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In this talk I will briefly discuss two related topics

Fast matrix factorization (MF) in shared-memory
systems

Factorization machines (FM) for recommender
systems and classification/regression

Note that MF is a special case of FM
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Matrix factorization Introduction and issues for parallelization

Matrix Factorization

Matrix Factorization is an effective method for
recommender systems (e.g., Netflix Prize and KDD
Cup 2011)

But training is slow.

We developed a parallel MF package LIBMF for
shared-memory systems

http://www.csie.ntu.edu.tw/~cjlin/libmf

Best paper award at ACM RecSys 2013
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Matrix factorization Introduction and issues for parallelization

Matrix Factorization (Cont’d)

For recommender systems: a group of users give
ratings to some items

User Item Rating
1 5 100
1 10 80
1 13 30
. . . . . . . . .
u v r
. . . . . . . . .

The information can be represented by a rating
matrix R
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Matrix factorization Introduction and issues for parallelization

Matrix Factorization (Cont’d)

R

m × n

m

:

u

:
2

1

1 2 .. v .. n

ru,v

?2,2

m, n : numbers of users and items

u, v : index for uth user and vth item

ru,v : uth user gives a rating ru,v to vth item
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Matrix factorization Introduction and issues for parallelization

Matrix Factorization (Cont’d)

q2

R

m × n

≈ ×

PT

m × k

Q

k × n

m

:

u

:
2

1

1 2 .. v .. n

ru,v

?2,2

pT
1

pT
2

:

pT
u

:

pT
m

q1 q2 .. qv .. qn

k : number of latent dimensions

ru,v = pT
u qv

?2,2 = pT
2 q2
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Matrix factorization Introduction and issues for parallelization

Matrix Factorization (Cont’d)

A non-convex optimization problem:

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

u qv)2 + λP ‖pu‖2F + λQ ‖qv‖2F
)

λP and λQ are regularization parameters

SG (Stochastic Gradient) is now a popular
optimization method for MF

It loops over ratings in the training set.
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Matrix factorization Introduction and issues for parallelization

Matrix Factorization (Cont’d)

SG update rule:

pu ← pu + γ (eu,vqv − λPpu) ,

qv ← qv + γ (eu,vpu − λQqv)

where
eu,v ≡ ru,v − pT

u qv

SG is inherently sequential
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Matrix factorization Introduction and issues for parallelization

SG for Parallel MF

After r3,3 is selected, ratings in gray blocks cannot be
updated

r3,1 r3,2 r3,3 r3,4 r3,5 r3,6

r6,6

1 2 3 4 5 6

1

2

3

4

5

6

But r6,6 can be used

r3,1 = p3
Tq1

r3,2 = p3
Tq2

..

r3,6 = p3
Tq6

——————

r3,3 = p3
Tq3

r6,6 = p6
Tq6
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Matrix factorization Introduction and issues for parallelization

SG for Parallel MF (Cont’d)

We can split the matrix to blocks.
Then use threads to update the blocks where ratings in
different blocks don’t share p or q

1 2 3 4 5 6

1

2

3

4

5

6
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Matrix factorization Introduction and issues for parallelization

SG for Parallel MF (Cont’d)

This concept of splitting data to independent blocks
seems to work

However, there are many issues to have a right
implementation under the given architecture
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Matrix factorization Our approach in the package LIBMF

Our approach in the package LIBMF

Parallelization (Zhuang et al., 2013; Chin et al.,
2015a)

Effective block splitting to avoid
synchronization time
Partial random method for the order of SG
updates

Adaptive learning rate for SG updates (Chin et al.,
2015b)

Details omitted due to time constraint
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Matrix factorization Our approach in the package LIBMF

Block Splitting and Synchronization

A naive way for T nodes is to split the matrix to
T × T blocks

This is used in DSGD (Gemulla et al., 2011) for
distributed systems. The setting is reasonable
because communication cost is the main concern

In distributed systems, it is difficult to move data or
model
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Matrix factorization Our approach in the package LIBMF

Block Splitting and Synchronization
(Cont’d)

• However, for shared memory
systems, synchronization is a
concern

1 2 3

1

2

3

• Block 1: 20s

• Block 2: 10s

• Block 3: 20s

We have 3 threads
hi

Thread 0→10 10→20
1 Busy Busy
2 Busy Idle
3 Busy Busy
ok 10s wasted!!
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Matrix factorization Our approach in the package LIBMF

Lock-Free Scheduling

We split the matrix to enough blocks. For example, with
two threads, we split the matrix to 4× 4 blocks

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 is the updated counter recording the number of
updated times for each block
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Matrix factorization Our approach in the package LIBMF

Lock-Free Scheduling (Cont’d)

Firstly, T1 selects a block randomly For T2, it selects a
block neither green nor gray

T1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Matrix factorization Our approach in the package LIBMF

Lock-Free Scheduling (Cont’d)

