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Introduction

Introduction

Training a neural network involves a difficult
optimization problem

SG (stochastic gradient) is the major optimization
technique for deep learning.

SG is simple and effective, but sometimes not robust
(e.g., selecting the learning rate may be difficult)

Is it possible to consider other methods?

In this work, we investigate Newton methods
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Optimization problem for convolutional neural networks (CNN)

Optimization and Neural Networks

In a typical setting, a neural network is no more
than an empirical risk minimization problem

We will show an example using convolutional neural
networks (CNN)

CNN is a type of networks useful for image
classification
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Optimization problem for convolutional neural networks (CNN)

Convolutional Neural Networks (CNN)

Consider a K -class classification problem with
training data

(y i ,Z 1,i), i = 1, . . . , `.

y i : label vector Z 1,i : input image

If Z 1,i is in class k , then

y i = [0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0]T ∈ RK .

CNN maps each image Z 1,i to y i
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Optimization problem for convolutional neural networks (CNN)

Convolutional Neural Networks (CNN)

Typically, CNN consists of multiple convolutional
layers followed by fully-connected layers.

We discuss only convolutional layers.

Input and output of a convolutional layer are
assumed to be images.
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers

For mth layer, let the input be an image

am × bm × dm.

am: height, bm: width, and dm: #channels.

am

bm

dm
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont’d)

Consider dm+1 filters.

Each filter includes weights to extract local
information

Filter j ∈ {1, . . . , dm+1} has dimensions

h × h × dm.w
m,j
1,1,1 wm,j

1,h,1
. . .

wm,j
h,1,1 wm,j

h,h,1

 . . .

w
m,j
1,1,dm wm,j

1,h,dm

. . .

wm,j
h,1,dm wm,j

h,h,dm

 .
h: filter height/width (m of hm omitted)
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont’d)

1,1,1 1,2,1 1,3,1

2,1,1 2,2,1 2,3,1

3,1,1 3,2,1 3,3,1

sm,i
1,1,j sm,i

1,2,j

sm,i
2,1,j sm,i

2,2,j

To compute the jth channel of output, we scan the
input from top-left to bottom-right to obtain the
sub-images of size h × h × dm

Then calculate the inner product between each
sub-image and the jth filter
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont’d)

It’s known that convolutional operations can be
done by matrix-matrix and matrix-vector operations

Let’s collect images of all channels as the input

Zm,i

=

 zm,i1,1,1 zm,i2,1,1 . . . zm,iam,bm,1
...

... . . . ...

zm,i1,1,dm zm,i2,1,dm . . . zm,iam,bm,dm


∈Rdm×ambm.
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont’d)

Let all filters

Wm =

 wm,1
1,1,1 wm,1

2,1,1 . . . wm,1
h,h,dm

...
... . . . ...

wm,dm+1

1,1,1 wm,dm+1

2,1,1 . . . wm,dm+1

h,h,dm


∈ Rdm+1×hhdm

be variables (parameters) of the current layer

Usually a bias term is considered but we omit it here
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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont’d)

Operations at a layer

Sm,i = Wmφ(Zm,i) Zm+1,i = σ(Sm,i),

φ(Zm,i) collects all sub-images in Zm,i into a matrix

φ(Zm,i) =



zm,i1,1,1 zm,i1+sm,1,1 zm,i1+(am+1−1)sm,1+(bm+1−1)sm,1
zm,i2,1,1 zm,i2+sm,1,1 zm,i2+(am+1−1)sm,1+(bm+1−1)sm,1

...
... . . .

...

zm,ih,h,1 zm,ih+sm,h,1 zm,ih+(am+1−1)sm,h+(bm+1−1)sm,1
...

...
...

zm,ih,h,dm zm,ih+sm,h,dm zm,ih+(am+1−1)sm,h+(bm+1−1)sm,dm


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Optimization problem for convolutional neural networks (CNN)

Convolutional Layers (Cont’d)

σ is an element-wise activation function

In the matrix-matrix product

Sm,i = Wmφ(Zm,i), (1)

each element is the inner product between a filter
and a sub-image

Chih-Jen Lin (National Taiwan Univ.) 15 / 51



Optimization problem for convolutional neural networks (CNN)

Optimization Problem

We collect all weights to a vector variable θ.

