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Everybody talks about big data now, but it's not easy to
have an overall picture of this subject

In this talk, | will give some personal thoughts on
technical developments of big-data analytics. Some are
very pre-mature, so your comments are very welcome
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From Data |\/||n|ng to Big Data

@ In early 90's, a buzzword called data mining
appeared

@ Many years after, we have another one called big
data

@ Well, what's the difference?
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From data mining to big data

Status of Data Mining and Machine
Learning

@ Over the years, we have all kinds of effective
methods for classification, clustering, and regression

@ We also have good integrated tools for data mining
(e.g., Weka, R, Scikit-learn)

@ However, mining useful information remains difficult
for some real-world applications
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What's Big Data?

e Though many definitions are
available, | am considering
the situation that data are
larger than the capacity of a
computer

e | think this is a main
difference between data
mining and big data

e So in a sense we are talking
about distributed data
mining or machine learning
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From Small to Big Data

Two important differences:

Negative side:

@ Methods for big data analytics are not quite ready,
not even mentioned to integrated tools

Positive side:

@ Some (Halevy et al., 2009) argue that the almost
unlimited data make us easier to mine information

| will discuss the first difference
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Possible Advantages of Distributed Data
Analytics

Parallel data loading
@ Reading several TB data from disk is slow

@ Using 100 machines, each has 1/100 data in its
local disk = 1/100 loading time

e But having data ready in these 100 machines is
another issue

Fault tolerance

@ Some data replicated across machines: if one fails,
others are still available
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Possible Advantages of Distributed Data
Analytics (Cont'd)

Workflow not interrupted

o If data are already distributedly stored, it's not
convenient to reduce some to one machine for
analysis
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Possible Disadvantages of Distributed

Data Analytics

@ More complicated (of course)
@ Communication and synchronization

Everybody says moving computation to data, but
this isn't that easy
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Going Distributed or Not Isn't Easy to
Decide

@ Quote from Yann LeCun (KDnuggets News 14:n05)

“l have seen people insisting on using Hadoop for
datasets that could easily fit on a flash drive and
could easily be processed on a laptop.”

@ Now disk and RAM are large. You may load several
TB of data once and conveniently conduct all
analysis

@ The decision is application dependent

@ We will discuss this issue again later
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Distributed Environments

@ Many easy tasks on one computer become difficult
in a distributed environment

@ For example, subsampling is easy on one machine,
but may not be in a distributed system

@ Usually we attribute the problem to slow
communication between machines
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Challenges

e Big data, small analysis
Versus
Big data, big analysis

@ If you need a single record from a huge set, it's
reasonably easy

@ For example, accessing your high-speed rail
reservation is fast

@ However, if you want to analyze the whole set by
accessing data several time, it can be much harder
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Challenges (Cont'd)

@ Most existing data mining/machine learning
methods were designed without considering data
access and communication of intermediate results

@ They iteratively use data by assuming they are
readily available

@ Example: doing least-square regression isn't easy in
a distributed environment
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Challenges (Cont'd)

So we are facing many challenges
@ methods not ready
@ no convenient tools
@ rapid change on the system side
@ and many others
What should we do?
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Opportunities

@ Looks like we are in the early stage of a research
topic
@ But what is our chance?
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© Opportunities
@ Lessons from past developments in one machine
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Lessons from past developments in one machine

Algorithms for Distributed Data Analytics

This is an on-going research topic.

Roughly there are two types of approaches
@ Parallelize existing (single-machine) algorithms

@ Design new algorithms particularly for distributed
settings

Of course there are things in between
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Lessons from past developments in one machine
Algorithms for Distributed Data Analytics
(Cont'd)

@ Given the complicated distributed setting, we
wonder if easy-to-use big-data analytics tools can
ever be available?

@ | don't know either. Let's try to think about the
situation on one computer first

@ Indeed those easy-to-use analytics tools on one
computer were not there at the first day
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Lessons from past developments in one machine
Past Development on One Computer

@ The problem now is we take many things for
granted on one computer

@ On one computer, have you ever worried about
calculating the average of some numbers?

