an effective method for implementing the 
auto-AM. This model is also extensively utilized to implement the hetero-AM, such 
as bidirectional AM (Kosko 1987, 1988), the multidirectional AM (Hagiwara, 1990), 
and the temporal AM (Amari, 1972). 
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 One of the features of the fully connected structure is that it can be viewed as a 
hypercube; therefore, the learning problem of the AM can be transformed into a 
geometric problem. In this work, we will present a new learning algorithm called error 
tolerant associative memory (ETAM), which enlarges the basins of attraction, 
centered at the stored patterns, to the greatest extent possible to improve error 
tolerance. Simulations show that this algorithm also reduces the number of limit 
cycles. We will focus on the auto-AM and the temporal-AM in this work. First we 
will briefly illustrate the model used in this paper, where the geometric interpretations 
and the ETAM algorithm will be presented. Computer experiments, comparisons, and 
discussions will be given. 
 
 

2 Geometric Interpretation of the Hopfield 
Network 

 
AM is a fully connected network with N neurons. Each neuron i has N weights 

{wij, j=1,…,N} connecting all neurons j, a threshold θi, and a state value }1,1{ −∈iv . 
The state value is updated according to the rule  
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or in matrix form, 
])(sgn[)1( θ−=+ tWVtV  ,     (2) 

where W is an NN × weight matrix, θ is an 1×N  threshold vector, V(t) is an 1×N  
vector representing the global state at time t, and sgn() is the sigmoid function 
returning 1 with input greater than or equal to zero and -1 with negative input. In the 
learning phase, the network is trained by P patterns Xk, k=1, …,P, according to 
various learning algorithms (Widrow and Hoff, 1960; Hopfield, 1982). In the 
retrieving phase, the input is presented to the network as V(0). Equation (2) is applied 
to all the neurons in each iteration, so this network is said to operate in synchronous 
mode; Eq. (1) is applied to only one neuron, and this network operates in 
asynchronous mode. Then, the network operates repeatedly according to Eq. (1) or Eq. 
(2) until it converges to a stable state or enters a limit cycle. A stable state meets the 
following requirement: 

])(sgn[)( θ−= tWVtV  ,     (3) 
regardless of whether it operates in synchronous or asynchronous mode. Each neuron 
has a bipolar state value (a bit), and there are 2N global states in total. Therefore we 
can view the whole network as an N-dimensional (N-D) hypercube with each global 
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state located at a corner. Any two neighboring corners differ in only one neuron state 
or one Hamming distance. For example, in Fig. 1, there is a 3-D cube corresponding 
to a network with three neurons. The current global state is located at one corner and 
serves as the next input to the network. After updating according to Eq. (1) or Eq. (2), 
the current global state either moves to another corner or stays at the original corner. 
Corners that always remain unchanged are stable states. The patterns we intend to 
save are located at certain stable corners. The goal of AM is to move the initial global 
state to a nearby stable corner where a pattern is stored. 
 

 

Fig. 1. A fully connected associative memory (AM) with three neurons can be viewed 
as a 3-D cube. There are eight corners representing the eight global states. A neuron 
represents a plane (shaded area) dividing the cube into positive and negative divisions. 
In this figure (1,1,1), (1,-1,1), (1,1,-1), and (-1,1,1) are in the positive division while 
the other corners are in the negative division 
 
 
 In this hypercube, each neuron i describes an (N-1)-D hyperplane through the 
equation  
 0...332211 =−++++ iNiNiii vwvwvwvw θ , 
        Ni ,...1= .  (4) 
The 1×N  weight vector Wi = (wi1, wi2, …, wiN)T of the ith neuron is the normal 
vector of the corresponding hyperplane, and the hyperplane divides the hypercube 
into positive division to which the normal vector points, and a negative division. We 
then follow the geometrical point of view developed by Cover (1965). We will require 
that the length of the vector Wi, |Wi|, be normalized to one, and that θi be divided by 
this length accordingly. The learning process is used to adjust the hyperplane to make 
all the patterns stable. That is, when a pattern has an ith bit which is equal to 1, it 
should be located in the positive division of the ith hyperplane; if it has an ith bit 
equal to -1, it should be located in the negative division. Furthermore, if we wish to 
achieve good error tolerance, which means that a reasonably noisy pattern can 
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converge to its original pattern, the neighbors of one pattern should be in the same 
division in which the pattern is located. This can be achieved by rotating and shifting 
the hyperplane so that it will face the pattern corner and include as many neighboring 
corners in the same division as possible. These rotations and shifts can be performed  
by adjusting the weights and the thresholds. 
 Each hyperplane can be adjusted separately to stabilize the ith bits of patterns. In 
the following, unless otherwise stated, we will only discuss neuron i. First, we will 
illustrate a 3-D cube to observe the mechanism by which the AM saves patterns, then 
we will expand this mechanism into a higher dimensional hypercube; that is, we will 
present a general idea for training an AM with more neurons. 
 An example is shown in Fig. 2. It is an AM with three neurons, in which two 
patterns, (1,1,1) and (-1,-1,-1), are stored. For the first neuron, we require that the 
weights satisfy the following conditions: 
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The other two neurons also have to satisfy similar conditions, so we do not show their 
corresponding planes. The black dots are patterns to be stored. The dark parts are the 
positive division of the plane. 

