
526 U1180 neural networks 1

Chapter 1

Reification of Boolean Logic

The modern era of neural networks began with the pioneer work of McCulloch
and Pitts (1943). McCulloch was a psychiatrist and neuroanatomist; he spent some 20
years thinking about the representation of an event in the nervous system. Pitts was a
mathematical prodigy, who joined McCulloch in 1942.

The McCulloch-Pitts model of the neuron is shown in Fig. 1. The input xi, for i =
1, 2, …, n, are 0 or 1, depending on the absence or presence of the input impulse at
instance k. The output signal of this neuron is denoted as o. The firing rule for this
model is defined as follows

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

≥
=

∑

∑

=

=+

Txwif

Txwif
o

n

i

k
ii

n

i

k
ii

k

1

11

0

1

 Fig. 1. McCulloch-Pitts neuron model, a binary device (1943).

 The first paper that refers finite-state machine, AI and recurrent neural network
as automaton is written by Kleene (1956).

“Every finite-state machine is equivalent to and can be ‘simulated’ by some
neural net. That is, given any finite-state machine, M, we can build a certain neural
net NM which, regarded as a black-box machine, will behave precisely like M!” by
Minsky (1967).

2 526 U1180 neural networks

Σ

Σ

In Kremer (1995) a formal proof is presented that the simple recurrent network
has a computation power as great as that of any finite-state machine.

Although this neuron model is very simplistic, it has substantial computing
potential. It can perform the basic logic operations NOT, OR, and AND, with
appropriately selected weights and thresholds. As we know, any multivariable
combinational function can be implemented using either the NOT and OR, or
alternatively the NOT and AND, Boolean operations.

(a)

(b)

+1

-1

x1

x2

W1 = +1

W2 = +1

W0 = -1.5

+1

y
AND

+1

-1

x1

x2

W1 = +1

W2 = +1

W0 = +1.5

+1

y
OR

526 U1180 neural networks 3

Σ

Σ

(c)

Fig. 2(a)~(c). Neuronal implementation of AND, OR, and MAJ logic functions.

Fig. 3. A two-input neuron.

Fig. 4. Separating line in pattern space.

+1

-1

x1

x2

W1

W2

W0

x0 = +1

y

analog
output

q

binary
output

x1

x2

(+1, +1)

(+1, -1)

(-1, +1)

(-1, -1)

Separating Line ♁

♁♁

θ

♁

θ

+1

-1

x1

x3

W1 = +1

W3 = +1

W0 = 0

+1

y
MAJ

x2
W2 = +1

4 526 U1180 neural networks

 Fig. 3 is a two-input neuron. In pattern space, the neuron can be represented as a
separating hyperplane (see Fig. 4). By adjusting the position of the separating line, a
single neuron can simulate 14 Boolean functions, except XOR and XNOR (see Fig.
5).

Fig. 5(a). The pattern space and truth table of XOR.

Fig. 5(b). The pattern space and truth table of XNOR.

 We need a single hidden layer with two neurons to solve the XOR problem.

x1 x2 XOR

-1 -1 -1

-1 1 1

1 -1 1

1 1 -1

x1 x2 XNOR

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

(+1, +1)
θ

(+1, -1)

♁

(-1, +1)

♁

(-1, -1)

θ

(+1, +1)
♁

(+1, -1)

θ

(-1, +1)

θ

(-1, -1)

♁

x1

x2

x1

x2

526 U1180 neural networks 5

Σ

Σ

Σ

Fig. 6(a). The form of a single hidden layer of two neurons and one output neuron.

Fig. 6(b). Separating lines in pattern space of XOR.

(+1, +1)
θ

(+1, -1)
♁

(-1, +1)
♁

(-1, -1)

θ

x1

x2

♁

♁

θ

θ

+1

-1

x1

x0 = +1

+1

-1
x2

x0 = +1

x0 = +1

+1

-1

binary
output

Neuron2

Neuron1

6 526 U1180 neural networks

 We list eight kinds of two-input Boolean function for reference and other
functions can be obtained by transfer the sign or inferred from the tips we have.

1.

2.

526 U1180 neural networks 7

3.

4.

8 526 U1180 neural networks

5.

6.

526 U1180 neural networks 9

7.

