
52 526 U1180 neural networks

Chapter 4

The Hidden Tree in Multilayer

Network
Abstract – We develop a side direction process to assist the back propagation learning
algorithm to resolve the premature saturation problem. To build this side process, we
explore the idea of unfaithful representation which has been introduced in the tiling
algorithm (M. Mezard, and J. P. Nadal, 1989). The algorithm may grow to an
unpredictably large network for a given pattern set. This unfaithful representation is
equivalent to the ambiguous binary representation. Binary numbers are used to
represent the output binary vectors of hidden layers. More training patterns of
different classes map to the same binary number; more patterns are misclassified.
Besides, the presence of ambiguous binary representations is also an important
pointer of when and where we should add a new hidden neuron to the multilayer
perceptron. In this work, we explain the happening of ambiguous binary
representation and develop a method to alleviate it. Using this method, both the
number of ambiguous binary representations and the back propagation learning time
are drastically reduced.

1. Introduction to the ambiguous binary
representation

The back propagation (BP) algorithm is widely used for finding optimum weights

of multilayer neural networks in many pattern recognition subjects (T. J. Sejnowski,
and C. R. Rosenberg, 1986), (B. Widrow, and R. Winter, 1986). However, the critical
problems of the algorithm are its slow learning speed and convergence to local
minima (D. R. Hush, and B. G. Horne, 1993), (Y. Lee, S. H. Oh, and M. W. Kim,
1993). One of the major reasons of these problems is “ambiguous binary
representation”. Binary numbers are used to represent the output binary vectors of
hidden layers. More training patterns of different classes map to the same binary
number; more patterns are misclassified. In this section, we illustrate the happening of

526 U1180 neural networks 53

ambiguous binary representation.
 To solve the problem, we should release the factors that cause them. In (Y. Lee, S.
H. Oh, and M. W. Kim, 1993), it is proposed that “premature saturation” is one of the
reasons of these problems. Premature saturation is a phenomenon that the error of the
neural network stays significantly high constant for certain unpredicted period of time
during learning. It is also stated that premature saturation could be avoided by setting
the proper maximum value of initial weights. From our later discussion, we
recommend to use the hyperplane grid or random boundaries for each layer as the
initial weights to bound and discriminate all patterns as uniformly as possible. In our
study premature saturation is the result of bad encoding of the pattern space. For
example, the first hidden layer encodes the input pattern space to binary numbers (or
binary vectors) of length m, where m is the number of neurons in the first hidden layer.
Bad encoding causes the patterns of different classes map to the same binary number.
We call this kind of binary numbers “ambiguous binary representations”. Ambiguous
binary representations do result in the premature saturation. Note that this encoding
also preserves the input pattern neighbors in the neighborhood of Hamming tree for
each layer.
 One approach to the problem is using constructive algorithm: it begins with the
smallest possible network and gradually increases the size if the error is kept above a
level. The presence of ambiguous binary numbers is also an important pointer of
when and where we should add a new hidden neuron to the MLP. By analyzing each
individual ambiguous binary representation, we can constructively initialize the
weights connected with the newly added neuron.
 In the following we present simple cases to clearly illustrate the ambiguous
binary representation problem. Consider a classification problem consisting in
assigning training patterns of R2 to 2 predetermined classes, i.e., class 0 and class 1.
The training patterns of this classification problem are shown in Fig. 1. In Fig. 1(a),
“x” represents patterns that belong to class 0. Assume that we already implement this
classification using a three-layer neural network with 2 input units, 3 neurons in the
first hidden layer, 3 neurons in the second hidden layer, 1 output neuron, and 3 bias
units, as illustrated in Fig. 1(b). In this figure L1, L2, L3 represent the first, second,
third neuron in the first hidden layer and P1, P2, P3 represent the first, second, third
neuron in the second hidden layer and P’1 is the output neuron.
 Let the activation function used in this multilayer neural network be the
hard-limited function. Then the function of every neuron is F(X) = {0 if W‧X + w0 <
0, 1 if W‧X + w0 > 0}, where X is the input vector, W is the weight vector of the
hidden neuron or output neuron, and w0 is the bias of the hidden neuron.
 Now let’s state the detailed function of the first hidden layer. Assume that Fig. 1

54 526 U1180 neural networks

shows a perfect trained result of the BP learning algorithm. The three lines (or
boundaries) shown in Fig. 1 are the lines corresponding to the three hidden neurons in
the first hidden layer. The positive (F(X) > 0) and negative sides (F(X) < 0) of each
line are also displayed. The function lines of the first, second, third neuron of the first
hidden layer are { L1 : -1.3 * x + 3 * y = 3.9, L2 : x + 4 * y = -3, L3 : 2.3 * x + y = 1.3},
where x and y are the inputs to the input layer. The coefficients of x and y are the
trained weights of the neurons in the first hidden layer.