 
(a)      (b)      (c) 

Fig. 2a-c. An associative memory (AM) saving (1, 1, 1) and (-1, -1, -1) by means of 
the error correction rule (ECR). c The ideal hyperplane 
 
 Figure 2a shows a randomly chosen initial weights and the corresponding 
hyperplane. We apply the error-correction rule (ECR) (Widrow and Hoff, 1960) to 
train these weights, and in only one step we get the updated weights shown in Fig. 2b. 
The weights satisfy the conditions in Eq. (5). However, in order to increase the error 
tolerance, we wish all the one-bit neighbors of (1,1,1), {(1,1,-1), (1,-1,1), and(-1,1,1)} 
to be in the positive division, and all one-bit neighbors of (-1,-1,-1), {(-1,-1,1), 
(-1,1,-1), and (1,-1,-1)}to be in the negative division, just like the ideal hyperplane 
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shown in Fig. 2c. The normal vector of the plane, (w11, w12, w13), is adjusted to point 
at (1,1,1) with a right angle to the corner, and so that the plane lies in the middle 
between (1,1,1) and (-1,-1,-1). In this case, all three planes will coincide. 
 In Fig. 3, we see only one pattern (1,-1,1) to be stored, and the first neuron 
hyperplane is shown. In Fig. 3a, there is no error tolerance; in Fig. 3b, the one-bit 
error can be recovered; in Fig. 3c, even a two-bit error can be recovered. In all three 
cases, the normal vector of the plane, (w11, w12, w13), points at the pattern corner to be 
stored with a right angle. The only difference is the threshold. When we modify the 
threshold to move the pattern farther from the plane, we get better error tolerance. If 
there is more than one pattern, such as in the example shown in Fig. 4a, b, the normal 
vector points at the midpoint of the stored patterns; that is, the normal vector is the 
sum of all the vectors which point from the origin to the patterns. In Fig. 4c, for the 
second neuron, the two patterns have to lie separately in the two divisions, and the 
best way to locate the plane is to make the distances from the two patterns to the plane 
equal. Therefore the two patterns will have the same error tolerance. 
 As a result, we obtain the general idea that the normal vector of a certain 
hyperplane representing neuron i is the sum of all patterns in the positive division and 
all the patterns in the negative division multiplied by -1. In terms of a neural network, 
the weights (wi1, wi2, wi3, …, wiN) are the sum of all patterns in which the ith bit is equal 
to 1 and all the patterns multiplied by -1 in which the ith bit is equal to -1. This results 
in the equation: 
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We find that Eq. (6) coincides with the Hopfield model except for all the diagonal 
weights wii. In the HM, all the self-feedback wii is made zero to achieve convergence. 
This self-feedback has been discussed in Kanter and Sompolinsky (1987) Araki and 
Saito (1995) and DeWilde (1997). In asynchronous mode, zero self-feedback and 
symmetry ensure that the AM will finally converge to a stable state, but in 
synchronous mode, there will be some limit cycles with length two (Bruck, 1990; 
Goles and Martinez 1990). Following Xu et al. (1996) we know that the adequate 
conditions for the AM to converge in synchronous mode are that the weight matrix W 
is symmetric and nonnegative definite, or that W with certain values subtracted from 
its diagonal is nonnegative definite. Equation (6) will make all wii equal to P, the 
largest among all weights, and large self-feedback will benefit nonnegative 
definiteness and convergence. 
 Besides the diagonal elements, the HM has null thresholds, which means that all 
hyperplanes pass the origin. Even though the patterns may be stored without a 
threshold, error tolerance can be greatly improved by tuning thresholds, such as in the 
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example in Fig. 3. The problem of threshold tuning strategies has been addressed in 
Schwenker et al. (1996) in the 0,1 model. By tuning thresholds, we can move the 
planes as far away (distance) from the patterns as possible to increase error tolerance. 
If there is more than one pattern, we can adjust threshold to maximize the minimal 
distance among all distances from the patterns to the plane, as shown in Figs. 2c and 
4c. 
 

 
  (a)     (b)      (c) 

Fig. 3a-c. An associative memory (AM) saving (1, -1, 1) with different degrees of 
error tolerance 
 

 

Fig. 4a-c. An associative memory (AM) saving (1, -1, 1) and (1, 1, 1) with different 
degrees of error tolerance 

3 Error Tolerant Associative Memory 

With the above general idea in mind, we have developed a method called the 
ETAM, which trains AM to achieve the best possible error tolerance. According to the 
ideas presented in the previous section, we can adjust the weights so as to rotate the 
hyperplane facing the pattern corner with a right angle as much as possible, and adjust 
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the threshold to maximize the minimal distance from the patterns to the hyperplane as 
possible. We propose the following retraining algorithm: 

 
1. Initialize the weights according to the following equations: 
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0)0( =iθ ,  i = 1, …, N. 
Then normalize Wi, i = 1, …, N. 

