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Part of this talk is based on our recent survey paper
in Proceedings of IEEE, 2012

G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent
Advances of Large-scale Linear Classification.

It’s also related to our development of the software
LIBLINEAR

www.csie.ntu.edu.tw/~cjlin/liblinear

Due to time constraints, we will give overviews
instead of deep technical details.
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Introduction

Linear and Nonlinear Classification

Some popular methods such as SVM and logistic
regression can be used in two ways

Kernel methods: data mapped to another space

x⇒ φ(x)

φ(x)Tφ(y) easily calculated; no good control on φ(·)
Linear classification + feature engineering:

We have x without mapping. Alternatively, we can
say that φ(x) is our x; full control on x or φ(x)

We refer to them as nonlinear and linear classifiers; we
will focus on linear here
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Introduction

Linear and Nonlinear Classification

Linear Nonlinear

By linear we mean data not mapped to a higher
dimensional space

Original: [height, weight]

Nonlinear: [height, weight, weight/height2]

Chih-Jen Lin (National Taiwan Univ.) 6 / 50



Introduction

Linear and Nonlinear Classification
(Cont’d)

Given training data {yi , xi}, xi ∈ Rn, i = 1, . . . , l ,
yi = ±1
l : # of data, n: # of features
Linear: find (w, b) such that the decision function is

sgn
(
wTx + b

)
Nonlinear: map data to φ(xi). The decision
function becomes

sgn
(
wTφ(x) + b

)
Later b is omitted
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Introduction

Why Linear Classification?

• If φ(x) is high dimensional, wTφ(x) is expensive

• Kernel methods:

w ≡
∑l

i=1
αiφ(xi) for some α,K (xi , xj) ≡ φ(xi)

Tφ(xj)

New decision function: sgn

(∑l

i=1
αiK (xi , x)

)
• Special φ(x) so that calculating K (xi , xj) is easy

• Example:

K (xi , xj) ≡ (xTi xj + 1)2 = φ(xi)
Tφ(xj), φ(x) ∈ RO(n2)
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Introduction

Why Linear Classification? (Cont’d)

Prediction

wTx versus
∑l

i=1
αiK (xi , x)

If K (xi , xj) takes O(n), then

O(n) versus O(nl)

Nonlinear: more powerful to separate data

Linear: cheaper and simpler
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Introduction

Linear is Useful in Some Places

For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

Especially document classification

Number of features (bag-of-words model) very large

Large and sparse data

Training millions of data in just a few seconds

Recently linear classification is a popular research
topic
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Binary linear classification

Binary Linear Classification

Training data {yi , xi}, xi ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

wTw

2
+ C

l∑
i=1

ξ(w; xi , yi)

wTw/2: regularization term

ξ(w; x, y): loss function: we hope ywTx > 0

C : regularization parameter
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Binary linear classification

Loss Functions

Some commonly used ones:

ξL1(w; x, y) ≡ max(0, 1− ywTx), (1)

ξL2(w; x, y) ≡ max(0, 1− ywTx)2, (2)

ξLR(w; x, y) ≡ log(1 + e−yw
Tx). (3)

SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

Logistic regression (LR): (3)
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Binary linear classification

Loss Functions (Cont’d)

−ywTx

ξ(w; x, y)

ξL1

ξL2

ξLR

They are similar in terms of performance
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Binary linear classification

Loss Functions (Cont’d)

However,

ξL1: not differentiable
ξL2: differentiable but not twice differentiable
ξLR: twice differentiable

Many optimization methods can be used
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Optimization Methods: Second-order Methods
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Optimization Methods: Second-order Methods

Truncated Newton Method

Newton direction

min
s

∇f (wk)T s +
1

2
sT∇2f (wk)s

This is the same as solving Newton linear system

∇2f (wk)s = −∇f (wk)

Hessian matrix ∇2f (wk) too large to be stored

∇2f (wk) : n × n, n : number of features

For document data, n can be millions or more
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Optimization Methods: Second-order Methods

Using Special Properties of Data
Classification

But Hessian has a special form

∇2f (w) = I + CXTDX ,

D diagonal. For logistic regression,

Dii =
e−yiw

Txi

1 + e−yiwTxi

X : data, # instances × # features

X = [x1, . . . , xl ]
T
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Optimization Methods: Second-order Methods

Using Special Properties of Data
Classification (Cont’d)

Using CG to solve the linear system. Only
Hessian-vector products are needed

∇2f (w)s = s + C · XT (D(X s))