 The center region (polyhedral) in Fig. 1 lies on the negative part of L1, positive
part of L2, and negative part of L3. Thus this region is represented by the output binary
vector (010)’ of the first hidden layer. All of the seven binary representation regions
discriminated by the first hidden layer shown in Fig. 1 are the finest elementary
building blocks for all upper layers. All upper layers use the various combinations of
these finest building blocks to achieve the classification performance. This means,
when there exists a mixed class region in any of these seven elementary regions, such
as the elementary region (011)’ contains both types of patterns “x” and “o”, the
misclassification will persist with this ambiguous elementary region. This will cause
difficulty in including it for all upper layers no matter how we tune the weights
between the first hidden layer and the output layer.
 Notice that in X, Y space the neighborhood regions also neighbor in X’, Y’, Z’
cube. And the disconnected regions in X, Y space (like (011)’ and (100)’) also
disconnected in X’, Y’, Z’ cube. These two conditions are topology requirement
manifold. For example, the binary vector for the center region is (010)’ as in Fig. 1.
These two connected neighborhood regions have a common boundary L3 and have a

526 U1180 neural networks 55

Hamming distance of only one bit neighbor in the 3-D cube. All connected
neighborhood regions have an exactly one bit Hamming neighborhood distance. Far
and unconnected regions may have maximum Hamming distance of all three bits and
will not be neighbor in the 3-D cube. By the first hidden layer, the 2-class pattern
topology in input space is easily converted to the Hamming topology in unit
hypercube. In Hamming space, the neighborhood is counted in term of Hamming
distance. Since these regions are finite and countable for the MLP, the hyperspace
Hamming neighbors can be displayed by a Hamming tree structure with successive
fans (T. J. Sejnowski, and C. R. Rosenberg, 1986). With this trained MLP, all output
vectors of the first hidden layer can be presented as binary numbers of length of 3 (3
is the number of neurons in the first hidden layer). The total capacity of these binary
representations is 23 = 8. Note that there are seven representation regions can be
allocated in this plane, see (G. Mirchandeni, and Wei Cao) for details. In most cases
the number of representation regions is much less than the number of the training
patterns when these patterns are cluster type. Thus monitoring the Hamming tree
during BP learning is feasible in our processing.
 Every training pattern map to one corner point of the cube as shown in Fig. 2. In
general, the function H1 of the first hidden layer is a mapping H1 : R2 → {0, 1}3,
where 2 is the dimension of the input pattern space and 3 is the number of neurons in
the first hidden layer.

 Once a button layer reaches homogenous, we train its all upper layers using the
refined activation states next to this button layer, ex. use (x’, y’, z’) to train P1, P2, P3
and P1’, use (x”, y”, z”) to train P1’ when the L1, L2, L3 are all homogeneous borders.