2. Set i to 1. 
3. For the ith neuron, calculate the distances from all patterns to the 

hyperplane, that is, 

i
N
NiN

k
i

k
i

k
i XwXwXwd θ−+++= ...2211 , k = 1, … P. (8) 

Find the positive minimal distance dp and negative minimal distance dn : 
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4. If all the patterns have 1=k
iX , set iθ  to a large negative value less 

than N− , increase i by one, and go to step 3. 

If all patterns have 1−=k
iX , set iθ  to a large positive value greater than 

N , increase i by one, and go to step 3. 
Note that we move the hyperplane outside the range of the hypercube, 
where N  is the distance between each corner and the origin. 

5. We shift the hyperplane to the middle of pattern p and pattern n to maximize 
the minimal distance as follows: 

2/)()()1( n
i

p
iii ddtt ++=+ θθ .   (10) 

Now the minimal distance m
id  is in the middle of p

id  and n
id : 

2/)( n
i

p
i

m
i ddd −= .    (11) 

6. We rotate the hyperplane to increase the distances from both pattern p and 
pattern n to the hyperplane: 
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      j = 1, …, N. (12) 
where α is the learning rate. Normalize Wi. 

7. Repeat Eq. (8) and Eq. (9) and compute the new p
id  and n

id . If the new 

2/)( n
i

p
i dd −  is larger than the previous m

id , go to step 3 and continue. If 

not, undo Eq. (12) and go to step 8. 
8. Increase i by one. If i is less than or equal to N, go to step 3. If not, stop. 

  
The normalization procedure used in learning step 6 after Eq. (12) is necessary to 

limit the range of the normal vector Wi. We may obtain an asymmetric matrix W using 
this normalization. This asymmetric matrix is not excluded by any existing 
physiological evidence (e.g. Hertz et al. 1986, 1991, Porat 1989). The diagonal 
elements of this matrix are neither equal to any others nor equal to zero. These 
elements will have large positive values after learning. To our knowledge, this kind of 
matrix has not been derived using any existing method. 
 The training time is case-dependent, and the learning process can be accelerated 
by increase the learning rate. Since the weights are normalized in the ETAM, they 
cannot increase without any limit and neither can the distance. Therefore, the learning 
process guarantees termination. 
 
 

4 Error Tolerant Associative Memory with 
Temporal Patterns 

 
The temporal AM is used to store one sequence or several sequences of patterns 

in the AM's dynamic state transitions. Given an initial input pattern, it will converge 
to the next pattern in a memorized sequence. All the patterns in this sequence will be 
recalled sequentially. Due to its dynamic property, it can be used to recognize or 
generate temporal patterns, such as speeches or images, or musical notations. 
 The temporal AM is trained to remember all patterns in the following dynamics: 
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The superscript of the pattern Xk can be computed using modulo P + 1. With an initial 
input state V(0) is close to a stored pattern Xk, the pattern Xk+1 will be the first pattern 
recalled, and the remainder of the patterns will be recalled sequentially. 
 This temporal AM can store various kinds of pattern sequences, such as a single 
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chain (dotted line in Fig. 5), a cycle of patterns (dashed line in Fig. 5), or a tree (the 
upper two patterns in Fig. 5). Generally, the temporal AM is able to save all 
one-to-one or many-to-one patterns, but not one-to-many patterns like that shown in 
Fig. 6. We will not discuss the patterns in Fig. 6 in this paper. 
 

 

Fig. 5. Various kinds of sequential patterns 
 

Fig. 6. One-to-many patterns 

 
 The original temporal AM proposed by Amari (1972) is implemented according 
to the Hebb's postulate of learning, which is similar to the HM, as follows: 
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This temporal associative memory has asymmetric weight and no threshold. However, 
it has the same drawback as HM, low capacity. Amari's method usually cannot 
memorize complete patterns, as we will see in simulations described later. 
 The idea presented in Sect. 2 is also applicable to the temporal AM or any other 
hetero-AM. The difference is that in the auto-AM, all the states in the basin of a 
pattern will converge to this pattern while in the temporal AM, all the states in the 
basin of a pattern will evolve to its next pattern. To train weights is to shift and rotate 
the hyperplanes to separate patterns into two divisions according to the ith bits of their 

next patterns. If 11 =+k
iX , Xk should be in the positive division of the hyperplane and 

in the negative division if 11 −=+k
iX . 

 Therefore, the whole algorithm in the previous section can be used to train the 



90    526 U1180 neural networks 

temporal AM with slight modification. The modified algorithm is listed below. 
1. Initialize the weights according to the following equations: 
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Then normalize Wi, i = 1, …, N. 

2. Set i to 1. 
3. For neuron i, calculate the distances from all patterns to the hyperplane, that 

is, 
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Find the positive minimal distance dp and negative minimal distance dn : 
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4. If all patterns have 11 =+k
iX , set iθ  to a large negative value less 

than N− , increase i by one, and go to step 3. 

If all patterns have 11 −=+k
iX , set iθ  to a large positive value greater than 

N , increase i by one, and go to step 3. 
Note that we move the hyperplane outside the range of the hypercube, 
where N  is the distance between each corner and the origin. 

