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@ Part of this talk is based on our recent survey paper
in Proceedings of IEEE, 2012

G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent
Advances of Large-scale Linear Classification.

@ It's also related to our development of the software
LIBLINEAR

www.csie.ntu.edu.tw/~cjlin/liblinear

@ Due to time constraints, we will give overviews
instead of deep technical details.
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Linear and Nonlinear Classification

Some popular methods such as SVM and logistic
regression can be used in two ways

@ Kernel methods: data mapped to another space

x = ¢(x)

d(x) T ¢(y) easily calculated; no good control on ¢(-)
@ Linear classification + feature engineering:

We have x without mapping. Alternatively, we can
say that ¢(x) is our x; full control on x or ¢(x)

We refer to them as nonlinear and linear classifiers; we
will focus on linear here ®
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Linear and Nonlinear Classification

Linear Nonlinear
@)

By linear we mean data not mapped to a higher
dimensional space

Original: [height, weight]
Nonlinear: [height, weight, weight /height?]
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Linear and Nonlinear Classification

(Cont'd)

e Given training data {y;,x;},x; € R",i=1,...,1,
yi==1
I: # of data, n: # of features
@ Linear: find (w, b) such that the decision function is
sgn (wa + b)
@ Nonlinear: map data to ¢(x;). The decision
function becomes
sgn (ngb(x) + b)
o Later b is omitted
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Why Linear Classification?

If ¢(x) is high dimensional, w” ¢(x) is expensive
Kernel methods:

w= Zi_l a;p(x;) for some a, K(x;,x;) = ¢(x;) " (x;)
/ a;K(x,-,x))

New decision function: sgn <Z

i=1

Special ¢(x) so that calculating K(x;, x;) is easy

Example:

Klxix) = (x5 + 1)° = o(x) To(x)), 6(x) € R¥

Chih-Jen Lin (National Taiwan Univ.) 8 /50




Why Linear Classification? (Cont'd)

@ Prediction
I
w’x versus Zizla;K(x;,x)
o If K(x;,x;) takes O(n), then
O(n) versus  O(nl)

@ Nonlinear: more powerful to separate data
Linear: cheaper and simpler
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Linear is Useful in Some Places

@ For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

@ Especially document classification
Number of features (bag-of-words model) very large
Large and sparse data

@ Training millions of data in just a few seconds

@ Recently linear classification is a popular research
topic
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@ Binary linear classification
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Binary Linear Classification

/

9 1

Training data {y;,x;},x;, € R",i=1,...
I: # of data, n: # of features

WTW

/
min - ——+ C;ﬁ(W; Xi, Yi)

e w'w/2: regularization term

£(w; x,y): loss function: we hope yw'x > 0

C: regularization parameter

yi==1
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Loss Functions

@ Some commonly used ones:

EL1(w; x, y) = max(0,1 — wax), (1)
Ea(w; x, y) = max(0,1 — wax)27 (2)
ELr(w; x, y) = log(1 + e_yWTX). (3)

@ SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

@ Logistic regression (LR): (3)
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Loss Functions (Cont'd)

§(w; x,y)
L2

/5LR
A

They are similar in terms of performance

—yw’x
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Loss Functions (Cont'd)

However,

&L1: not differentiable
£Lo: differentiable but not twice differentiable
&LRr: twice differentiable

Many optimization methods can be used
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@ Optimization Methods: Second-order Methods
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_ Optimization Methods: Second-order Methods
Truncated Newton Method

@ Newton direction

1
min  Vf(w*)"s + ESTV2f(Wk)S

S

@ This is the same as solving Newton linear system
V2f(w)s = —VF(w¥)
@ Hessian matrix V2f(w*) too large to be stored
V2f(w¥):nxn, n: number of features

@ For document data, n can be millions or more
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_ Optimization Methods: Second-order Methods
Using Special Properties of Data
Classification

@ But Hessian has a special form
V%f(w) =TI+ CXTDX,
@ D diagonal. For logistic regression,

—vw T x:

ey,w X;

Eii— — ow T x
]_ ey,w X;

e X: data, # instances X # features

X =[xs,....x]"
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_ Optimization Methods: Second-order Methods
Using Special Properties of Data
Classification (Cont'd)

@ Using CG to solve the linear system. Only
Hessian-vector products are needed

V2f(w)s =s+ C- XT(D(Xs))

@ Therefore, we have a Hessian-free approach

@ In Lin et al. (2008), we use the trust-region + CG
approach by Steihaug (1983)

@ Quadratic convergence is achieved
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_ Optimization Methods: Second-order Methods
Training L2-loss SVM

@ The loss function is differentiable but not twice
differentiable

ELa(w; x, y) = max(0,1 — yw ' x)?