56 526 U1180 neural networks

 Now let’s state the function of the second hidden layer. The function H2 of the
second hidden layers is H2 : {0, 1}3→{0, 1}3. That is, every neuron in the second
hidden layer decides a plane to divide the unit cube of the first hidden layer. The plane
(or boundary), P1, corresponding to the first neuron in the second hidden layer is
shown in Fig. 2. This neuron’s output for (010)’ is “1”, all others are “0”. Assume that
the three planes shown in Fig. 2 corresponding to the three neurons in the second
hidden layer are P1, P2, P3. The plane functions of P1, P2, P3 are {P1: -0.9 * x’ + 1.5 *
y’ - z’ = 0.95, P2: 2.5 * x’ – 3.7 * y’ + 0.37 * z’ = 2.0, P3: 2.5 * x’ – 2 * y’ + 4 * z’ =
3.1}, where x’ is the output value of the first neuron L1, y’ is the output value of the
second neuron L2, and z’ are the output value of the third neuron L3 in the first hidden
layer. The coefficients of x’, y’, and z’ are the trained weights. Then the training
patterns which map to the binary number (010)’ in the first hidden layer will cause the
first neuron in the second hidden layer “ON”. The training patterns which map to the
binary vector (111)’, (001)’, and (101)’ of the first hidden layer will cause the third
neuron in the second hidden layer “ON”.
 Fig. 2 shows that the cube is divided into five regions by the three planes, P1, P2,
and P3. Each region is represented by an output binary vector of the second hidden
layer. This means that each region is a combination of several finest element regions
of the first hidden layer. The region (001)’’ includes vertexes (111)’ and (001)’ which
are tow element regions of the first hidden layer. The region (011)’’ includes (101)’.
The region (010)’’ includes (100)’. We can see that the four regions in Fig. 2(b) which
are discriminated by the second hidden layer are elementary building blocks of the
output layers. This means that any ambiguous binary representation happened in this
layer will cause misclassification in the output layer.
 The outputs of the second hidden layer form a unit hypercube, too. The output
neuron also decides a plane to divide this cube. This is shown in Fig. 3 and the plane
function of the output neuron is {P1’: 5 * x’’ + 6 * y’’ + 6 * z’’ = 3}, where x’’ is the
output value of the first neuron P1, y’’ is the output value of the second neuron P2, and
z’’ is the output value of the third neuron P3 in the second hidden layer. The
coefficients of x’’, y’’, and z’’ are the trained weights.
 In each hidden layer, every binary number represents how many training patterns
of class 0 map to it and how many training patterns of class 1 map to it. If there are
only one kind of pattern of class 0 (or class 1) map to it, we say that this binary
number’s type is 0 (or 1) and homogenous. All binary representations in Fig. 1(a) are
homogenous representations for the first hidden layer. If there are both patterns of
class 0 and class 1 map to a same binary number, we say that its type is ambiguous or
unfaithful (M. Mezard, and J. P. Nadal, 1989). As an example, the center region in Fig.
4(a) is in this situation, i.e., the binary number (010) of the first hidden layer is

526 U1180 neural networks 57

ambiguous. The ambiguous binary number means that there are patterns belong to
different classes map to the same output binary vector of the first hidden layer or any
other hidden layer. If the region (010)’ of the first hidden layer maps to output (0)’’’,
the patterns of class 0 in this region are misclassified. This misclassification cannot be
corrected or learned by training the all weights between the output layer and the first
hidden layer. The region (001)’’ shown in Fig. 4(b) is also an ambiguous region for the
second hidden layer even when all regions of the first hidden layer are homogeneous.
Fig 4(c) shows a compound case.

 The four elementary regions discriminated by the second hidden layer are sowing
in the Fig. 2. All of the 4 binary representations are elementary building blocks of the
upper output layer. In our case this means the output layer P’ can discriminate patterns
based on combinations of these 4 elementary regions. For example, when there are
missed patterns in the region (001)’’ shown in Fig. 4(b), the BP cannot converge by
training the weights between the second hidden layer and the output layer.
 The fact is that the patterns which cannot be discriminated in the first hidden

58 526 U1180 neural networks

layer will mislead all upper layers’ weights. This is because the binary represented
regions of the lower layer are elementary building blocks of the regions of all its
upper layers. This fact provides us the clue to improve the performance of the BP
learning algorithm.
 By monitoring the ambiguous binary representations for each hidden layer, we
always can update the weights of the lowest hidden layer which contains any
ambiguous region to improve the performance without turning the weights of all
homogeneous layers below it. The learning starts from the most important first hidden
layer which provides the finest elementary regions until all binary vectors of that layer
represent homogeneous regions. Then we train the weights of the next upper layer and
frozen all lower homogeneous layers’ weights. An extra neuron is added to a hidden
layer only when it fails to be homogeneous during the learning.

2. The argumented learning algorithm and
simulation

Form Fig. 1, 2, and 3, each upper layer uses the successively combined discrete

regions of its lower hidden layers to achieve the performance. The ambiguous regions
in the lower layers can never be improved by adjusting the upper layers’ weights. The
ambiguous regions of the lower layers will confuse and mislead all its upper layers.
According to the idea stated in the last section, to solve the ambiguous binary
representation in the first hidden layer is more important than to solve the ambiguous
binary representation in the second hidden layer. Thus we can solve the ambiguous
binary representation problem by starting solving the ambiguous binary representation
from the lowest first hidden layer.