For T2, it selects a block neither green nor gray randomly
For T2, it selects a block neither green nor gray

T1

T2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Matrix factorization Our approach in the package LIBMF

Lock-Free Scheduling (Cont’d)

After T1 finishes, the counter for the corresponding block
is added by one

T2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Matrix factorization Our approach in the package LIBMF

Lock-Free Scheduling (Cont’d)

T1 can select available blocks to update
Rule: select one that is least updated

T2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Matrix factorization Our approach in the package LIBMF

Lock-Free Scheduling (Cont’d)

SG: applying Lock-Free Scheduling
SG**: applying DSGD-like Scheduling
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MovieLens 10M: 18.71s → 9.72s (RMSE: 0.835)

Yahoo!Music: 728.23s → 462.55s (RMSE: 21.985)
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Matrix factorization Our approach in the package LIBMF

Memory Discontinuity

Discontinuous memory access can dramatically increase
the training time. For SG, two possible update orders are

Update order Advantages Disadvantages
Random Faster and stable Memory discontinuity

Sequential Memory continuity Not stable

Random Sequential

RR

Our lock-free scheduling gives randomness, but the
resulting code may not be cache friendly
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Matrix factorization Our approach in the package LIBMF

Partial Random Method

Our solution is that for each block, access both R̂ and P̂
continuously

R̂ : (one block)

= ×

P̂T

Q̂1 2

3 4

5 6

Partial: sequential in each block
Random: random when selecting block
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Matrix factorization Our approach in the package LIBMF

Partial Random Method (Cont’d)
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The performance of Partial Random Method is
better than that of Random Method
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Matrix factorization Our approach in the package LIBMF

Experiments

State-of-the-art methods compared

LIBPMF: a parallel coordinate descent method (Yu
et al., 2012)

NOMAD: an asynchronous SG method (Yun et al.,
2014)

LIBMF: earlier version of LIBMF (Zhuang et al.,
2013; Chin et al., 2015a)

LIBMF++: with adaptive learning rates for SG (Chin
et al., 2015c)
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Matrix factorization Our approach in the package LIBMF

Experiments (Cont’d)

Data Set m n #ratings
Netflix 2,649,429 17,770 99,072,112
Yahoo!Music 1,000,990 624,961 252,800,275
Webscope-R1 1,948,883 1,101,750 104,215,016
Hugewiki 39,706 25,000,000 1,703,429,136

• Due to machine capacity, Hugewiki here is about half
of the original

• k = 100
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Matrix factorization Our approach in the package LIBMF

Experiments (Cont’d)

0 10 20 30 40 50

0.92

0.94

0.96

0.98

1

Time (sec.)

R
M

S
E

 

 

NOMAD
LIBPMF
LIBMF
LIBMF++

0 50 100 150 200

22

23

24

25

Time (sec.)

R
M

S
E

 

 

NOMAD
LIBPMF
LIBMF
LIBMF++

Netflix Yahoo!Music

0 50 100 150

23.5

24

24.5

25

25.5

26

Time (sec.)

R
M

S
E

 

 

NOMAD
LIBPMF
LIBMF
LIBMF++

0 500 1000 1500
0.5

0.52

0.54

0.56

0.58

0.6

Time (sec.)

R
M

S
E

 

 

CCD++
FPSG
FPSG++

Webscope-R1 Hugewiki
Chih-Jen Lin (National Taiwan Univ.) 30 / 54



Matrix factorization Our approach in the package LIBMF

Non-negative Matrix Factorization (NMF)

Our method has been extended to solve NMF

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

u qv)2 + λP ‖pu‖2F + λQ ‖qv‖2F
)

subject to Pi ,u ≥ 0,Qi ,v ≥ 0,∀i , u, v
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Factorization machines

MF and Classification/Regression

MF solves

min
P,Q

∑
(u,v)∈R

(
ru,v − pT

u qv

)2
Note that I omit the regularization term

Ratings are the only given information

This doesn’t sound like a classification or regression
problem

In the second part of this talk we will make a
connection and introduce FM (Factorization
Machines)
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Factorization machines

Handling User/Item Features

What if instead of user/item IDs we are given user
and item features?

Assume user u and item v have feature vectors

fu and gv

How to use these features to build a model?
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Factorization machines

Handling User/Item Features (Cont’d)

We can consider a regression problem where data
instances are

value features
...

...
ruv

[
fTu gT

v

]
...