@ We can use generalized Hessian (Mangasarian,
2002)

@ Works well in practice, but no theoretical quadratic
convergence
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@ Optimization Methods: First-order Methods
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@ First-order methods are popular in data classification
@ Reason: no need to accurately solve the
optimization problem

@ We consider L1-loss SVM as an example here,
though same methods may be extended to L2 and

logistic loss
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@ From primal dual relationship

moin fla)

subjectto 0<a; < C,Vi,

where

and
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_ Optimization Methods: First-order Methods
Dual Coordinate Descent

@ Very simple: minimizing one variable at a time
@ While a not optimal
Fori=1,...,1
min (..., q;,...)
(o

@ A classic optimization technique

@ Traced back to Hildreth (1957) if constraints are
not considered
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The Procedure
e Given current . Let e; =10,...,0,1,0,...,0].
mdin fla+ de;) = %Q,-,-d2 + V,f(a)d + constant
e Without constraints

optimal d = —
P Qji

@ Now 0 <a;+d<C
if
Qj <— min (max (a,- — v Q(__a),O) ,C)
~
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_ Optimization Methods: First-order Methods
The Procedure (Cont'd)

/
V,f(a) = (Qa), —1= Zj:l QUOdJ —1
/ T
= Zj:l Viyix; xjo — 1

@ Directly calculating gradients costs O(/n)
I:# data, n: # features
@ For linear SVM, define

I
u= E QX
oy VIR

e Easy gradient calculation: costs O(n)

Vifla) =yu'x; —1
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_ Optimization Methods: First-order Methods
The Procedure (Cont'd)

@ All we need is to maintain u

/
u= E QX
j:lyf X

o If
a; : old ; o . new
then
u<u-+ (CY,' — O_é,')y,'X,'.

Also costs O(n)
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@ Given initial o and find
u= Zy,'Oé,'X,'.

@ While v is not optimal  (Outer iteration)
Fori=1,...,1 (Inner iteration)
(a) Q) < Q;
(b) G = y,'UTX,' —1
(c) If a; can be changed
a; < min(max(a; — G/Q;;,0), C)
u<—u-+ (Oz,' — o‘z,-)y,-x,-
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Ny Opimization Methods: Firs-order Methods

Analysis

e Convergence; from Luo and Tseng (1992)

Flak*h) — fla®) < u(F(ak) — Fla®)), Yk > ko.

o optimal solution

@ Recently we prove the result with ky = 1 (Wang and
Lin, 2013)

e Difficulty: the objective function is convex only
rather than strictly convex
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_ Optimization Methods: First-order Methods
Careful Implementation

Some techniques can improve the running speed

@ Shrinking: remove q; if it is likely to be bounded at
the end

Easier to conduct shrinking than the kernel case
(details not shown)

@ Order of sub-problems being minimized
a1 — Qp —> - — Q
Can use any random order at each outer iteration
Qr(1) = Qr(2) =7 = =7 Qi())

Very effective in practice
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_ Optimization Methods: First-order Methods
Difference from the Kernel Case

@ What if coordinate descent methods are applied to
kernel classifiers?
@ Recall the gradient is

V;f Zy,ij xjaj—1 = (yix;) Zijjozj

j=1

but we cannot do this for kernel because

K(xi,x;) = o(xi) ¢(x;)
is not separated
@ If using kernel, the cost of calculating V;f(a) must

be O(/n)
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_ Optimization Methods: First-order Methods
Difference from the Kernel Case (Cont'd)

@ This difference is similar to our earlier discussion on
the prediction cost

/
w’x versus Zizloz,-K(x,-,x)
O(n) versus O(nl)

@ However, if O(/n) cost is spent, the whole V()
can be maintained (details not shown here)

@ In contrast, the setting of using u knows V;f(«)
rather than the whole Vf(«)
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_ Optimization Methods: First-order Methods
Difference from the Kernel Case (Cont'd)