5. We shift the hyperplane to the midpoint between pattern p and pattern n to 
maximize the minimal distance as follows: 
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6. We rotate the hyperplane to increase the distances from both pattern p and 
pattern n to the hyperplane : 
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      j = 1, …, N. (20) 
where α is the learning rate. Normalize Wi. 
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7. Repeat Eq. (16) and Eq. (17) and compute the new p
id  and n

id . If the new 

2/)( n
i

p
i dd −  is larger than the previous m

id , go to step 3 and continue. If 

not, undo Eq. (20) and go to step 8. 
8. Increase i by one. If i is less than or equal to N, go to step 3. If not, stop. 

 The algorithm above is the same as that used to train auto-AM in the previous 
section except for Eqs. (15), (17), and (20). 
 We initialize the weights using Amari's method in Eq. (15) and update weights 
according to Hebb's postulate in Eq. (20). Then, we calculate all the distances from all 
the patterns to the hyperplane. Among the patterns which are located at the positive 
division, the one with minimal distance is chosen in step 3, and so is the pattern in the 
negative division. Then, we move the hyperplane to the midpoint between these two 
patterns just chosen according to step 5 and rotate this hyperplane to make it face 
these two patterns more right in step 6. These steps are repeated until the minimal 
distances cease to increase. If all the patterns are located in a single division, we 
simply move the hyperplane outside the hypercube, as described in step 4. 
 

5 Experiments 

Next we will give some simulations. We will first give experimental results to 
compare the Little model (LM) (Little 1974; Little and Shaw 1975), the ECR model, 
and the ETAM algorithm. Several issues, such as the number of stable states, the 
number of limit cycles, and fault tolerance, will be discussed. These three approaches 
were applied to a fully connected network. The difference among these three 
approaches lies in the learning phase. We will give examples of utilizing the ETAM in 
a pattern recognition problem. Below, we will first briefly review these algorithms. 
 

5.1 Little Model 

 The HM is constructed by using the outer product rule to compute the weights as 
follows: 
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Several characteristics are worth noting. Elements on the diagonal of the weight 
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matrix, wii, are zero. This means that all the neurons have no self-feedback, and this 
has the effect of reducing the number of spurious stable states for the reason that 
overlarge self-feedback will cause neurons to tend to retain their previous states. The 
zero-diagonal and symmetric weight matrix forces the HM to always converge to a 
stable state in asynchronous dynamics. However, the model we are interested in here 
is called the Little model (LM) and is similar to the HM. It differs from the HM only 
in that it uses synchronous dynamics. This forces the network to always converge to 
not only a stable state, but also limit cycles of length two. 
 

5.2 Error-Correction Rule 

The ECR is used to adjust the weights in proportion to the error term )]([ tvX i
k
i − . At 

the beginning, we randomly assign initial values to all the weights, then we adjust all 
the weights according to following equations: 
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where η is a positive constant which determines the rate of learning. The pattern Xk 
used to train the network is chosen randomly from among all the patterns. Adjustment 
will continue until there are no more errors. 
 

5.3 Comparisons for Auto-Associative 
Memory 

Table 1 lists experimental results for (N = 5, P = 5), (N = 5, P = 3), (N = 10, P = 
5), (N = 10, P = 3). In each experiment, we present ten sets of randomly produced 
patterns to the three methods, obtained the information about the number of stable 
states, limit cycles, etc., then calculated the averaged results. For each row item, the 
following explanation is offered: 
 SP [No. of stored patterns ( /P)]: 

given P patterns, the number of patterns successfully stored. 
SS [No. of stable states (/2N)]: 

the number of stable states. 
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TS [No. of states to stable (/2N)]: 
the number of states converging to all stable states.(≥SS) 

C [No. of cycles]: 
the number of limit cycles. 

IC [No. of states in cycles (/2N)]: 
the number of states involved in all limit cycles. 

TC [No. of states to cycles (/2N)]: 
the number of transient states falling into limit cycles. 

R [recovery (/NP)]: 
given NP 1-bit error patterns, the number of patterns converging to the 
original stored patterns. 

 
Table 1. Comparisons among the Little model (LM), error correction rule (ECR), and 
error tolerant associative memory (ETAM) 
 
 LM ECR ETAM  LM ECR ETAM 
N=5, P=5 
SP(/5) 
SS(/32) 
TS(/32) 
C 
IC(/32) 
TC(/32) 
R(/25) 

 
1.8 
4.2 
14.6 
2.7 
5.4 
7.8 
3.2 

 
5 
15.2 
16.8 
0 
0 
0 
3.9 

 
5 
17.6 
14.4 
0 
0 
0 
5.5 

N=10, P=5 
SP(/5) 
SS(/1024) 
TS(/1024) 
C 
IC(/1024) 
TC(/1024) 
R(/50) 

 
1.9 
5.0 
744.8 
44.3 
88.6 
185.6 
12.1 

 
5 
43.9 
978.4 
0.2 
0.4 
1.3 
13.5 

 
5 
60.0 
964.0 
0 
0 
0 
38.9 

 LM ECR ETAM  LM ECR ETAM 
N=5, P=3 
SP(/3) 
SS(/32) 
TS(/32) 
C 
IC(/32) 
TC(/32) 
R(/15) 

