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@ This talk is based on our recent survey paper invited
by Proceedings of IEEE

G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent
Advances of Large-scale Linear Classification.

@ It's also related to our development of the software
LIBLINEAR

www.csie.ntu.edu.tw/~cjlin/liblinear

@ Due to time constraints, we will give overviews
instead of deep technical details.
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Linear and Nonlinear Classification

Linear Nonlinear
@)

By linear we mean data not mapped to a higher
dimensional space

Original: [height, weight]
Nonlinear: [height, weight, weight /height?]
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N "t cluction
Linear and Nonlinear Classification

(Cont'd)

e Given training data {y;,x;},x; € R",i=1,....1,
yi==l1
I: # of data, n: # of features
@ Linear: find (w, b) such that the decision function is
sgn (w'x + b)
@ Nonlinear: map data to ¢(x;). The decision
function becomes
sgn (w o(x) + b)
o Later b is omitted
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Introduction

Why Linear Classification?

If ¢(x) is high dimensional, w” ¢(x) is expensive

Kernel methods:

w= Z a;p(x;) for some a, K(x;,x;) = gb(x;)Tgb(xj)

I
New decision function: sgn (Z oz;K(x,-,x))

=1

Special ¢(x) so that calculating K(x;,x;) is easy

Example:

K(xix) = (xx; +1)° = 6(xi) To(x). o(x) € R¥ o
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Why Linear Classification? (Cont'd)

@ Prediction
I
w'x versus Zizla;K(x;,x)
o If K(x;,x;) takes O(n), then
O(n) versus  O(nl)

@ Nonlinear: more powerful to separate data
Linear: cheaper and simpler
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Linear is Useful in Some Places

@ For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

@ Especially document classification
Number of features (bag-of-words model) very large

@ Recently linear classification is a popular research
topic. Sample works in 2005-2008: Joachims
(2006); Shalev-Shwartz et al. (2007); Hsieh et al.
(2008)
They focus on large sparse data

@ There are many other recent papers and software
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Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnnl 1.6 91.81 26.8 98.69
covtype 1.4 76.37 | 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 038.3 97.82
yahoo-japan | 3.1 92.63 | 20,955.2 03.31
webspam 25.7 93.35 | 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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@ Binary linear classification
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Binary Linear Classification

Training data {y;,x;},x; € R",i=1,.... 1, yy=+1
I: # of data, n: # of features

mvjn )+ C Z E(w; x;, i)

r(w): regularization term

£(w; x, y): loss function: we hopey w’x >0

C: regularization parameter
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N  Cin2ry linear classification
Loss Functions

@ Some commonly used ones:

ELr(w; x, y) = max(0,1 — yw "x), (1)
fa(w;x,y) = max(0,1 — yw'x)?, and  (2)
ELr(w; x, y) = log(1 + e_yWTX). (3)

@ SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

@ Logistic regression (LR): (3)
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Loss Functions (Cont'd)

§(w;x, y)
€12

//fm
A

—yw’x

They are similar
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Regularization

@ L1 versus L2
|wl|; and w'w/2

° wTw/2: smooth, easier to optimize
@ ||wl|;: non-differentiable
sparse solution; possibly many zero elements
@ Possible advantages of L1 regularization:
Feature selection
Less storage for w
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Training Linear Classifiers

@ Many recent developments; won't show details here
@ Why training linear is faster than nonlinear?
@ Recall the O(n) and O(nl) difference in prediction:

I
T , ,
w'x and g . a;K(x;,x)

n: # features, /: # data
@ A similar situation happens here. During training:

I
Zt_l ax! x; often needed = O(nl)  (4)
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Binary linear classification

Training Linear Classifiers (Cont'd)

@ By maintaining
/
u= Zytoztxt —  u'x O(n) cost
t=1

@ u: an intermediate variable during training;
eventually approaches the final weight vector w

@ Key: we are able to store x;, Vt and maintain u
Nonlinear: can't store ¢(x;)
@ For linear, basically any optimization method can be

applied
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Choosing a Training Algorithm