@ In existing coordinate descent methods for kernel
classifiers, people also use Vf(a) information to
select variable for update

@ Recall there are two types of coordinate descent
methods

Gauss-Seidel: sequential selection of variables
Gauss-Southwell: greedy selection of variables

@ To do greedy selection, usually the whole gradient
must be available
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_ Optimization Methods: First-order Methods
Difference from the Kernel Case (Cont'd)

@ Existing coordinate descent methods for linear =
related to Gauss-Seidel

Existing coordinate descent methods for kernel =
related to Gauss-Southwell
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@ Experiments
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N ...
Comparisons

L2-SVM is used
e DCDL2: Dual coordinate descent
e DCDL2-S: DCDL2 with shrinking
@ PCD: Primal coordinate descent
@ TRON: Trust region Newton method
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Analysis

@ Dual coordinate descents are very effective if #
data, # features are large

Useful for document classification
@ Half million data in a few seconds
@ However, it is less effective if
# features small: should solve primal; or

large penalty parameter C; problems are more
ill-conditioned
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An Example When # Features Small

@ # instance: 32,561, # features: 123
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@ Big-data Machine Learning
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Big-data Machine Learning

@ Data distributedly stored

@ This is a new topic and many research works are
still going on

@ You may ask what the difference is from distributed
optimization

@ They are related, but now the algorithm must avoid
expensive data accesses

Chih-Jen Lin (National Taiwan Univ.) 41 / 50



Big-data Machine Learning (Cont'd)

@ Issues for parallelization
- Many methods (e.g., stochastic gradient descent
or coordinate descent) are inherently sequential

- Communication cost is a concern
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Simple Distributed Linear Classification |

e Bagging: train several subsets and ensemble results
- Useful in distributed environments; each node = a
subset
- Example: Zinkevich et al. (2010)

@ Some results by averaging models

\yahoo—korea kddcuplQ webspam epsilson
Using all 87.29 89.89 9951 89.78
Avg. models 86.08 89.64  98.40 88.83

@ Using all: solves a single linear SVM
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Simple Distributed Linear Classification |l

@ Avg. models: each node solves a linear SVM on a
subset

@ Slightly worse but in general OK
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ADMM by Boyd et al. (2011) |

@ Recall the SVM problem (bias term b omitted)
1 /
m“iln inw + C 21: max(0,1 — y;w’x;)
=
@ An equivalent optimization problem

1 m
min §sz +C Z Z max(0,1 — y,-ijx,-)—I—
j=1 i€B;

m
0
23w — 2
j=1
subject to w; —z=20,Vj
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ADMM by Boyd et al. (2011) Il

@ The key is that
Z=W; =" =W,

are all optimal w

@ This optimization problem was proposed in 1970s,
but is now applied to distributed machine learning

@ Each node has a subset B; and updates w;
@ Only wy,...,w, must be collected
Data are not moved:; less communication cost

@ Still, we cannot afford too many iterations because
of communication cost
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Vowpal Wabbit (Langford et al., 2007) |

@ It started as a linear classification package on a
single computer

@ After version 6.0, Hadoop support has been provided

@ A hybrid approach: parallel SGD initially and switch
to LBFGS (quasi Newton)

@ They argue that AllReduce is a more suitable
operation than MapReduce

@ What is AllReduce?

Every node starts with a value and ends up with the
sum at all nodes
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Vowpal Wabbit (Langford et al., 2007) Il

@ In Agarwal et al. (2012), the authors argue that
many machine learning algorithms can be
implemented using AllReduce

LBFGS is an example

@ They train 17B samples with 16M features on 1K
nodes = 70 minutes
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@ Conclusions
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I, C©"'usions
Conclusions

@ Linear classification is an old topic; but recently
there are new applications and large-scale challenges

@ The optimization problem can be solved by many
existing techniques

@ However, some machine-learning aspects must be
considered

@ In particular, data access may become a bottleneck
in large-scale scenarios

@ Overall, linear classification is still an on-going and
exciting research area

Chih-Jen Lin (National Taiwan Univ.) 50 / 50



	 
	Introduction
	Binary linear classification
	Optimization Methods: Second-order Methods
	Optimization Methods: First-order Methods
	Experiments
	Big-data Machine Learning
	Conclusions