@ Probably not. You can use Excel, statistical
software (e.g., R and SAS), and many things else

@ We seldom care internally how these tools work

@ Can we go back to see the early development on
one computer and learn some lessons/experiences?
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Lessons from past developments in one machine
Example: Matrix-matrix Product

@ Consider the example of matrix-matrix products
C=AxB, AecR™ BegR™m

where )
Ci= > AwBy
k=1

@ This is a simple operation. You can easily write your
own code
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Lessons from past developments in one machine

Example: Matrix-matrix Product (Cont'd)

@ A segment of C code (assume n = m here)
for (i=0;i<n;i++)
for (j=0;j<n;j++)
{
cli]l [j1=0;
for (k=0;k<n;k++)
clil [j]1 += alil [k]1*b[k] [j];
+
@ For 3,000 x 3,000 matrices
$ gcc -03 mat.c
$ time ./a.out
3m24.843s
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Lessons from past developments in one machine

Example: Matrix-matrix Product (Cont'd)

@ But on Matlab (single-thread mode)

$ matlab -singleCompThread
>> tic; ¢ = axb; toc
Elapsed time is 4.095059 seconds.
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Lessons from past developments in one machine
Example: Matrix-matrix Product (Cont'd)

@ How can Matlab be much faster than ours?

@ The fast implementation comes from some deep
research and development

@ Matlab calls optimized BLAS (Basic Linear Algebra
Subroutines) that was developed in 80's-90’s

@ Our implementation is slow because data are not
available for computation
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Lessons from past developments in one machine

Example: Matrix-matrix Product (Cont'd)

CPU
]

Registers

1
Cache

i)
Main Memory

1
Secondary storage (Disk)

@ 7: increasing in speed

@ |: increasing in
capacity

@ Optimized BLAS: try
to make data available
in a higher level of
memory

@ You don't waste time
to frequently move
data
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Lessons from past developments in one machine

Example: Matrix-matrix Product (Cont'd)

@ Optimized BLAS uses block algorithms

Ain -+ Aul| [Bu -+ Bu
Ax B = : :
Ay - Aw] |Bnn -+ Bu
_ AubBii+ -+ AuBn ]

@ If we compare the number of page faults (cache
misses)
Ours: much larger
Block: much smaller
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Lessons from past developments in one machine

Example: Matrix-matrix Product (Cont'd)

@ | like this example because it involves both

o mathematical operations (matrix products),
and
o computer architecture (memory hierarchy)

@ Only if knowing both, you can make breakthroughs
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Lessons from past developments in one machine
Example: Matrix-matrix Product (Cont'd)

@ For big-data analytics, we are in a similar situation

@ We want to run mathematical algorithms
(classification and clustering) in a complicated
architecture (distributed system)

@ But we are like at the time point before optimized
BLAS was developed
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Lessons from past developments in one machine
Algorithms and Systems

@ To have technical breakthroughs for big-data
analytics, we should know both algorithms and
systems well, and consider them together

@ Indeed, if you are an expert on both topics,
everybody wants you now

@ Many machine learning Ph.D. students don't know
much about systems. But this isn't the case in the
early days of computer science
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Lessons from past developments in one machine

Algorithms and Systems (Cont'd)

@ At that time, every numerical analyst knows
computer architecture well.

@ That's how they successfully developed
floating-point systems and IEEE 754 /854 standard
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Lessons from past developments in one machine

Example: Machine Learning Using Spark

Recently we developed a classifier on Spark

Spark is an in-memory cluster-computing platform
@ Beyond algorithms we must take details of
° Spark
o Scala
into account
@ For example, you want to know
o the difference between mapPartitions and
map in Spark, and
o the slower for loop than while loop in Scala
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Opportunities Lessons from past developments in one machine

Example: Machine Learning Using Spark
(Cont'd)

@ During our development, Spark was significantly
upgraded from version 0.9 to 1.0. We must learn
their changes

@ It's like when you write a code on a computer, but
the compiler or OS is actively changed. We are in a
stage just like that.
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Successful examples?