θ =

vec(W 1)
...

vec(W L)

 ∈ Rn, n : total # variables

The output of the last fully-connected layer L is a
vector zL+1,i(θ).

Consider any loss function such as the squared loss

ξi(θ) = ||zL+1,i(θ)− y i ||2.
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Optimization problem for convolutional neural networks (CNN)

Optimization Problem (Cont’d)

The optimization problem is

min
θ

f (θ),

where

f (θ) = regularization + losses

=
1

2C
θTθ +

1

`

∑̀
i=1

ξi(θ)

C : regularization parameter.
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Newton method for CNN

Mini-batch Stochastic Gradient

We begin with explaining why stochastic gradient
(SG) is popular for deep learning

Recall the function is

f (θ) =
1

2C
θTθ +

1

`

∑̀
i=1

ξ(θ; y i ,Z 1,i)

The gradient is

θ

C
+

1

`
∇θ

∑̀
i=1

ξ(θ; y i ,Z 1,i)
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Newton method for CNN

Mini-batch Stochastic Gradient (Cont’d)

Going over all data is time consuming

From

E (∇θξ(θ; y ,Z 1)) =
1

`
∇θ

∑̀
i=1

ξ(θ; y i ,Z 1,i)

we may just use a subset S (called a batch)

θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i)
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Newton method for CNN

Mini-batch SG: Algorithm

1: Given an initial learning rate η.
2: while do
3: Choose S ⊂ {1, . . . , `}.
4: Calculate

θ ← θ − η(
θ

C
+

1

|S |
∇θ

∑
i :i∈S

ξ(θ; y i ,Z 1,i))

5: May adjust the learning rate η
6: end while

But deciding a suitable learning rate may be tricky
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Newton method for CNN

Why SG Popular for Deep Learning?

The special property of data classification is
essential

E (∇θξ(θ; y ,Z 1)) =
1

`
∇θ

∑̀
i=1

ξ(θ; y i ,Z 1,i)

Indeed stochastic gradient is less used outside
machine learning

High-order methods with fast final convergence may
not be needed in machine learning

An approximate solution may give similar accuracy
to the final solution
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Newton method for CNN

Why SG Popular for Deep Learning?
(Cont’d)

Easy implementation. It’s simpler than methods
using, for example, second derivative

Non-convexity plays a role

For convex, a global minimum usually gives a
good model (loss is minimized)
Thus we want to efficiently find the global
minimum
But for non-convex, efficiency to reach a
stationary point is less useful
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Newton method for CNN

Drawback of SG

Tuning the learning rate is not easy

Thus if we would like to consider other methods,
robustness rather than efficiency may be the main
reason
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Newton method for CNN

Newton Method

Newton method finds a direction d that minimizes
the second-order approximation of f (θ)

min
d

∇f (θ)>d +
1

2
d>∇2f (θ)d . (2)

If ∇2f (θ) is positive definite, (2) is equivalent to
solving

∇2f (θ)d = −∇f (θ).
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Newton method for CNN

Newton Method (Cont’d)

while stopping condition not satisfied do
Let G be ∇2f (θ) or its approximation
Exactly or approximately solve

Gd = −∇f (θ)

Find a suitable step size α (e.g., line search)
Update

θ ← θ + αd .

end while
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Newton method for CNN

Hessian may not be Positive Definite

Hessian of f (θ) is (derivation omitted)

∇2f (θ) =
1

C
I +

1

`

∑`

i=1
(J i)>B iJ i

+ a non-PSD (positive semi-definite) term

I: identity, B i : simple PSD matrix, J i : Jacobian of
zL+1,i(θ)

J i =


∂zL+1,i

1

∂θ1
. . .

∂zL+1,i
1

∂θn... . . . ...
∂zL+1,i

nL+1

∂θ1
. . .

∂zL+1,i
nL+1

∂θn

 ∈ RnL+1×n

nL+1: # classes
n: # total

variables
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Newton method for CNN

Positive Definite Modification of Hessian

Several strategies have been proposed.