8.

10 526 U1180 neural networks

In above figures:
(a) Truth Table.
(b) Logic Gates.
(c) Graph Boolean function.
(d) Neural Networks.
(e) Geometrical Perspective on Neural Networks.
(f) η-expansion.

The graph Boolean function is using graph to represent Boolean function. In this
graph, if no two adjacent nodes have the same color the output of this function is true,
otherwise is false. If xi takes the color Blue it means that the variable is false, color
Green is true, and color Red is don’t care. The η-expansion will be explained in
chapter 7 and chapter 8.

Fig. 7. The Graph Boolean functions

One neuron can simulate 14 Boolean functions, and we use three neurons to

handle XOR and NXOR problem. The three neurons have 143 = 2744 combinations.
However, there are only 16 Boolean functions. Most combinations are duplications.

526 U1180 neural networks 11

X1 X2 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Logic

symbol
 ． ／ ／ ♁ ＋ ↓ ☉ ′ ⊂ ′ ⊃ ↑

 Table 1. The inputs, outputs, and logic symbols of all 16 Boolean functions.

F0 Null F8 NOR
F1 AND F9 Equivalence
F2 Inhibition F10 Complement
F3 Transfer F11 Implication
F4 Inhibition F12 Complement
F5 Transfer F13 Implication
F6 Exclusive-OR F14 NAND
F7 OR F15 Identity
 Table 2. The names of all 16 Boolean functions.

524

144 144 128 144 128

16

144 144

16

128 144 128 144 144

524

0

100

200

300

400

500

600

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Table 3. The numbers of combinations which make the same Boolean functions.

In three dimensions, binary input patterns occupy the corners of 3-cube. We have
104 methods by using one hyperplane to cut those 8 patterns into two classes.

(1) 0 : 8, 1*2 = 2 methods.
(2) 1 : 7, 8*2 = 16 methods.

12 526 U1180 neural networks

(3) 2 : 6, 12*2 = 24 methods.
(4) 3 : 5, 8*3*2 = 48 methods.
(5) 4 : 4, 3*2 + 8 = 14 methods.
So, one neuron can simulate 104 Boolean functions with three dimensions inputs.

We try to use the same method to generate all 256 Boolean functions. But we find that
using only three neurons (104*104*14) can not handle functions x1♁x2♁x3 and ~(x1

♁x2♁x3).

Fig. 2. The 3-2-1 neural networks and the Boolean function this network can’t handle.

 We reuse 3-3-1 4

functions and construct

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

F0 F14 F29 F

Table 4. The numbers o
three dimensi
architecture (1
 the following ta

44 F59 F74 F89

f combinations
on inputs.
04 combinations) to generate 256 Boolean
ble.

F104 F119 F134 F149 F164 F179 F194 F209 F224 F239 F254

 which make the same Boolean functions with

526 U1180 neural networks 13

F0 8751200
F1 1457568
F2 1457568
F4 1457568
F8 1457568
F16 1457568
F32 1457568
F64 1457568
F127 1457568
F3 926736
F5 926736
F10 926736
F12 926736
F17 926736
F34 926736
F48 926736
F63 926736
F68 926736
F80 926736
F95 926736
F119 926736
F15 888864
F51 888864
F85 888864
F7 628368
F11 628368
F13 628368
F14 628368
F19 628368
F21 628368
F31 628368
F35 628368
F42 628368

F47 628368
F49 628368
F50 628368
F55 628368
F59 628368
F69 628368
F76 628368
F79 628368
F81 628368
F84 628368
F87 628368
F93 628368
F112 628368
F115 628368
F117 628368
F23 601872
F43 601872
F77 601872
F113 601872
F6 205920
F9 205920
F18 205920
F20 205920
F33 205920
F40 205920
F65 205920
F72 205920
F96 205920
F111 205920
F123 205920
F125 205920
F27 157344
F29 157344

F39 157344
F46 157344
F53 157344
F58 157344
F71 157344
F78 157344
F83 157344
F92 157344
F114 157344
F116 157344
F24 58368
F36 58368
F66 58368
F126 58368
F25 56112
F26 56112
F28 56112
F37 56112
F38 56112
F44 56112
F52 56112
F56 56112
F61 56112
F62 56112
F67 56112
F70 56112
F74 56112
F82 56112
F88 56112
F91 56112
F94 56112
F98 56112
F100 56112