Therefore, we have a Hessian-free approach

In Lin et al. (2008), we use the trust-region + CG
approach by Steihaug (1983)

Quadratic convergence is achieved
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Optimization Methods: Second-order Methods

Training L2-loss SVM

The loss function is differentiable but not twice
differentiable

ξL2(w; x, y) ≡ max(0, 1− ywTx)2

We can use generalized Hessian (Mangasarian,
2002)

Works well in practice, but no theoretical quadratic
convergence
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Optimization Methods: First-order Methods
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Optimization Methods: First-order Methods

First-order methods are popular in data classification

Reason: no need to accurately solve the
optimization problem

We consider L1-loss SVM as an example here,
though same methods may be extended to L2 and
logistic loss
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Optimization Methods: First-order Methods

SVM Dual

From primal dual relationship

min
α

f (α)

subject to 0 ≤ αi ≤ C ,∀i ,

where

f (α) ≡ 1

2
αTQα− eTα

and
Qij = yiyjx

T
i xj , e = [1, . . . , 1]T

Chih-Jen Lin (National Taiwan Univ.) 23 / 50



Optimization Methods: First-order Methods

Dual Coordinate Descent

Very simple: minimizing one variable at a time

While α not optimal

For i = 1, . . . , l

min
αi

f (. . . , αi , . . .)

A classic optimization technique

Traced back to Hildreth (1957) if constraints are
not considered
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Optimization Methods: First-order Methods

The Procedure

Given current α. Let ei = [0, . . . , 0, 1, 0, . . . , 0]T .

min
d

f (α + dei) =
1

2
Qiid

2 +∇i f (α)d + constant

Without constraints

optimal d = −∇i f (α)

Qii

Now 0 ≤ αi + d ≤ C

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
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Optimization Methods: First-order Methods

The Procedure (Cont’d)

∇i f (α) = (Qα)i − 1 =
∑l

j=1
Qijαj − 1

=
∑l

j=1
yiyjx

T
i xjαj − 1

Directly calculating gradients costs O(ln)
l :# data, n: # features
For linear SVM, define

u ≡
∑l

j=1
yjαjxj ,

Easy gradient calculation: costs O(n)

∇i f (α) = yiu
Txi − 1
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Optimization Methods: First-order Methods

The Procedure (Cont’d)

All we need is to maintain u

u =
∑l

j=1
yjαjxj ,

If
ᾱi : old ; αi : new

then
u← u + (αi − ᾱi)yixi .

Also costs O(n)
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Optimization Methods: First-order Methods

Algorithm

Given initial α and find

u =
∑
i

yiαixi .

While α is not optimal (Outer iteration)

For i = 1, . . . , l (Inner iteration)

(a) ᾱi ← αi

(b) G = yiuTxi − 1

(c) If αi can be changed

αi ← min(max(αi − G/Qii , 0),C )

u← u + (αi − ᾱi)yixi
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Optimization Methods: First-order Methods

Analysis

Convergence; from Luo and Tseng (1992)

f (αk+1)− f (α∗) ≤ µ(f (αk)− f (α∗)),∀k ≥ k0.

α∗: optimal solution

Recently we prove the result with k0 = 1 (Wang and
Lin, 2013)

Difficulty: the objective function is convex only
rather than strictly convex
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Optimization Methods: First-order Methods

Careful Implementation

Some techniques can improve the running speed

Shrinking: remove αi if it is likely to be bounded at
the end
Easier to conduct shrinking than the kernel case
(details not shown)
Order of sub-problems being minimized

α1 → α2 → · · · → αl

Can use any random order at each outer iteration

απ(1) → απ(2) → · · · → απ(l)

Very effective in practice
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Optimization Methods: First-order Methods

Difference from the Kernel Case

What if coordinate descent methods are applied to
kernel classifiers?
Recall the gradient is

∇i f (α) =
l∑

j=1

yiyjx
T
i xjαj−1 = (yixi)

T
( l∑
j=1

yjxjαj

)
−1

but we cannot do this for kernel because

K (xi , xj) = φ(xi)
Tφ(xj)

is not separated
If using kernel, the cost of calculating ∇i f (α) must
be O(ln)
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Optimization Methods: First-order Methods

Difference from the Kernel Case (Cont’d)

This difference is similar to our earlier discussion on
the prediction cost

wTx versus
∑l

i=1
αiK (xi , x)

O(n) versus O(nl)

However, if O(ln) cost is spent, the whole ∇f (α)
can be maintained (details not shown here)