For example, Schraudolph (2002) considered the
Gauss-Newton matrix (which is PD)

G =
1

C
I +

1

`

∑̀
i=1

(J i)>B iJ i ≈ ∇2f (θ).

Then Newton linear system becomes

Gd = −∇f (θ). (3)
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Newton method for CNN

Memory Difficulty

The Gauss-Newton matrix G may be too large to be
stored

G : # variables ×# variables

Many approaches have been proposed (through
approximation)

For example, we may store and use only diagonal
blocks of G
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Newton method for CNN

Memory Difficulty (Cont’d)

Here we try to use the original Gauss-Newton
matrix G without aggressive approximation

Reason: we should show first that for median-sized
data, standard Newton is more robust than SG

Otherwise, there is no need to develop techniques
for large-scale problems
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Newton method for CNN

Hessian-free Newton Method

If G has certain structures, it’s possible to use
iterative methods (e.g., conjugate gradient) to solve
the Newton linear system by a sequence of
matrix-vector products

Gv 1,Gv 2, . . .

without storing G

This is called Hessian-free in optimization
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Newton method for CNN

Hessian-free Newton Method (Cont’d)

The Gauss-Newton matrix is

G =
1

C
I +

1

`

∑̀
i=1

(J i)>B iJ i

Matrix-vector product without explicitly storing G

Gv =
1

C
v +

1

`

∑̀
i=1

((J i)>(B i(J iv))).

Examples of using this setting for deep learning
include Martens (2010), Le et al. (2011), and Wang
et al. (2018).
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Newton method for CNN

Hessian-free Newton Method (Cont’d)

However, for the conjugate gradient process,

J i ∈ RnL+1×n, i = 1, . . . , `,

can be too large to be stored (` is # data)

Total memory usage is

nL+1 × n × `
= # classes × # variables × # data
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Newton method for CNN

Hessian-free Newton Method (Cont’d)

The product involves

∑̀
i=1

((J i)>(B i(J iv))).

We can trade time for space: J i is calculated when
needed (i.e., at every matrix-vector product)

On the other hand, we may not need to use all data
points to have J i ,∀i
We will discuss the subsampled Hessian technique
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Newton method for CNN

Subsampled Hessian Newton Method

Similar to gradient, for Hessian we have

E (∇2
θ,θξ(θ; y ,Z 1)) =

1

`
∇2

θ,θ

∑̀
i=1

ξ(θ; y i ,Z 1,i)

Thus we can approximate the Gauss-Newton matrix
by a subset of data

This is the subsampled Hessian Newton method
(Byrd et al., 2011; Martens, 2010; Wang et al.,
2015)
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Newton method for CNN

Subsampled Hessian Newton Method

We select a subset S ⊂ {1, . . . , `} and have

G S =
1

C
I +

1

|S |
∑
i∈S

(J i)TB iJ i ≈ G .

The cost of storing J i is reduced from

∝ ` to ∝ |S |
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Newton method for CNN

Subsampled Hessian Newton Method

With enough data, direction obtained by

G Sd = −∇f (θ)

may be close to that by

Gd = −∇f (θ)

Computational cost per matrix-vector product is
saved

On CPU we may afford to store J i ,∀i ∈ S

On GPU, which has less memory, we calculate
J i ,∀i ∈ S when needed
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Newton method for CNN

Calculation of Jacobian Matrix

Now we know the subsampled Gauss-Newton
matrix-vector product is

G Sv =
1

C
v +

1

|S |
∑
i∈S

(
(J i)T

(
B i(J iv)

))
(4)

We briefly discuss how to calculate J i
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Newton method for CNN

Calculation of Jacobian Matrix (Cont’d)

The Jacobian can be partitioned with respect to layers.

J i =


∂zL+1,i

1

∂θ1
. . .

∂zL+1,i
1

∂θn... . . . ...
∂zL+1,i

nL+1

∂θ1
. . .

