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Introduction

@ Training a neural network involves a difficult
optimization problem

SG (stochastic gradient) is the major optimization
technique for deep learning.

@ SG is simple and effective, but sometimes not robust
(e.g., selecting the learning rate may be difficult)

Is it possible to consider other methods?
@ In this work, we investigate Newton methods
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Optimization problem for convolutional neural networks (CNN)
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Optimization and Neural Networks

@ In a typical setting, a neural network is no more
than an empirical risk minimization problem

@ We will show an example using convolutional neural
networks (CNN)

@ CNN is a type of networks useful for image
classification
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olutional neural networks (CNN)

Convolutional Neural Networks (CNN)

e Consider a K-class classification problem with
training data

(y',Z"), i=1,...,¢

y': label vector ZY: input image
e If Z% is in class k, then
y'=10,...,0,1,0,...,0]" € R¥.

——
k—1

@ CNN maps each image Z'' to y'
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Optimization problem for convolutional neural networks (CNN)

Convolutional Neural Networks (CNN)

@ Typically, CNN consists of multiple convolutional
layers followed by fully-connected layers.

@ We discuss only convolutional layers.

@ Input and output of a convolutional layer are
assumed to be images.
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Convolutional Layers
For mth layer, let the input be an image
am x b x d™.

a™: height, b™: width, and d™: #channels.

dm HN-

bm
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Convolutional Layers (Cont'd)

o Consider d™t! filters.

@ Each filter includes weights to extract local
information

e Filter j € {1,...,d™"} has dimensions

hxhxdm.

m.j m.j m.j m.j
Wit W11 Wi 1 dm W1.h,dm
m.j m,j m.j m.j
Wh11 Whhi1 Wh 1,dm Wh h,dm

h: filter height/width (m of h™ omitted)
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont'd)

mi | mi
511 | S12)

m,i m,i
21 | 52,2,

@ To compute the jth channel of output, we scan the
input from top-left to bottom-right to obtain the
sub-images of size h x h x d™

@ Then calculate the inner product between each
sub-image and the jth filter
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Convolutional Layers (Cont'd)

@ It's known that convolutional operations can be
done by matrix-matrix and matrix-vector operations

@ Let's collect images of all channels as the input

Zm,i
m, N m,i
2111 %11 - Zampmi
, m,i
Zi1gm Zoigm -+ Zam pm gm
cR4™xa"b™
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Convolutional Layers (Cont'd)

o Let all filters

m,1 m,1 m,1
W1,1,1 W2,1,1 e Wh h,dm
W™ — -
m, dm+1 m dm+1 m dm+1
Wi11 Wo 11 s Wypgm

c Rd’”+1 x hhd™

be variables (parameters) of the current layer
@ Usually a bias term is considered but we omit it here
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Convolutional Layers (Cont'd)
@ Operations at a layer
Sm,i _ Wm¢(zm,,') Zm+1’i _ O(Sm’i)

o ¢(Z™") collects all sub-images in Z™' into a matrix

- _m,i m,i m,i 7
2111 Z4smid 214 (am+1—1)sm 14+ (bm+l—1)sm 1
m,i m,i m,i
D11 L4smid 204 (am+1-1)sm 14 (bm+1-1)sm. 1
miy __
¢(Z )_ m,i m,i m,i
Zhh1  Zhtsmhl Zht-(am+1—1)sm ht(bm1—1)sm 1
m,i m,i m,i
| Zh,h,dm Zht-sm h,dm Zh+(am+1—1)sm,h+(bm+1—1)sm,dm_
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont'd)

@ o is an element-wise activation function
@ In the matrix-matrix product

Sm,i _ Wm¢(zm7i)’ (1)

each element is the inner product between a filter
and a sub-image
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Optimization Problem

@ We collect all weights to a vector variable 6.

vec(W?)
0= : € R", n:total # variables

vec(lWL)

@ The output of the last fully-connected layer L is a
vector zHTL1(0).
@ Consider any loss function such as the squared loss

&(0) = 112-74(0) - y'|I”
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Optimization problem for convolutional neural networks (CNN)

Optimization Problem (Cont'd)

@ The optimization problem is

min f(0),
where
(@) = regularization + losses
¢
Lorgyl > ()
2C i
e C: regularization parameter.
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Newton method for CNN

Mini-batch Stochastic Gradient

@ We begin with explaining why stochastic gradient
(SG) is popular for deep learning

@ Recall the function is

VA

1 1 o

f(0) = ieTe + 7 § :g(e;y', zZH
=1

@ The gradient is

V4
0 1 C i 7l
E+Ev0§§(0'y7z )
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Newton method for CNN

Mini-batch Stochastic Gradient (Cont'd)

@ Going over all data is time consuming
@ From

1 ¢ . .
E(Ves(0iy.2Y) = 7Vo ) &8y, Z)

i=1

we may just use a subset S (called a batch)
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Newton method for CNN

Mini-batch SG: Algorithm

1: Given an initial learning rate 7).
2. while do
3: Choose S C {1,...,/¢}.
4 Calculate
0
00—z vezgey Z'))

i;ieS

]

5: May adjust the learning rate n
6: end while

@ But deciding a suitable learning rate may be tricky
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Newton method for CNN

Why SG Popular for Deep Learning?