In contrast, the setting of using u knows ∇i f (α)
rather than the whole ∇f (α)
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Optimization Methods: First-order Methods

Difference from the Kernel Case (Cont’d)

In existing coordinate descent methods for kernel
classifiers, people also use ∇f (α) information to
select variable for update

Recall there are two types of coordinate descent
methods

Gauss-Seidel: sequential selection of variables

Gauss-Southwell: greedy selection of variables

To do greedy selection, usually the whole gradient
must be available
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Optimization Methods: First-order Methods

Difference from the Kernel Case (Cont’d)

Existing coordinate descent methods for linear ⇒
related to Gauss-Seidel

Existing coordinate descent methods for kernel ⇒
related to Gauss-Southwell
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Experiments
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Experiments

Comparisons

L2-SVM is used

DCDL2: Dual coordinate descent

DCDL2-S: DCDL2 with shrinking

PCD: Primal coordinate descent

TRON: Trust region Newton method
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Experiments

Objective values (Time in Seconds)

news20 rcv1

yahoo-japan yahoo-korea
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Experiments

Analysis

Dual coordinate descents are very effective if #
data, # features are large

Useful for document classification

Half million data in a few seconds

However, it is less effective if

# features small: should solve primal; or

large penalty parameter C ; problems are more
ill-conditioned
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Experiments

An Example When # Features Small

# instance: 32,561, # features: 123

Objective value Accuracy
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Big-data Machine Learning
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Big-data Machine Learning

Big-data Machine Learning

Data distributedly stored

This is a new topic and many research works are
still going on

You may ask what the difference is from distributed
optimization

They are related, but now the algorithm must avoid
expensive data accesses
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Big-data Machine Learning

Big-data Machine Learning (Cont’d)

Issues for parallelization

- Many methods (e.g., stochastic gradient descent
or coordinate descent) are inherently sequential

- Communication cost is a concern
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Big-data Machine Learning

Simple Distributed Linear Classification I

Bagging: train several subsets and ensemble results

- Useful in distributed environments; each node ⇒ a
subset

- Example: Zinkevich et al. (2010)

Some results by averaging models

yahoo-korea kddcup10 webspam epsilson
Using all 87.29 89.89 99.51 89.78
Avg. models 86.08 89.64 98.40 88.83

Using all: solves a single linear SVM
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Big-data Machine Learning

Simple Distributed Linear Classification II

Avg. models: each node solves a linear SVM on a
subset

Slightly worse but in general OK
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Big-data Machine Learning

ADMM by Boyd et al. (2011) I

Recall the SVM problem (bias term b omitted)

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
Txi)

An equivalent optimization problem

min
w1,...,wm,z

1

2
zTz + C

m∑
j=1

∑
i∈Bj

max(0, 1− yiw
T
j xi)+

ρ

2

m∑
j=1

‖wj − z‖2

subject to wj − z = 0,∀j
Chih-Jen Lin (National Taiwan Univ.) 45 / 50



Big-data Machine Learning

ADMM by Boyd et al. (2011) II
The key is that

z = w1 = · · · = wm

are all optimal w

This optimization problem was proposed in 1970s,
but is now applied to distributed machine learning

Each node has a subset Bj and updates wj

Only w1, . . . ,wm must be collected

Data are not moved; less communication cost

Still, we cannot afford too many iterations because
of communication cost
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Big-data Machine Learning

Vowpal Wabbit (Langford et al., 2007) I

It started as a linear classification package on a
single computer

After version 6.0, Hadoop support has been provided

A hybrid approach: parallel SGD initially and switch
to LBFGS (quasi Newton)

They argue that AllReduce is a more suitable
operation than MapReduce

What is AllReduce?

Every node starts with a value and ends up with the
sum at all nodes
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Big-data Machine Learning

Vowpal Wabbit (Langford et al., 2007) II

In Agarwal et al. (2012), the authors argue that
many machine learning algorithms can be
implemented using AllReduce

LBFGS is an example

They train 17B samples with 16M features on 1K
nodes ⇒ 70 minutes

Chih-Jen Lin (National Taiwan Univ.) 48 / 50



Conclusions
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Conclusions

Conclusions

Linear classification is an old topic; but recently
there are new applications and large-scale challenges

The optimization problem can be solved by many
existing techniques

However, some machine-learning aspects must be
considered

In particular, data access may become a bottleneck
in large-scale scenarios

Overall, linear classification is still an on-going and
exciting research area
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