∂zL+1,i
nL+1

∂θn

 =
[

∂zL+1,i

∂vec(W 1)>
· · · ∂zL+1,i

∂vec(W L)
>

]

We check details of one layer. It’s difficult to calculate
the derivative if using a matrix form

Sm,i = Wmφ(Zm,i)
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Newton method for CNN

Calculation of Jacobian Matrix (Cont’d)

We can rewrite it to

vec(Sm,i) = (φ(Zm,i)> ⊗ Idm+1)vec(Wm),

where

⊗ : Kronecker product Idm+1 : Identity

If
y = Ax , with y ∈ Rp and x ∈ Rq

then

∂y
∂(x)>

=


∂y1
∂x1

. . . ∂y1
∂xq

... . . . ...
∂yp
∂x1

. . .
∂yp
∂xq

 = A
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Newton method for CNN

Calculation of Jacobian Matrix (Cont’d)

Therefore,

∂zL+1,i

∂vec(Wm)>
=

∂zL+1,i

∂vec(Sm,i)>
∂vec(Sm,i)

∂vec(Wm)>

=
∂zL+1,i

∂vec(Sm,i)>
(φ(Zm,i)> ⊗ Idm+1).

Further, (detailed derivation omitted)

∂zL+1,i

∂vec(Sm,i)>
=

∂zL+1,i

∂vec(Zm+1,i)>
�
(
1nL+1

vec(σ′(Sm,i))>
)
,

where � is element-wise product, and
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Newton method for CNN

Calculation of Jacobian Matrix (Cont’d)

∂zL+1,i

∂vec(Zm,i)>
=

∂zL+1,i

∂vec(Sm,i)>
(Iam+1bm+1 ⊗Wm)Pm

φ .

Thus a backward process can calculate all the
needed values

We see that with suitable representation, the
derivation is manageable

Major operations can be performed by matrix-based
settings (details not shown)

This is why GPU is useful
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Experiments

Running Time and Test Accuracy

Four sets are considered

MNIST, SVHN, CIFAR10, smallNORB

For each method, best parameters from a validation
process are used

We will check parameter sensitivity later

Two SG implementations are used

Simple SG shown earlier
SG with momentum (details not explained
here)

SG with momentum is a reasonably strong baseline
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Experiments

Running Time and Test Accuracy (Cont’d)
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Experiments

Running Time and Test Accuracy (Cont’d)

Clearly, SG has faster initial convergence

This is reasonable as a second-order method is
slower in the beginning

But if cost for parameter selection is considered,
Newton may be useful
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Experiments

Experiments on Parameter Sensitivity

Consider a fixed regularization parameter

C = 0.01`

For SG with momentum, we consider the following
initial learning rates

0.1, 0.05, 0.01, 0.005, 0.001, 0.0003, 0.0001

For Newton, there is no particular parameter to
tune. We check the size of subsampled Hessian:

|S | = 10%, 5%, 1% of data
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Experiments

Results by Using Different Parameters

Each line shows the result of one problem
Newton SG

Sampling rate Initial learning rate
10% 5% 1% 0.03 0.01 0.003 0.001 0.0003

99.2% 99.2% 99.1% 9.9% 10.3% 99.1% 99.2% 99.0%
92.7% 92.7% 92.2% 19.5% 92.4% 93.0% 92.7% 92.3%
78.2% 78.3% 75.4% 10.0% 63.1% 79.5% 79.2% 76.9%
94.9% 95.0% 94.6% 64.7% 95.0% 95.0% 95.0% 94.8%

We find that

a too large learning rate causes SG to diverge, and

a too small rate causes slow convergence

Chih-Jen Lin (National Taiwan Univ.) 48 / 51



Discussion and conclusions
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Discussion and conclusions

Conclusions

Stochastic gradient method has been popular for
CNN

It is simple and useful, but sometimes not robust

Newton is more complicated and has slower initial
convergence

However, it may be overall more robust

By careful designs, the implementation of Newton
isn’t too complicated
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Discussion and conclusions

Conclusions (Cont’d)

Results presented here are based on the paper by
Wang et al. (2019)

An ongoing software development is at
https://github.com/cjlin1/simpleNN

Both MATLAB and Python are supported

MATLAB: joint work with Chien-Chih Wang and
Tan Kent Loong (NTU)

Python: joint work with Pengrui Quan (UCLA)
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