@ Data property

# instances << # features or the other way around
@ Primal or dual
@ First-order or higher-order

Now first-order is slightly preferred as seldom we
need an accurate optimization solution

@ Cost of operations
exp/log more expensive; avoid them in training LR
@ Others
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L1 Regularization

e Non-differentiable: need non-smooth optimization
techniques

e Difficult to apply sophisticated methods

@ Currently, coordinate descent or Newton with
coordinate descent are among the most efficient
(Yuan et al., 2010; Friedman et al., 2010; Yuan
et al., 2011)
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Outline

@ Multi-class linear classification
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_ Multi-class linear classification
Solving Several Binary Problems

@ Same methods for linear and nonlinear classification
But there are some subtle differences
@ One-vs-rest

W, : class m positive; others negative

class of x = arg max w/x.

m=1,....k

Memory: O(kn); k: # classes
@ One-vs-one: wiy, ..., W(_1), constructed

O(k*n) memory cost
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Solving Several Binary Problems (Cont'd)

@ So one-vs-rest more suitable than one-vs-one
@ This isn't the case for kernelized SVM/LR
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Multi-class linear classification

Considering All Data at Once

. 1 .
min 52 [wanl3+ €S E(wanthsixi ),

Multi-class SVM by Crammer and Singer (2001)
loss function : max max(0,1 — (w, — w,,) ).
mity

Maximum Entropy (ME)

exp(w, x)

> 1 exp(W]x)’
Many don't think that ME is close to SVM; but it is.
Note if # classes = 2, ME = LR
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@ Applications in non-standard scenarios
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_ Applications in non-standard scenarios
Applications in Non-standard Scenarios

@ Linear classification can be applied to many other
places

@ An important one is to approximate nonlinear
classifiers

@ Goal: better accuracy of nonlinear but faster
training/testing

@ Two types of methods here
- Linear-method for explicit data mappings
- Approximating kernels
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Linear Methods to Explicitly Train ¢(x;)
e Example: low-degree polynomial mapping:
O(X) = [1, X1, - - o Xny X2 o X2 X1X0, oy X1 Xn] |

@ For this mapping, # features = O(n?)
@ When is it useful?
Recall O(n) for linear versus O(nl) for kernel
e Now O(n?) versus O(nl)
@ Sparse data
n =- n, average # non-zeros for sparse data
A < n = O(n?) may still be smaller than O(/n)
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N~ prlications in non-standard scenarios
High Dimensionality of ¢(x) and w

Many new considerations in large scenarios

For example, w has O(n?) components if degree is 2
Our application: n = 46,155, 20G for w

See detailed discussion in Chang et al. (2010)

A related development is the COFFIN framework by
Sonnenburg and Franc (2010)
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An NLP Application: Dependency Parsing

Construct dependency graph: a multi-class problem

nsubj ROOT det dobj prep det pobj p
John hit the ball with a bat
NNP VBD DT NN IN DT NN

Very sparse: n, average # nonzeros per instance

n| Dim. of ¢(x) | I| 7| w's# nonzeros
46,155 | 1,065,165,090 | 204,582 | 13.3 | 1,438,456,
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An NLP Application (Cont'd)

LIBSVM LIBLINEAR
RBF Poly | Linear  Poly
Training time | 3h34m53s 3h21mb1ls | 3m36s 3m43s
Parsing speed 0.7x Ix | 1652x  103x
UAS 89.92 91.67 | 89.11 091.71
LAS 88.55 90.60 | 88.07 90.71

e Explicitly using ¢(x) instead of kernels
= faster training and testing
@ Some interesting Hashing techniques used to handle

sparse w
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http://www.csie.ntu.edu.tw/~cjlin/libsvm