Example of Distributed Machine Learning

@ | don't think we have many successful examples yet

@ Here | will show one: CTR (Click Through Rate)
prediction for computational advertising

@ Many companies now run distributed classification
for CTR problems
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Successful examples?

Example: CTR Prediction

@ Definition of CTR:

# clicks

CTR = :
# impressions

@ A sequence of events

Not clicked Features of user
Clicked Features of user
Not clicked Features of user

@ A binary classification problem.
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Example: CTR Prediction (Cont'd)

Data Storage

(Amazon S3)

Data Transfer
(Amazon EC2)

Local Disk
Encoding
Train

(Amazon EC2)

Predict

Web Ul b
N / Log
Collecting data %

User
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© Opportunities

@ Design of big-data algorithms
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Design Considerations

@ Generally you want to minimize the data access and
communication in a distributed environment

@ It's possible that
method A better than B on one computer
but
method A worse than B in distributed environments
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Design Considerations (Cont'd)

@ Example: on one computer, often we do batch
rather than online learning
Online and streaming learning may be more useful
for big-data applications

@ Example: very often we design synchronous parallel
algorithms
Maybe asynchronous ones are better for big data?
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Workflow lssues

@ Data analytics is often only part of the workflow of
a big-data application

@ By workflow, | mean things from raw data to final
use of the results

@ Other steps may be more complicated than the
analytics step

@ In one-computer situation, the focus is often on the
analytics step
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How to Get Started?

@ In my opinion, we should start from applications
@ Applications — programming frameworks and
algorithms — general tools

@ Now almost every big-data application requires
special settings of algorithms, but | believe general
tools will be possible
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Discussion and conclusions
O t I .

@ Discussion and conclusions
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Risk of This Topic

@ It's unclear how successful we can be
@ Two problems:

o Technology limits
o Applicability limits
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Risk: Technology limits

@ It's possible that we cannot get satisfactory results
because of the distributed configuration

@ Recall that parallel programming or HPC (high
performance computing) wasn't very successful in
early 90's. But there are two differences this time

@ We are using commodity machines
@ Data become the focus

@ Well, every area has its limitation. The degree of
success varies
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Risk: Technology Limits (Cont'd)

@ Let's compare two matrix products:

Dense matrix products: very successful as the final
outcome (optimized BLAS) is much better than
what ordinary users wrote

Sparse matrix products: not as successful. My code
is about as good as those provided by Matlab

@ For big data analytics, it's too early to tell
@ We never know until we try
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Risk: Applicability Limits

@ What's the percentage of applications that need
big-data analytics?

@ Not clear. Indeed some think the percentage is
small (so they think big-data analytics is a hype)

@ One main reason is that you can always analyze a
random subest on one machine

@ But you may say this is a chicken and egg problem —
because of no available tools, so no applications??
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Discussion and conclusions

Risk: Applicability Limits (Cont'd)

@ Another problem is the mis-understanding

@ Until recently, few universities or companies can
access data center environments. They therefore
think those big ones (e.g., Google) are doing
big-data analytics for everything

@ In fact, the situation isn't like that
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Risk: Applicability Limits (Cont'd)

@ A quote from Dan Ariely, “Big data is like teenage
sex: everyone talks about it, nobody really knows
how to do it, everyone thinks everyone else is doing
it, so everyone claims they are doing it ..."

@ In my recent visit to a large company, their people
did say that most analytics works are still done on
one machine
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Open-source Developments

@ Open-source developments are very important for
big data analytics

@ How it works:
The company must do an application X. They
consider an open-source tool Y. But Y is not
enough for X. Then their engineers improve Y and
submit pull requests

@ Through this process, core developers of a project
are formed. They are from various companies
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Open-source Developments (Cont'd)

@ For Taiwanese data-science companies, | think we
should actively participate in such developments

@ Indeed industry rather than schools are in a better
position to do this

53 / 54




Conclusions

e Big-data analytics is in its infancy

@ It's challenging to development algorithms and tools
in a distributed environment

@ To start, we should take both algorithms and
systems into consideration

@ Hopefully we will get some breakthroughs in the
near future
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