F103 56112
F110 56112
F118 56112
F122 56112
F124 56112
F30 43968
F45 43968
F54 43968
F57 43968
F75 43968
F86 43968
F89 43968
F99 43968
F101 43968
F106 43968
F108 43968
F120 43968
F22 31200
F41 31200
F73 31200
F97 31200
F104 31200
F107 31200
F109 31200
F121 31200
F60 28512
F90 28512
F102 28512
F105 3360

Table 5. The detailed data of Table 4. F128~F255 are the same as F127~F0.

14 526 U1180 neural networks

 So far, we observe how algebra, geometry, linear algebra, Boolean algebra, and
neural networks combined together. Neural networks utilize geometry and linear
algebra to solve the problem of Boolean algebra. In Boolean algebra, we tend to use
+‧~ → ≣ … those operator to solve problems. In neural networks, we use
hyperplane to cut space to find the solution. For example, if we want to implement
this truth table:

We may write down

ABCDDABCDCABCDBADCBABCDAF +++++= ,

and use Boolean theorems to simplify this expression or use
K-map method directly to get
 F = AC + BCD + ABD.
Then use logic gate to implement this Boolean function.
 AB

(You can find more information about Gate Logic or K-map
Method from “Contemporary Logic Design”, written by
Randy H. Katz, or other logic design books.)

 On the other hand, we use all the information from truth table (as training
patterns) to find a hyperplane that separates patterns correctly. The hyperplane we find
is 7.1651*A + 3.6203*B + 7.1653*C + 3.6203*D - 3.6196 = 0 (we use –1 in place of
0 to train the networks). Note that if patterns are not specified in truth table, their
value can be either +1 or 0 (-1) for us to obtain the applicable Boolean expression.
 We may say the neural network have the global sense, because it uses
information from all patterns to find the decision hyperplane. However, Boolean
algebra must parse the truth table one by one and use +‧~ → ≣ … these operators
we are familiar with to construct a Boolean expression. The Boolean function
corresponding to the hyperplane in neural networks may be strange, and hard for us to
understand. On the other hand, it has the freedom to find the solution without the limit

A B C D F
0 0 0 0 0
 0 1 0
 1 0 0
 1 1 0
0 1 0 0 0
 0 1 0
 1 0 0
 1 1 1
1 0 0 0 0
 0 1 0
 1 0 1
 1 1 1
1 1 0 0 0
 0 1 1
 1 0 1
 1 1 1

 00 01 11 10
00 0 0 0 0
01 0 0 1 0
11 0 1 1 1
10 0 0 1 1

CD

The K-map.

526 U1180 neural networks 15

of +‧~ → ≣.
 The variables x1 xi and operators + ~ can express all Boolean functions. For one
neuron, if it has two inputs, it can’t implement two functions - XOR and XNOR; if it
has three inputs, it can’t implement 152 functions in all 256 Boolean functions. As

input dimensions increase the capability of one neuron is decreasing (2D:
8
1

16
2
= , 3D:

2
1

256
152

>). We may consider that Boolean algebra is more powerful than neural

networks. Compare neuronal model equation)(0wxwy ii += ∑σ with Boolean

expressions only using operators + and ~:
Y = a1X1 + a2X2 + a3X3 + …. + anXn, ai = ~ or empty string, Xi = 1 or 0.

Notice that Xi only appears once in above equation. The neuronal model equation can
replace Boolean expression by w0 = 0, wi = +1 or -1, σ(x) = x and xi = 1 or 0.
Furthermore, wi is real number and function σ(‧) can be any proper function. So,

)(0wxwy ii += ∑σ is more powerful than Y = a1X1 + a2X2 + a3X3 + …. + anXn, ai

= ~ or empty string, Xi = 1 or 0. On the other hand, the above Boolean expression
can’t construct all Boolean functions without adding the nest form. Comparatively,
neural networks need multilayer constructions to implement all Boolean functions.
From above, neural networks are more powerful than Boolean algebra.

Exercises
1.1 (a) Design a feedforward network to divide the black dots from other corners with

fewest neurons and layers. Please specify the values of weights and thresholds.

