
Working Set Selection Using Second
Order Information for Training SVM

Chih-Jen Lin
Department of Computer Science

National Taiwan University

Joint work with Rong-En Fan and Pai-Hsuen Chen

Talk at NIPS 2005 Workshop on Large Scale Kernel Machines
. – p.1/19



Outline

Large dense quadratic programming in SVM

Decomposition methods and working set selections

A new selection based on second order information

Results and analysis

This work appears in JMLR 2005
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SVM Dual Optimization Problem

Large dense quadratic problem

min
α

1

2
α

TQα − eT
α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l

yT
α = 0,

l: # of training data

Q: l by l fully dense matrix

yi = ±1

e = [1, . . . , 1]T

Difficult as Q is fully dense in general
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Do we really need to solve the dual?

Maybe not. Sometimes data too large to do so

Approximating either from primal or dual side

However, in certain situations we still hope to solve it

This talk: a faster algorithm and implementation
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Decomposition Methods

Working on a few variable each time

Similar to coordinate-wise minimization

Working set B, N = {1, . . . , l}\B fixed

Size of B usually <= 100

Sub-problem in each iteration:

min
αB

1

2

[

α
T
B (αk

N )T
]

[

QBB QBN

QNB QNN

] [

αB

α
k
N

]

−

[

eT
B (ek

N )T
]

[

αB

α
k
N

]

subject to 0 ≤ (αB)t ≤ C, t = 1, . . . , q, yT
BαB = −yT

Nα
k
N
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Sequential Minimal Optimization (SMO)

Consider B = {i, j}; that is, |B| = 2 (Platt, 1998)

Extreme of decomposition methods

Sub-problem analytically solved; no need to use
optimization software

min
αi,αj

1

2

[

αi αj

]

[

Qii Qij

Qij Qjj

] [

αi

αj

]

+ (QBNα
k
N − eB)T

[

αi

αj

]

s.t. 0 ≤ αi, αj ≤ C,

yiαi + yjαj = −yT
Nα

k
N ,

This work focuses on selecting two elements
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Existing Selection by Gradient

Let d ≡ [dB,0N ]. Minimizing

f(αk + d) ≈ f(αk) + ∇f(αk)Td

= f(αk) + ∇f(αk)TBdB.

Solve

min
dB

∇f(αk)TBdB

subject to yT
BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B, (1a)

dt ≤ 0, if αk
t = C, t ∈ B, (1b)

−1 ≤ dt ≤ 1, t ∈ B

|B| = 2
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First considered in (Joachims, 1998)

0 ≤ αt ≤ C leads to (1a) and (1b).

0 ≤ αk
t + dt ⇒ dt ≥ 0, if αk

t = 0,

αk
t + dt ≤ C ⇒ dt ≤ 0, if αk

t = C

α + d may not be feasible. OK for finding working sets

−1 ≤ dt ≤ 1, t ∈ B avoid −∞ objective value
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Rewritten as checking first order approximation at
different sub-problems of B

{i, j} = arg min
B:|B|=2

Sub(B),

where

Sub(B) ≡ min
dB

∇f(αk)TBdB

subject to yT
BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B,

dt ≤ 0, if αk
t = C, t ∈ B,

−1 ≤ dt ≤ 1, t ∈ B.

Checking all
(

l
2

)

possible B’s?
. – p.9/19



Solution of Using Gradient Information

O(l) procedure

i ∈ arg max
t∈Iup(αk)

−yt∇f(αk)t,

j ∈ arg min
t∈Ilow(αk)

−yt∇f(αk)t,

where

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1}, and

Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1}.

This usually called maximal violating pair
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Better Working Set Selection

Difficult: # iter ց but cost per iter ր

May not imply shorter training time

A selection by second order information (Fan et al.,
2005)

As f is a quadratic,

f(αk + d) = f(αk) + ∇f(αk)Td +
1

2
dT∇2f(αk)d

= f(αk) + ∇f(αk)TBdB +
1

2
dT

B∇
2f(αk)BBdB
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Selection by Second-Order Information

Using second order information

min
B:|B|=2

Sub(B),

Sub(B) ≡ min
dB

1

2
dT

B∇
2f(αk)BBdB + ∇f(αk)TBdB

subject to yT
BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B,

dt ≤ 0, if αk
t = C, t ∈ B.

−1 ≤ dt ≤ 1, t ∈ B not needed if QBB PD

Too expensive to check
(

l
2

)

sets
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A heuristic
1. Select

i ∈ arg max
t

{−yt∇f(αk)t | t ∈ Iup(αk)}.

2. Select

j ∈ arg min
t
{Sub({i, t}) | t ∈ Ilow(αk),

−yt∇f(αk)t < −yi∇f(αk)i}.

3. Return B = {i, j}.

The same i as using the gradient information

Check only O(l) B’s to decide j
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Sub({i, t}) can be easily solved

If Kii + Kjj − 2Kij > 0,

Sub({i, t}) = −
(−yi∇f(αk)i + yt∇f(αk)t)

2

2(Kii + Ktt − 2Kit)

Convergence established in (Fan et al., 2005)

Details not shown here
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Comparison of Two Selections

Iteration and time ratio between using second-order
information and maximal violating pair

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

im
ag

e

sp
lic

e

tre
e

a1
a

au
st

ra
lia

n
br

ea
st

-c
an

ce
r

di
ab

et
es

fo
ur

cl
as

s

ge
rm

an
.n

um
er

w
1a

ab
al

on
e

ca
da

ta

cp
us

m
al

l
sp

ac
e_

ga
m

g
R

a
ti
o

Data sets

time (40M cache)
time (100K cache)

total #iter

. – p.15/19



A complete comparison is not easy

Try enough data sets

Consider parameter selection

Details not shown here
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More about Second-Order Selection

What if we check all
(

l
2

)

sets

Iteration ratio between checking all and checking O(l) :
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Fewer iterations, but ratio (0.7 to 0.8) not enough to
justify the higher cost per iteration . – p.17/19



Why not Keeping Feasibility?

min
dB

1

2
dT

B∇
2f(αk)BBdB + ∇f(αk)TBdB

Two types of constraints:

yT
BdB = 0, yT

BdB = 0,

dt ≥ 0, if αk
t = 0, t ∈ B, 0 ≤ αk + dt ≤ C, t ∈ B

dt ≤ 0, if αk
t = C, t ∈ B

Related work (Lai et al., 2003a,b)

Heuristically select some pairs

Check function reduction while keeping feasibility

Higher cost in selecting working sets

We proved: at final iterations two are indeed the same
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Conclusions

Finding better working sets for SVM decomposition
methods is difficult

We proposed one based on second order information

Results better than the commonly used selection from
first order information

Implementation in LIBSVM (after version 2.8)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Replacing the maximal violating pair selection
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