 
2.4 
5.2 
13.0 
5.5 
11 
2.8 
4.0 

 
3 
7.1 
24.9 
0 
0 
0 
4.0 

 
3 
4.8 
27.2 
0 
0 
0 
10.9 

N=10, P=3 
SP(/3) 
SS(/1024) 
TS(/1024) 
C 
IC(/1024) 
TC(/1024) 
R(/30) 

 
2.6 
6.8 
553.4 
84.9 
169.8 
294.0 
21.3 

 
3 
20.2 
1003.2 
0.2 
0.4 
0.2 
8.6 

 
3 
6.2 
1017.8 
0 
0 
0 
29.0 

 
 The LM has a rather low capacity, so it cannot store all the patterns in all the 
situations. The maximum number of patterns stored in the LM is similar to that of the 
HM, which is N/4 ln N (Weisbuch and Fogelman-Soulié 1985; McEliece et al. 1987). 
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This number has been improved by Mazza (1997). Also, the LM produces many limit 
cycles. 

For these two reasons, even though it produces the fewest stable states, this 
advantage becomes redundant. When the number of patterns is small enough 
compared to that of neurons, recovery from distorted patterns using the LM has 
acceptable performance, as Table 1 shows with ten neurons and three patterns. 
However, when there are more patterns, the LM performs poorly in terms of error 
tolerance, and so does the ECR. Note that in this experiment, the patterns were 
randomly generated, and some differed by only one or two bits. In this situation, it is 
reasonable that not all 1-bit errors can be corrected. 
 The patterns given could be successfully memorized using the ECR. Regarding 
other issues, the ECR produced very few limit cycles. However it produced spurious 
stable states, and the error tolerance of the ECR was not very good either. This is 
because the criterion based on which training to terminates is accuracy, not error 
tolerance. 
 For the ETAM, these patterns are guaranteed to be saved because if errors occur, 
Eqs. (9) and (10) will correct them immediately. Comparing the ECR and the ETAM, 
the ECR produces more spurious stable states than the ETAM does when there are 
few patterns and produces fewer spurious stable states when there are more patterns. 
This is because the ETAM continues training until the minimal distance cannot be 
increased further. A good minimal distance is easy to achieve when there are fewer 
patterns but difficult to obtain when there are more patterns. Therefore, Eq. (12) is 
repeated, the self-feedback weights wii continue increasing, and more spurious stable 
states are generated. Overlarge self-feedback will cause a neuron to tend to stay in its 
previous state and will produce more stable states. The extreme situation is that in 
which all the weights and thresholds are zero except wii, which are all positive. In this 
case, all the neurons remain unchanged, and all the global states are stable. We expect 
the converged matrix to have weights of this kind for a large set of difficult patterns. 
 The ETAM produces no limit cycles. Again, this is because of the larger 
self-feedback. When self-feedback is large, all neurons tend to stay in their previous 
states; hence, the number of limit cycles can be effectively reduced. With the ETAM, 
the performance in terms of recovery from noisy patterns is much better than that of 
the other two methods for the reason we enlarge the neighborhood of the stored 
pattern until no more improvement is possible. The larger the distance is, the more 
error the AM can tolerate. 
 Although the number of spurious stable states is increased by the ETAM because 
of the nonzero diagonal elements in the weight matrix, this has the effect of reducing 
the number of states in limit cycles and improving proformance. This is a trade-off. 
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Since we do not want a slightly noisy pattern to converge to an incorrect stable state, 
better error tolerance has priority. Also, detecting whether a pattern falls into a limit 
cycle is much harder than detecting whether a pattern converges to an incorrect stable 
state. Therefore, we would rather avoid limit cycles. Note the computation cost of 
ETAM is about five to ten times that of ECR in all of our simulations. 
 

5.4 Example I for Auto-Associative Memory 

 This example is taken from the work of Tank and Hopfield (1987). The original 
example is like a memo with six attributes for each person. The goal is to store three 
patterns (1, 1, 1, -1, -1, -1), (1, -1, 1, 1, -1, 1), and (1,1, -1, 1, -1, -1) in an AM with six 
neurons representing six attributes. Using the LM, we obtain six stable states, which is 
a pretty good result. However, 15 2-cycles and 24 more transient states which 
converge to these limit cycles in synchronous mode exist. This means that the AM 
will seldom converge to the expected stable states and usually will not stop. Using the 
ECR no cycle exists, but eight more spurious stable states appear. Also, its error 
tolerance is poor because almost none of the one-bit neighbors of these three patterns 
can converge to the expected patterns. Using the ETAM, the performance is better. 
The number of stable states slightly increases to seven, but there is no limit cycles 
appear. About two-thirds of the one-bit neighbors can converge to the patterns to 
which they belong. 
 