_ Applications in non-standard scenarios
Approximating Kernels

Following Lee and Wright (2010), we consider two
categories

Kernel matrix approximation:
@ Original matrix @ with
Qj = yiyiK(xi, %)

e Consider L
RQ=0"d=x Q.
o ® =[X;,...,%] becomes new training data =
trained by a linear classifier
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Approximating Kernels (Cont'd)

o & c R d < |. # features < # data
@ Testing is an issue

Feature mapping approximation
@ A mapping function ¢ : R” — R? such that

o(x)" o(t) = K(x,t).

o Testing is straightforward because ¢(-) is available

@ Many mappings have been proposed; in particular,
Hashing

o &(-) may be dense or sparse
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@ Data beyond memory capacity
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Data Beyond Memory Capacity

@ Most existing algorithms assume data in memory
@ They are slow if data larger than memory

Frequent disk access of data; CPU time no longer
the main concern

@ They cannot be run in distributed environments
@ Many challenging research issues
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When Data Cannot Fit In Memory
LIBLINEAR on machine with 1 GB memory:

1600

1400

Time (sec.)
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= o
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Disk swap causes lengthy training time
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Disk-level Data Classification

@ Data larger than memory but smaller than disk
@ Design algorithms so that disk access is less frequent

@ An example (Yu et al., 2010): a decomposition
method to load a block at a time but ensure overall
convergence

e But loading time becomes a big concern
Reading 1TB from a hard disk takes very long time
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Distributed Linear Classification

@ An important advantage: each node loads data in
its disk
Parallel data loading, but how about operations?
@ Issues

- Many methods (e.g., stochastic gradient descent
or coordinate descent) are inherently sequential

- Communication cost is a concern

Chih-Jen Lin (National Taiwan Univ.)
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Distributed Linear Classification (Cont'd)

Simple approaches
@ Subsampling: a subset to fit in memory
- Simple and useful in some situations

- In a sense, you do a “reduce” operation to collect
data to one computer, and then conduct detailed
analysis

@ Bagging: train several subsets and ensemble results

- Useful in distributed environments; each node = a
subset

- Example: Zinkevich et al. (2010)
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Distributed Linear Classification (Cont'd)

Some results by averaging models

\ yahoo-korea kddcupl0 webspam epsilson
Using all 87.29 89.89 99.51 89.78
Avg. models 86.08 89.64 98.40  88.83

@ Using all: solves a single linear SVM

@ Avg. models: each node solves a linear SVM on a
subset

@ Slightly worse but in general OK
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Distributed Linear Classification (Cont'd)

@ Parallel optimization
Many possible approaches

@ If the method involves matrix-vector products, then
such operations can be paralleled

@ Each iteration involves communication

Also MapReduce not very suitable for iterative
algorithms (1/0 for fault tolerance)

@ Should have as few iterations as possible
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Data beyond memory capacity

Distributed Linear Classification (Cont'd)
ADMM (Boyd et al., 2011)

1 p
min LaTa 03 S dwixiy) + z Iw; — 21

J=1ieB;

subject tow; —z =0,V

@ Each problem independently updated; but must
collect w;

@ Some have tried MapReduce, but no public
implementation yet

e Convergence may not be very fast (i.e., need some
iterations)
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Distributed Linear Classification (Cont'd)

Vowpal Wabbit (Langford et al., 2007)
@ After version 6.0, Hadoop support has been provided
e LBFGS (quasi Newton) algorithms

@ From John's talk: 2.1T features, 17B samples, 1K
nodes = 70 minutes
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@ Discussion and conclusions
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Related Topics

Structured learning
@ Instead of y; € {+1,—1}, y; becomes a vector
@ Examples: condition random fields (CRF) and
structured SVM
@ They are linear classifiers
Regression
@ Document classification has been widely used, but
document regression (e.g., L2-regularized SVR) less
frequently applied
@ Example: y; is CTR and x; is a web page
@ L1-regularized least-square regression is another
story = very popular for compressed sensing
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_ Discussion and conclusions
Conclusions

@ Linear classification is an old topic; but new
developments for large-scale applications are
interesting

@ Linear classification works on x rather than ¢(x)
Easy and flexible for feature engineering

Linear classification + feature engineering useful for
many real applications
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