Now let’s consider how to solve the ambiguous binary representation in the first
hidden layer. Initially we may train a multi-layer neural network by the formal BP
learning algorithm (T. J. Sejnowski, and C. R. Rosenberg, 1986), (B. Widrow, and R.
Winter, 1986). When no further improvement is seen in the level of error, we monitor
the ambiguous binary representations of the first hidden layer (we check the presence
of the ambiguous binary representations of the first hidden layer). If the error is small
enough, we stop. Otherwise, only the lowest layer with ambiguous representations
will be trained using the BP algorithm. If there exists stubborn ambiguous binary
representations we add new neurons to the first hidden layer in an attempt to alleviate
the number of ambiguous binary representations and include more pattern information
flowing to the upper layers. To tackle this stubborn ambiguous binary representation
problem, we first identify the regions and patterns belong to this ambiguous binary

526 U1180 neural networks 59

numbers by calibrating the input pattern data. We then initialize the weights of the
newly added neurons. This initialization is focused on adding new discriminative
boundaries through each individual ambiguous region and keeping all other trained
hyper boundaries.

The local training for each stubborn ambiguous region method is:
(1) Locate an ambiguous region (stubborn).
(2) Find the small set of patterns in this region.
(3) For each member of this set finding its pair (the closest pattern in the other

pattern set).
(4) For each pair draw a bounding line pass the pair.
(5) Use this line as initialization for the new neuron that passes two kinds pattern

data.
(6) Only these added neurons are trained during retrain and avoid that all patterns

in this region are classified in the same side with one hyperplane.
Each ambiguous region can be analyzed individually. There are many methods for

resolving different kinds of ambiguous regions (M. Mezard, and J. P. Nadal, 1989).
We can also apply the method in (T. Denoeux, and R. Lengell, 1993) to any individual
ambiguous region.
 The learning starts from the first hidden layer and continues to the next upper
layer until there exists no such ambiguous representation in any layer. Monitoring the
ambiguous binary representation for each layer to help us understanding and
improving the progress of the learning, is the introduced side process in this
argumented learning algorithm. This will cost extra computations and memories.
When the patterns are well cluster type, the memory size for use in memorizing the
ambiguous representations is much less than the size of the total patterns. A Hamming
tree can point the presence of ambiguous binary representations during the formal BP
learning (T. J. Sejnowski, and C. R. Rosenberg, 1986). This tree is simple and clear
for our purpose. The extra computations for obtaining this tree are on the order of the
patterns with a well sorting algorithm. Fig. 5 shows the Hamming trees for several
kinds of ambiguous regions as in Fig. 4. The ambiguous regions of the lower layers
will propagate upwards along the tree to all linked regions of the upper layers. The
presence of an ambiguous region in a layer may come from its own wrong
combination of the homogeneous regions of the lower layer as in Fig. 4(b) and 5(b). It
also may come from carrying on an ambiguous region of the lower layer as in Fig. 4(a)
and 5(a). We can see the tree by reversing source flows spring to the tree root. Mixed
source will flow to its following route but will not pollute any up stream.

60 526 U1180 neural networks

For convenience, we may train a network by the formal BP algorithm and
monitoring the occurrence of premature saturation (The error of the network is
constantly high for a period of epoch). Once we detect its occurrence we trace the
presence of the ambiguous binary representations and correct them as possible from
the lowest ambiguous layer. The correction may be done by applying the formal BP to
that layer and all its upper layers. Anew neuron is added only when a stubborn
ambiguous representation cannot be resolved by the BP algorithm. The maximum
number of hidden neurons follows the discussion in (G. Mirchandeni, and Wei Cao).
 Fig. 6 shows the simulation result for a two-spirals problem. We can see that the
argumented method is significantly better than the formal BP algorithm. The problem
has 419(209+210) patterns which form the two spirals. The network has two hidden

Fig. 5. The Hamming trees correspond to the cases in Fig. 4. Encoding input
space (X-Y plane) or patterns into a tree structure.

526 U1180 neural networks 61

layers with 5 neurons in the first hidden layer and 25 neurons in the second hidden
layer. Fig. 7 shows the total amount of patterns belongs to the ambiguous regions in
each hidden layer during training. Using the formal BP algorithm and the argumented
BP algorithm respectively. Both trainings start with small random weights.