5.5 Example II for Auto-Associative Memory 

Here, we will present another example of pattern recognition. There are ten 
template patterns from characters A to J as shown in Fig. 7. Each pattern is an 28×  
character, and 96 neurons are required. In Table 2, we list the Hamming distances 
between any two patterns. Ideally, the minimal Hamming distance for a pattern 
divided by two should be the ideal error tolerance for that pattern. However, the result 
is not as perfect as imagined due to the linear separability. Consider Fig. 8. The ideal 
radius is illustrated by the circle around each dot. To linearly separate these circles is 
hopeless. The actually achievable radius is the distance from the pattern to the straight 
line. 
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Fig. 7. The ten patterns 

 
 
 
 
 
 
 
Fig. 8. The ideal radius is illustrated by the 
circle around each point. The actually 
achievable radius is the distance from the point 
to the straight line 

 
 

 To determine the actually achievable radius of each pattern, we calculate k
id  for 

all the neurons according to Eq. (8) for each template pattern after the learning 

converges. If a bit j of pattern k is reverted, the k
id  will increase or decrease by 2wij, 

depending on whether the signs of k
jX  and wij are identical or not, respectively. If 

| k
id | is larger than the sum of the k
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where w’ij are weights sorted in descending order according to their corresponding 

k
i

k
jij XXw . Note that there is at least one term (the largest one being k

i
k
iii XXw ), 

which has a positive value. Equation (25) will be satisfied, at least when k
ir  = 0. The 

radius of pattern k is the minimal one among the radii of all the neurons. Table 3 
presents the result. First, we find that the HM memorizes none of these patterns, and 
neither does the LM. There are always several incorrect bits in the recalled pattern. 
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Therefore, we did not include the HM or the LM in the following simulation. By 
applying the ECR, all patterns are successfully saved. However, the radii are all zero 
because training stops as soon as no further errors occur, and error tolerance is not 
considered. With the ETAM, all the patterns are stored and have two or three radii. 
Apparently, the actual radius is much smaller than the ideal radius, but the worse 
situation rarely occurs; we can see this in Table 4. For each pattern, we randomly 
generated 1000 noisy patterns with 10, 20, 30, and 40 error bits, and fed these noisy 
patterns into the trained AM. The numbers of successfully recovered patterns are 
listed. Almost all noisy patterns with 10 errors are recovered, and more than 80% of 
the patterns with 20 errors were recovered. The number of recovered patterns is 
roughly proportional to the ideal radius of each pattern. One thing worth noticing is 
that there is no pattern fell into limit cycles in any of 40,000 experiments. The ETAM 
performs excellently in reducing the number of limit cycles and improving error 
tolerance. 
 There is no efficient way to measure the exact sizes of basins of attraction in 
such a large network, which has 296 totally states. Actually, we have tested the basin 
sizes on a modern personal computer using brute force. It took us three weeks and we 
still failed to reach the boundaries of the basins of the three patterns, A, B, and C. 
According to the records, their basins must be huge. Instead, we use an eclectic way, 
testing the error tolerance, to approximately reveal the huge basins of the stored 
patterns. Better error tolerance must result from large basins of attractions. 
 Also, as shown in Table 4, we tried to retrieve patterns in asynchronous mode. 
Although the ETAM is designed for the synchronous mode, it is suitable in 
asynchronous mode, neurons are processed sequentially. An earlier recovered error 
may aid the correction of later errors. Restoring a noisy pattern will result in much 
benefit from local corrections. This kind of correction is different from that in 
synchronous mode since all neurons are processed in a global sense. However, we still 
cannot predict which the synchronous mode or the asynchronous mode will be better 
in every situation. 
 
 
 
 
 
 
 
Table 2. Hamming distances between all the patterns 
 A B C D E F G H I J 
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A  44 36 36 56 57 24 46 68 56 
B 44  34 10* 20 27 32 24* 58 50 
C 36 34  28 42 45 16* 54 48 46 
D 36 10* 28  26 33 30 34 60 56 
E 56 20 42 26  13* 46 24* 50 48 
F 57 27 45 33 13*  53 27 49 43 
G 24* 32 16* 30 46 53  48 56 50 
H 46 24 54 34 24 27 48  66 52 
I 68 58 48 60 50 49 56 66  28* 
J 56 50 46 56 48 43 50 52 28*  
 
Table 3. Actual radius of each pattern for the error tolerant associative memory 
(ETAM) and error correction rule (ECR) 
 A B C D E F G H I J 
ETAM 3 2 2 22 2 2 2 3 3 3 
ECR 0 0 0 0 0 0 0 0 0 0 
 
Table 4. Error tolerance for the error tolerant associative memory (ETAM) and error 
correction rule (ECR) 
 A B C D E F G H I J 
ETAM in synchronous mode 
10 1000 980 1000 989 993 989 998 1000 1000 1000 
20 996 840 975 868 908 874 966 995 979 999 
30 935 381 697 456 602 612 610 866 746 951 
40 450 37 150 47 117 163 57 255 97 461 
ETAM in asynchronous mode 
10 1000 998 1000 1000 999 999 1000 1000 1000 1000 
20 997 950 983 969 957 965 996 988 997 1000 
30 938 673 833 811 671 707 820 701 854 945 
40 474 190 400 289 115 104 312 78 126 432 
ECR in synchronous mode 
10 350 289 50 73 123 25 219 31 92 32 
20 189 163 11 19 44 11 75 4 32 8 
30 54 40 3 1 4 5 12 3 5 0 
40 4 1 0 8 0 0 0 0 0 0 
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5.6 Example I for Temporal Associative 
Memory 