@ The special property of data classification is
essential

1 ¢ o
E(Ve&(6;y,ZY)) = Vo > 6y ZY)
=1

Indeed stochastic gradient is less used outside
machine learning

@ High-order methods with fast final convergence may
not be needed in machine learning

An approximate solution may give similar accuracy
to the final solution
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Newton method for CNN

Why SG Popular for Deep Learning?
(Cont'd)

@ Easy implementation. It's simpler than methods
using, for example, second derivative
@ Non-convexity plays a role
o For convex, a global minimum usually gives a
good model (loss is minimized)
Thus we want to efficiently find the global
minimum
o But for non-convex, efficiency to reach a
stationary point is less useful
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Newton method for CNN

Drawback of SG

@ Tuning the learning rate is not easy

@ Thus if we would like to consider other methods,
robustness rather than efficiency may be the main
reason
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Newton method for CNN

Newton Method

@ Newton method finds a direction d that minimizes
the second-order approximation of f(8)

min VF(6)'d + %dTv%f(e)d. (2)

o If V2£(0) is positive definite, (2) is equivalent to
solving

V2f(0)d = —V£(6).
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Newton method for CNN

Newton Method (Cont'd)

while stopping condition not satisfied do
Let G be V2f(0) or its approximation
Exactly or approximately solve

Gd = —Vf(0)
Find a suitable step size a (e.g., line search)
Update
00+ ad.
end while

Chih-Jen Lin (National Taiwan Univ.) 26 /51



ton method for CNN

Hessian may not be Positive Definite
Hessian of f(0) is (derivation omitted)
2 i
V(0 fz + ZH "B'J
+ a non-PSD (p05|tive semi-definite) term

Z: identity, B": simple PSD matrix, J': Jacobian of
ZL+1,i(0)

L+1,i L+1,i
—82319 - 8231—9( niy1: # classes
1 n
J" — : .. : c RML+1X0 n: # total
aanLll' Dzt variables

061 T 00,
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Newton method for CNN

Positive Definite Modification of Hessian

@ Several strategies have been proposed.

@ For example, Schraudolph (2002) considered the
Gauss-Newton matrix (which is PD)

(
1 1 NT Ri i~ 72
G_CI+€;(J) B'J ~ V().

@ Then Newton linear system becomes

Gd = —V£(8). (3)
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Newton method for CNN

Memory Difficulty

@ The Gauss-Newton matrix G may be too large to be
stored

G : # variables x # variables

@ Many approaches have been proposed (through
approximation)

@ For example, we may store and use only diagonal
blocks of G
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Memory Difficulty (Cont'd)

@ Here we try to use the original Gauss-Newton
matrix G without aggressive approximation

@ Reason: we should show first that for median-sized
data, standard Newton is more robust than SG

@ Otherwise, there is no need to develop techniques
for large-scale problems
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Hessian-free Newton Method

o If G has certain structures, it's possible to use
iterative methods (e.g., conjugate gradient) to solve
the Newton linear system by a sequence of
matrix-vector products

Gvl, GVv?, ...

without storing G
@ This is called Hessian-free in optimization
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ton method for CNN

Hessian-free Newton Method (Cont'd)

@ The Gauss-Newton matrix is

1 1 NT pi i
G_CI+€Z(J) B'J

i=1

@ Matrix-vector product without explicitly storing G

L
= Zv+t %Z (J)(B/(JV))).

@ Examples of using this setting for deep learning
include Martens (2010), Le et al. (2011), and Wang
et al. (2018). &
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Newton method for CNN

Hessian-free Newton Method (Cont'd)

@ However, for the conjugate gradient process,
JIe RN =1 ... ./,

can be too large to be stored (¢ is # data)
@ Total memory usage is

npy1 X nx/t
—= # classes x # variables x # data
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Newton method for CNN

Hessian-free Newton Method (Cont'd)

@ The product involves

14

> ((I)(B'(U'v))):

i=1

@ We can trade time for space: J' is calculated when
needed (i.e., at every matrix-vector product)

@ On the other hand, we may not need to use all data
points to have J' Vi

@ We will discuss the subsampled Hessian technique
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Newton method for CNN

Subsampled Hessian Newton Method

e Similar to gradient, for Hessian we have
1 - o
E(V50E(8iy.2Y) = 5V > &(8:y', Z)
i=1

@ Thus we can approximate the Gauss-Newton matrix
by a subset of data

@ This is the subsampled Hessian Newton method
(Byrd et al., 2011; Martens, 2010; Wang et al.,
2015)
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ton method for CNN