3. Discussions and conclusions

 In this work, the ambiguous binary representation problem in the multilayer
perceptron is discussed. It is one of the major reasons for the learning problem of the
formal BP method. We propose an argumented method to alleviate the ambiguous
binary representation. Simulation results show that this argumented method can
drastically reduce the learning time for many kinds of extremely difficult
classification problems.
 In many other works people initialize multi-layer neural networks with small
random weights. According to the idea that the finest binary regions of the first hidden
layer which provide very discriminative pattern information to all the upper layers and
ease the learning for those layers, we would suggest to initialize the weights with
regular or random discriminative boundaries which evenly spread over the pattern
ranges in each layer. For each second or higher hidden layer, these boundaries would

62 526 U1180 neural networks

divide the unit hypercube evenly. These boundaries will meet the suggested
initialization method in (Y. Lee, S. H. Oh, and M. W. Kim, 1993). Using small
random weights as initial weights, the ambiguous binary representation problem is
much severe. This is because most discriminative regions may concentrate near the
origin in the beginning of the learning and they progress slowly to cover the wide
ranges of patterns. This will cause insufficient pattern information flowing to the
upper layers to afford the beginning learning informal BP learning.
 Since the formal BP learning algorithm uses the error of the whole network as its
all updating information, any local ambiguous region cannot be accurately corrected
by using this error only. The BP algorithm will even revise all layers when lowest
layers are all homogeneous. This makes no sense. Since we can locate ambiguous
regions accurately, we can save computations, speed the learning, improve the
performance in the argumented method.

Addendum

 The neural networks, which had been trained completely, may have redundant
neurons. The existence of those neurons doesn’t affect the training result. We can
remove those neurons to save computing time and reduce the complexity of the whole
network. Those redundant neurons have three types.

(1) Idle neuron (void neuron): unchanged sign for all training patterns.
(2) Neuron has same sign (or reversed sign) as any other neuron.
(3) Homogeneity unchanged when we suppress this neuron.
The above three type neurons can be detected by a simple method: For each

neuron in the network, remove it. If cause ambiguous situation, put it back. Otherwise,
this neuron is redundant.

On the other hand, when we remove a neuron will cause most homogeneous
regions becoming inhomogeneous (ambiguous) region; this neuron is the most
significant neuron in its layer.

526 U1180 neural networks 63

Fig. 8. The three types of redundant neurons.

 We can remove the redundant neurons. Can we also remove the redundant
synaptic connections (weights)? Consider the following neuron.

Observe the distribution of input data on the cube. We find that the cube can map

to a 2D plane and doesn’t affect the classification.

Fig. 9. The mapping from 3D cube to 2D plane.

 So we can remove the second synaptic connection and retrain the neuron using 2
dimension input data. (If the neuron uses hard limit transfer function, we don’t need to
retrain the neuron.)

Type 1

Type 2 Type 3

Input data:
: (1, 1, 1), (1, -1, 1)
: (-1, 1, 1), (-1, -1, 1), (1, 1, -1)

Training result:
W = (-10.5420, 3.4399, -7.1210)
Bias = 6.6073

flatten

projection onto

64 526 U1180 neural networks

 We can find the redundant synaptic connection by the method similar to find the
redundant neurons. For each dimension of input data, remove it. If cause different
dichotomy of this neuron, put it back. Otherwise, the corresponding synaptic
connections are redundant. Then we remove the maximum removable synaptic
connections.

Fig. 10. An other example of mapping from 3D cube to 2D plane.

 For each neuron in the network that had been trained completely, we remove the
redundant synaptic connections and retrain the neuron. We will get a quiet
compressed neural network finally.
 We also can build a compressed network before training by observing the input
patterns. Removing the synaptic connections is the same as reducing the dimensions
of input pattern. That will save a lot of training time.

Exercise
4.1

)(1 tX
)1(2 +tX

)(12 tX)2(+tY
)1(3 +tX

)(31 tX

Input data:
: (1, 1), (1, 1)
: (-1, 1), (-1, 1), (1, -1)

Training result:
x1

x2

x3

-7.5066

-8.0247

7.4483

projection onto

526 U1180 neural networks 65

Discuss and analyze the above Elman network on the sequence x1(t), t = 1, 2, …
and y(t), t = 1, 2, 3, …..