 
 In this section, we present simulations for the temporal AM. There are ten 
patterns, from characters A to J. We require the temporal-AM to store these patterns in 
different orders. In Fig. 9a, they are saved as a chain, in Fig. 9b, they are saved as a 
cycle, and in Fig. 9c, they are saved as a tree. In general, the patterns can be saved 
similar to a water system. The basins of the patterns from the river valley in the 
system. All the patterns are designed to transferred to a certain next pattern, and 
finally converge to a final stable state or a limit cycle. 
 In these three simulations, we use both Amari's method as Eq. (14) and the 
algorithm presented in the previous section to train the memory. We found that using 
Amari's method in our simulation, cannot store all the patterns. Only character J can 
be correctly recalled in the chain of patterns, only A and B in the cycle of patterns, and 
only B in the tree of patterns. 
 The tree AM is extremely useful in speech recognition. Space is needed to 
elaborate such an application. We will briefly introduce the techniques developed in 
our laboratory for recognizing Chinese speeches. We build a tree for each Chinese 
character pronunciation. There are 1309 character pronunciations in total. Fifty 
sequences of binary coded speech templates in melscale are collected for each 
character and used to train its tree AM. Each tree has a different form, which is 
obtained by means of training with these 50 sequences. This tree replaces the linear 
neural array (Liou et al. 1996). A sequence is composed of time-warped temporal 
patterns for a character pronunciation. These 50 sequences are used to train the ETAM 
repeatedly using the provided algorithm. The partial matches among the training 
sequences determine the tree form. The time warping will not affect the form of the 
tree. It will introduce noise into the templates. The ETAM can restore such noisy 
patterns. During the retrieving phase, a sequence of unknown speech templates is 
applied to the trained 1309 trees in parallel. The credit is accumulated at each tree root. 
This is similar to a river system, where we can collect all the water at the river mouth. 
The water flows into any branch river or its valley will follow the river to the mouth. 
Any unknown pattern that falls in the tree valley will evolve to the tree root. 
Recognition is achieved by finding the best credit among the 1309 trees. This 
technique is particularly useful in recognizing Chinese voice commands. We have 
obtained much better performance using these trees than the arrays given by Liou et al. 
(1996). The ETAM has been designed to learn rhymes from musical notes. After 
training, it can generate varying sequences of notes with similar melodies. 
 With the algorithm presented in the last section, we can successfully store these 
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patterns in varying order. To test its error tolerance, we randomly generate noisy 
patterns, then check how many can converge to the template patterns. Due to its 
dynamic property, the temporal-AM will shift to a different pattern after every pass 
and will not converge to a stable pattern in the long run like the auto-associative 
memory. Therefore, we have two parts of each simulation. The first one is used to 
operate the network in one single pass to see whether the correct next pattern will be 
recalled. We call this part the recall rate. The second part is to operate the network 
until it converges to a stable or a limit cycle to see whether the final state or cycle 
belongs to the sequence trained. We call this part the converge rate. The results of 
these two parts are shown in Fig. 10. 
 In Fig. 10a, the recall rate is more than 90% when five errors occur, and it 
decreases rapidly with the increase in the number of errors. However, as shown in Fig. 
10b, the convergence rate is much higher than the recall rate and remains at 90%, 
even when there are 30 errors. Sometimes, a noisy pattern cannot shift to the next 
correct next pattern but will fall into the basin of attraction of the next pattern. 
Therefore, one more pass will make the pattern converge to the stored sequence. This 
figure shows that the basins of all the patterns combine into a huge valley system for 
the tree. 
 The data shown in Fig. 10 were generated in the same way as those shown in 
Table 4. The data were averaged over patterns to plot the figure. 
 

 
      (a) 

 
    (b) 
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   (c) 
Fig. 9a-c. The ten patterns in varying order. a A chain; b a cycle; c a tree 
 

 (a) 

 (b) 
Fig. 10a-b. The recall rates and convergence rates 
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5.7 Example II for Temporal Associative 
Memory 

 
 In this section, we will present one more application. We can use our method to 
implement a deterministic finite state automata (DFA) in a temporal-AM. In Fig. 11, 
there is a DFA which accepts all strings containing 01011 as a substring. There are six 
states and two input alphabet {a, b}, and 1226 =×  transition rules. We encode each 
transition rule into a pattern, as shown in Table 5. Each of the first six neurons 
represents a state. The neuron representing the current state is on, and the others are 
off. The other two neurons are input neurons. When input is a (or b) the seventh (or 
eighth) neuron is on, and the other one is off. First, we set the state to initial state S0. 
When an input is received, we clamp it into the two input neurons and let the six state 
neurons operate in synchronous mode. After a single pass, we implement the next 
input, and so on. When the inputs have all been implementd, we check if the current 
state is the final state S5. After training the AM using our method, we find that this 
DFA can be encoded into this temporal-AM successfully. When we increase the 
number of state neurons, this DFA can tolerate noise in state neurons. 