 (b) Is it possible to do (a) with a single neuron? Why?

100

001 011

101

000

111

010

110

16 526 U1180 neural networks

1.2 Consider the neural network in Fig. P1. The value of each neuron can be 0 or 1
and the activation function used is f (net) = {1, net>0; 0, net<0}. Each neuron
decides its own value according to the values of neighbors. We can adjust the
weights of neurons so that every neuron will have distinct set of action rules (e.g.
{000|0, 001|1, …, 111|0} is a set of action rules). If two neurons that have
different sets of action rules are considered to be different kinds, then, how many
kinds of neurons can we have in the network?

1.3 Design a feedforward network which provides the classification of the following

pattern vectors:
Class 1:
X = [0 0 0 0]t, [0 0 1 0]t, [0 0 1 1]t, [0 1 0 0]t, [0 1 0 1]t, [0 1 1 0]t, [0 1 1 1]t, [1
0 1 0]t, [1 1 0 0]t, [1 1 1 0]t, [1 1 1 1]t
Class 2:
X = [0 0 0 1]t, [1 0 0 0]t, [1 0 0 1]t, [1 0 1 1]t, [1 1 0 1]t

Please specify the value of weights and thresholds and use as few neurons and
layers as possible.

1.4 Please refer to p.217 in “Introduction to Artificial Neural Systems” by Jacek M.
Zurada.

M(J, n) = 2J, n ≧ J.

Is it enough to use J neurons as hidden layer to represent all
n22 Boolean

functions when n = J?
1.5 To compare neural model equation y = σ(Σ wixi + w0) with Boolean equations

which use only operators ∩, ∪ and ~.
(1) List all different Boolean equations in the forms as follows.

(a) Y = a1X1 ∪ a2X2 ∪ a3X3.
(b) Y = a1X1 ∩ a2X2 ∩ a3X3.
(c) Y = a1X1 ∪ a2X2 ∩ a3X3.
(d) Y = a1X1 ∩ a2X2 ∪ a3X3.

(a1, a2, a3 can be ~ or empty string.)

Fig. P1.

526 U1180 neural networks 17

And specify which equations appear in neural model’s 104 functions, which
didn’t. (Hint: You can use the 3-cube to represent Boolean equations)

(2) We have five methods to cut the cube to get the 104 functions. For each
cutting method, write a corresponding Boolean equation in the forms given
above.

1.6 We have these training patterns:
 0: (0, 0, 0), (0, 1, 1), (1, 1, 0)
 1: (0, 1, 0), (1, 0, 0), (1, 1, 1).

The training result:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4.0 2.0- 2.5
0.37 3.7- 2.5
1.0- 1.5 0.9-

1W

[]6 6 52 =W
[]3.1- 2.0- 0.95-1 =Bias

Bias2 = -3
(1) Write the Boolean function of training patterns. (Make simplification)
(2) Write the nested Boolean function of the network architecture for each

neuron. Notice that the Boolean function you wrote must be in the forms
given in problem 1.

(3) Prove that function (1) and (2) are equivalent.
(4) (0, 0, 1) and (1, 0, 1) didn’t appear in training patterns. So, we can get four

different Boolean functions. Please choose the simplest Boolean function and
compare it with the output of the above neural network of these two patterns.

1.7 Training patterns:
(1) Write the Boolean function.

(You must make simplification)
(2) Design a 3-2-1 neural network

to classify these patterns. If it
cannot classify these patterns
correctly, construct your own
neural network to classify these
patterns.

1.8 Boolean functions and neural network have a one to one map in architecture.
Please find the map and make a description of it.
Hint:)()(321321 xxxxxxy ∧∧¬∨∧¬∧= can map to this neural network

bias

bias

18 526 U1180 neural networks

1.9 Find the coloring graph solution for Yxxx =⊕⊕ 321 .
Remember Yxxx =⊕⊕ 321 is,

coloring graph is similar to that in page 79
“Turing Machines” by J. E. Hopcroft, 70-80.

1.10 Proposition: The Boolean function is defined as: there are six Boolean variables
as input (x1, x2, …, x6) of this function, the output of this function is 1 only when
any two variables are 1, (more than two variables or less than two variables are 1,
the output of this function is 0.)