Subsampled Hessian Newton Method

@ We select a subset S C {1,...,¢} and have

1
G® :—I+EZ(J ) B ) ~G.
ieS

@ The cost of storing J' is reduced from

x/{ to o |S|

Chih-Jen Lin (National Taiwan Univ.) 36 /51



Newton method for CNN

Subsampled Hessian Newton Method
@ With enough data, direction obtained by
G°d = —Vf(0)
may be close to that by
Gd = —Vf£(0)

@ Computational cost per matrix-vector product is
saved
e On CPU we may afford to store J',Vi € S

@ On GPU, which has less memory, we calculate
J'.¥i € S when needed
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ton method for CNN

Calculation of Jacobian Matrix

@ Now we know the subsampled Gauss-Newton
matrix-vector product is

GSV——v+EZ (T (B'(Jv)) (4

ieS

e We briefly discuss how to calculate J'

Chih-Jen Lin (National Taiwan Univ.) 38/51



Calculation of Jacobian Matrix (Cont'd)

The Jacobian can be partitioned with respect to layers.

gt g
| e e
= : . : = |9 i T S T
Yy ey Ovec(W1) Ovec(W?)
Ny Ny
20, T 00,

We check details of one layer. It's difficult to calculate
the derivative if using a matrix form

Sm,i — Wm¢(zm,i)
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Newton method for CNN

Calculation of Jacobian Matrix (Cont'd)
We can rewrite it to

vec(S™) = (¢(Z™) " ® Lymir)vec(W™),
where

® : Kronecker product Lym+1 : ldentity

If
y = Ax, with y € R? and x € RY
then
n o
a 8X1 an
y__ | —a
9(x) 0y, s

8x1 e (9Xq
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Newton method for CNN

Calculation of Jacobian Matrix (Cont'd)
Therefore,

azL—i—l,i aZL—i—l,i avec(sm,i)

dvec(W™)T  dvec(S™i)T dvec(Wm)"

aZL+1.i y
= Dvec(amy WET) @ Tamn)

Further, (detailed derivation omitted)

7L HLi 7L+ Li

dvec(S™)T  dvec(ZmLi)!

® (L, vec(a'(S™))T),

where © is element-wise product, and
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Newton method for CNN

Calculation of Jacobian Matrix (Cont'd)

9zL+Li 9zL+L

Avec(Zmi)" B Avec(Smi) "

(Iam+1bm+1 ® Wm)PQT

@ Thus a backward process can calculate all the
needed values

@ We see that with suitable representation, the
derivation is manageable

@ Major operations can be performed by matrix-based
settings (details not shown)

@ This is why GPU is useful
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@ Experiments
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Running Time and Test Accuracy

@ Four sets are considered
MNIST, SVHN, CIFAR10, smallNORB
@ For each method, best parameters from a validation
process are used
We will check parameter sensitivity later
@ Two SG implementations are used

o Simple SG shown earlier
o SG with momentum (details not explained
here)

@ SG with momentum is a reasonably strong baseline
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Running Time and Test Accuracy (Cont'd
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Running Time and Test Accuracy (Cont'd)

@ Clearly, SG has faster initial convergence

@ This is reasonable as a second-order method is
slower in the beginning

@ But if cost for parameter selection is considered,
Newton may be useful
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Experiments on Parameter Sensitivity
@ Consider a fixed regularization parameter
C =0.017

@ For SG with momentum, we consider the following
initial learning rates

0.1,0.05,0.01, 0.005, 0.001, 0.0003, 0.0001

@ For Newton, there is no particular parameter to
tune. We check the size of subsampled Hessian:

|S| = 10%, 5%, 1% of data
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Results by Using Different Parameters

Each line shows the result of one problem

Newton
Sampling rate
10% 5% 1%

SG
Initial learning rate
0.03 0.01 0.003 0.001 0.0003

99.2% 99.2% 99.1%
92.7% 92.7% 92.2%
78.2% 78.3% 75.4%
94.9% 95.0% 94.6%

We find that

9.9% 10.3% 99.1% 99.2% 99.0%
19.5% 92.4% 93.0% 92.7% 92.3%
10.0% 63.1% 79.5% 79.2% 76.9%
64.7% 95.0% 95.0% 95.0% 94.8%

@ a too large learning rate causes SG to diverge, and
@ a too small rate causes slow convergence
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Discussion and conclusions
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@ Discussion and conclusions
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Conclusions

@ Stochastic gradient method has been popular for
CNN

@ It is simple and useful, but sometimes not robust

@ Newton is more complicated and has slower initial
convergence

@ However, it may be overall more robust

@ By careful designs, the implementation of Newton
isn't too complicated
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Conclusions (Cont d)

@ Results presented here are based on the paper by
Wang et al. (2019)

@ An ongoing software development is at
https://github.com/cjlinl/simpleNN
@ Both MATLAB and Python are supported

e MATLAB: joint work with Chien-Chih Wang and
Tan Kent Loong (NTU)

@ Python: joint work with Pengrui Quan (UCLA)
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