 
Fig. 11. The deterministic finite state automata (DFA) recognizing 01011 
Table 5. The transition rules and corresponding patterns 
State Input Next Pattern 
S0 a S1 100000 10 → 010000 
S0 b S0 100000 01 → 100000 
S1 a S1 010000 10 → 010000 
S1 b S2 010000 01 → 001000 
S2 a S3 001000 10 → 000100 
S2 b S0 001000 01 → 100000 
S3 a S1 000100 10 → 010000 
S3 b S4 000100 01 → 000010 
S4 a S3 000010 10 → 000100 
S4 b S5 000010 01 → 000001 
S5 a S5 000001 10 → 000001 
S5 b S5 000001 01 → 000001 
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6 Discussions 

  

6.1 About the Error-Correction Rule 

 In Eq. (22), the ECR trains AM according to the error term, and the iteration 
stops when there are no more errors. This terminating criterion can definitely achieve 
correctness, but an AM without error tolerance is useless since the patterns we present 
will usually be distorted. Therefore, we may modify the terminating criterion of the 
ECR to postpone the end of training and enlarge the summation result in Eq. (24), 
which is the distance in the ETAM. 
 Then, Eq. (24) becomes  
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where γ, the terminating criterion, is a positive constant. This equation was given by 
Gardner (1987, 1988).With γ equal to zero, we obtain the original error correction rule. 
Since γ is positive, it is rather difficult for the learning to achieve the correct result. If 
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distance in Eq. (8), to make vi(t) positive. Therefore, even though a few bits are wrong, 
the summation can still retain the same sign. Doing this has the same effect that the 
ETAM has in pushing the plane as far as possible away from the patterns. However, 
Eq. (22) together with Eq. (26) will not rotate the planes the same way as Eq. (12). 
 How to select γ is a problem. If γ is too small, good error tolerance cannot be 
achieved; while γ is too large, the iteration time will be too long and may never stop. 
We can gradually increase the value of γ whenever a lower value is reached by the 
learning in Eq. (26). 
 

6.2 About Error Tolerant Associative Memory 

 Pushing planes forces each pattern to occupy more state space and, hence, 
enlarges the basin of attraction of the corresponding pattern to which all nearby global 
states will finally converge. Hence, these patterns are harder to forget and easier to 
recover. 
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 In the ETAM algorithm, the terminating criterion is that the minimal distance no 
longer increases. In order to avoid the states being trapped, we can improve the 
terminating criterion (in learning step 7 in Sect. 2) by monitoring the decrease in the 
minimal distance two or more times successively. We find that doing this effectively 
improves the result. However, this may cause the iteration time to be long while the 
original ETAM is guaranteed to stop. 
 When it is found that all the patterns' i-th bit are the same, say 1, we simply stop 
the training procedure for this neuron and set the threshold θi to a large negative 
number. This ensures that this neuron will eventually converge to 1, no matter what 
the initial state is. Also, this will save much time and reserve more space for newly 
arriving memories. 

Finally, in the ETAM, the weights are updated according to Eq. (12) or Eq. (20). 
Although the ETAM is designed based on the geometric viewpoint, it meets Hebb's 
postulate of learning. When two neurons fire at the same time, the weight between 
them is increased; otherwise, the weight is decreased. This is quite similar to many 
other learning methods. The difference is in the way the pattern used to adjust the 
weights is chosen. Neurons’ weights will be tuned only for those most critical patterns 
selected by Eq. (9) or Eq. (17). These critical patterns have the attention of the 
neurons. This is similar to support vectors (Boser 1992). 

As for biological modeling, the self-feedback synapse and the threshold of each 
neuron are active where the neuron screens out vast amounts of noncritical patterns to 
reduce the adaptation activities on its synapses. Its threshold will adapt to stand for the 
critical patterns. Its synapses will adapt to keep the critical patterns as discriminable 
as possible. A simple thresholding unit and Hebbian synapses are necessary for a 
neuron to carry out this modeling. 

Note when one uses {0, 1} as the state values instead of {1, -1}, one can use 
coordinate transformation as for the HN to transform these two kinds of state value 
representations. This transformation scales and shifts the hypercube {-1, 1}N to match 
the hypercube {0, 1}N. Substituting {Xi = 2Yi – 1, i = 1, …N} in the retraining 
algorithm will give the formulas in {0, 1}N space. The diagonal length of the 
hypercube should be scaled accordingly. 
 

6.3 Nonnegative Definiteness 

 We noted earlier that large self-feedback (wii) is of benefit to nonnegative 
definiteness and, hence, to convergence. This is obvious in the following equation: 
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Nonnegative definiteness requires that xTWx be greater than or equal to zero for all 
vectors x. On the right-hand side of Eq. (27), a positive wii can increase xTWx. 
Therefore, large self-feedback has the effect to improving convergence and reducing 
limit cycles. Also, it increase the number of spurious stable states. 
 In the geometric sense, large wii means that the ith hyperplane is nearly 
perpendicular to its corresponding axis. If the thresholds are small or zero, then most 
of the corners in which the ith bit is equal to 1 will lie in the positive division while 
most of the corners in which the ith bit is equal to -1 will lie in the negative division. 
Again, this shows that large self-feedback is good to stability. 
 