(a) Use Boolean algebra or Boolean function to express this proposition.
(b) Write a program (Turing machine, Lisp, C, or other programs) to

simulate this expression, the input of the program is these six Boolean
variables, the output of the program is according to the proposition.

(c) Discuss the trained weights of the multilayer network in homework
for the above proposition. Can you figure out the meaning of those
weights?

(d) Construct a multilayer network for this proposition. Use six neurons
in input layer and one neuron in output layer.

1.11 In class we discussed a neuron with two Boolean variables as input. This neuron

can simulate 14 Boolean functions (14 Boolean states) excluding the XOR.
Assume the neuron is in state Si, which is one of the 14 Boolean functions. When
we slightly tune the weights w1 w2 w3 of this neuron the current state Si will
change to Sj first. Discuss all possible such first Sj when this neuron is in Si for
all 14 states, i = 1~14.

1.12 Write an algorithm to train the neural network in problem 2 by its training

y

x1 x2 x3

1 1 1 1
1 -1

1 -1
2

2 3

526 U1180 neural networks 19

patterns. Notice that the algorithm must be constructed by the following
subroutine:

train_one_neuron(x, d, w, y, Δw)
input: x, d, w. output: y, Δw.
x: an array of the input value.
d: a desire output.
w: the weights.
y: the output.
Δw: an array of the value of the weights should be added.

1.13 In appendix A we showed a modular design method for training ANN on data
flow machine. Each neuron’s desire response

is inducted from choosing bipolar sigmoid function 1
1

2)(−
+

= −ue
uσ . Please try to

formalize the desire response when we choose unipolar sigmoid function

ue
u −+
=

1
1)(σ

1.14 Discuss and analyze the results obtained in training a 1-3-2 ANN. You can use
the following results or your own results. The input is a continues number between 0
to 1 and output is a ‘S’ curve in the 2D plane.

0

0.5

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

011

010

111

110

001

000

101

100

-10 -8 -6 -4 -2 0 2
-2

0

2

4

6

8

10

12

000

001

010

011

100

101

110

111

1.15 (a) A dataflow information processing architecture is a MIMD architecture
without global or shared memory in which each processing element only operates
when all of the necessary information that it needs to function has arrive. Show that
neural networks are dataflow architectures.

20 526 U1180 neural networks

(b) Invent a concrete, detailed example of a dataflow architecture that is not a
neural network.

1.16 We have learned basic type of neural network:

We can directly use it to simulate Boolean logic. For example: OR Boolean
function: y=x1 OR x2, where x1, x2, y are Boolean variables having values {0,1}.

When above network use ‘hardlim’ active function, its output y=x1 OR x2.

Another example is AND Boolean function: y=x1 AND ¬x2

Please check the truth table for it by yourself and answer questions below:
(a) Draw the neural network that perform:

Note: the weights and bias should be {-1,1} for simplicity.

(b) Draw the neural network that peform:

Note: the weights and bias should be {-1,1} for simplicity.

(a) Can you formalize how to set up the weights and biases for a given OR

expression?

(b) Can you formalize how to set up the weights and biases for a given AND

expression?

(c) Try to use a 3-layers neural network for simulating the DNF equation:

)(
1∑=

+=
n

i ii xwfy θ

()4321 xxxxy ¬∨∨¬∨=

()4321 xxxxy ∧∧¬∧=

⎟
⎠
⎞⎜

⎝
⎛ ∧∧¬∨⎟

⎠
⎞⎜

⎝
⎛ ∧¬∧= 543321 xxxxxxy

526 U1180 neural networks 21

(f) The neural network’s outputs can be feedback as inputs like:

It can simulate many kinds of dynamic process like gene regulation and etc. If
n Boolean variables x1, x2, … , xn are changed by time and its value are known
for a period of time. We can build ANN model like above for these n-variables.
Please try to build an ANN model for the given 4-variables.

Time x1 x2 x3 x4
1 1 0 1 1
2 0 1 0 0
3 0 0 0 1
4 1 1 1 1
5 0 1 1 0
6 1 1 0 0
7 1 0 0 0
8 0 1 0 1

(Hint: first rewrite x1= F(x1, x2, x3, x4) and get its DNF)