...

and solve

min
w

∑
u,v∈R

(
Ru,v −wT

[
fu
gv

])2
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Factorization machines

Feature Combinations

However, this does not take the interaction between
users and items into account

Note that we are approximating the rating ru,v of
user u and item v

Let
U ≡ number of user features
V ≡ number of item features

Then

fu ∈ RU , u = 1, . . . ,m,

gv ∈ RV , v = 1, . . . , n
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Factorization machines

Feature Combinations (Cont’d)

Following the concept of degree-2 polynomial
mappings in SVM, we can generate new features

(fu)t(gv)s , t = 1, . . . ,U , s = 1, . . .V

and solve

min
wt,s ,∀t,s

∑
u,v∈R

(ru,v −
U∑

t ′=1

V∑
s ′=1

wt ′,s ′(fu)t(gv)s)
2
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Factorization machines

Feature Combinations (Cont’d)

This is equivalent to

min
W

∑
u,v∈R

(ru,v − fTu Wgv)2,

where
W ∈ RU×V is a matrix

If we have vec(W ) by concatenating W ’s columns,
another form is

min
W

∑
u,v∈R

ru,v − vec(W )T

 ...
(fu)t(gv)s

...




2

,
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Factorization machines

Feature Combinations (Cont’d)

However, this setting fails for extremely sparse
features

Consider the most extreme situation. Assume we
have

user ID and item ID

as features

Then

U = m, J = n,

fi = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0]T
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Factorization machines

Feature Combinations (Cont’d)

The optimal solution is

Wu,v =

{
ru,v , if u, v ∈ R

0, if u, v /∈ R

We can never predict

ru,v , u, v /∈ R
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Factorization machines

Factorization Machines

The reason why we cannot predict unseen data is
because in the optimization problem

# variables = mn� # instances = |R |

Overfitting occurs

Remedy: we can let

W ≈ PTQ,

where P and Q are low-rank matrices. This
becomes matrix factorization
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Factorization machines

Factorization Machines (Cont’d)

This can be generalized to sparse user and item
features

min
u,v∈R

(Ru,v − fTu P
TQgv)2

That is, we think

Pfu and Qgv

are latent representations of user u and item v ,
respectively

This becomes factorization machines (Rendle, 2010)
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Factorization machines

Factorization Machines (Cont’d)

Similar ideas have been used in other places such as
Stern, Herbrich, and Graepel (2009)

In summary, we connect MF and
classification/regression by the following settings

We need combination of different feature types
(e.g., user, item, etc)
However, overfitting occurs if features are very
sparse
We use product of low-rank matrices to avoid
overfitting
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Factorization machines

Factorization Machines (Cont’d)

We see that such ideas can be used for not only
recommender systems.

They may be useful for any classification problems
with very sparse features
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Factorization machines

Field-aware Factorization Machines

We have seen that FM is useful to handle highly
sparse features such as user IDs

What if we have more than two ID fields?

For example, in CTR prediction for computational
advertising, we may have

value features
...

...
CTR user ID, Ad ID, site ID

...
...
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Factorization machines

Field-aware Factorization Machines
(Cont’d)

FM can be generalized to handle different
interactions between fields

Two latent matrices for user ID and Ad ID
Two latent matrices for user ID and site ID
...

This becomes FFM: field-aware factorization
machines (Rendle and Schmidt-Thieme, 2010)
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Factorization machines

FFM for CTR Prediction

It’s used by Jahrer et al. (2012) to win the 2nd prize
of KDD Cup 2012

Recently my students used FFM to win two Kaggle
competitions

After we used FFM to win the first, in the second
competition all top teams use FFM

Note that for CTR prediction, logistic rather than
squared loss is used
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Factorization machines

Discussion

How to decide which field interactions to use?

If features are not extremely sparse, can the result
still be better than degree-2 polynomial mappings?

Note that we lose the convexity here

We have a software LIBFFM for public use

http://www.csie.ntu.edu.tw/~cjlin/libffm
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Factorization machines

Experiments

We see that
W ⇒ PTQ

reduces the number of variables

What if we map ...
(fu)t(gv)s

...

⇒ a shorter vector

to reduce the number of features/variables
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Factorization machines

Experiments (Cont’d)

However, we may have something like

(r1,2 −W1,2)2 ⇒ (r1,2 − w̄1)2 (1)

(r1,4 −W1,4)2 ⇒ (r1,4 − w̄2)2

(r2,1 −W2,1)2 ⇒ (r2,1 − w̄3)2

(r2,3 −W2,3)2 ⇒ (r2,3 − w̄1)2 (2)

Clearly, there is no reason why (1) and (2) should
share the same variable w̄1

In contrast, in MF, we connect r1,2 and r1,3 through
p1
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Factorization machines

Experiments (Cont’d)

A simple comparison on MovieLens

# training: 9,301,274, # test: 698,780, # users:
71,567, # items: 65,133

Results of MF: RMSE = 0.836

Results of Poly-2 + Hashing:

RMSE = 1.14568 (106 bins), 3.62299 (108 bins),
3.76699 (all pairs)

We can clearly see that MF is much better
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Conclusions

Conclusions

In this talk we have talked about MF and FFM

MF is a mature technique, so we investigate its fast
training

FFM is relatively new. We introduce its basic
concepts and practical use
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