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N
Data Classification

e Given training data in different classes (labels
known)

Predict test data (labels unknown)
@ Classic example: medical diagnosis
Find a patient’s blood pressure, weight, etc.
After several years, know if he/she recovers
Build a machine learning model
New patient: find blood pressure, weight, etc
Prediction
@ Training and testing
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Data Classification (Cont'd)

@ Among many classification methods, linear and
kernel are two popular ones

@ They are very related

@ We will discuss these two topics in detail in this
lecture

o Talk slides:

http://www.csie.ntu.edu.tw/~cjlin/talks/
msri.pdf
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Outline

@ Linear classification

© Kernel classification

© Linear versus kernel classification
@ Solving optimization problems
@ Big-data linear classification

@ Discussion and conclusions
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Outline

@ Linear classification
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Outline

@ Linear classification
@ Maximum margin
@ Regularization and losses
@ Other derivations
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@ Linear classification
@ Maximum margin
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Linear Classification

@ Training vectors : x;,i =1,...

@ Feature vectors. For example,
A patient = [height, weight, ...]"

@ Consider a simple case with two classes:
Define an indicator vector y € R/

o 1 ifxjinclass1
Yi=y 1 if x; in class 2

@ A hyperplane to linearly separate all data
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Linear classification Maximum margin

@ A separating hyperplane: w'x 4+ b =0

(WTX,')—i—bZ]. Ify,:].
(wix)+b< -1 ify,=-1

e Decision function f(x) = sgn(w'x + b), x: test
data
Many possible choices of w and b
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Maximum margin

Maximal Margin

@ Maximizing the distance between w'x 4+ b =1 and

—1:
2/ lwl = 2/VwTw

@ A quadratic programming problem

1
min  —w'w
w,b
subject to  y;(w'x; + b) > 1,
i=1,...,1.

@ This is the basic formulation of support vector
machines (Boser et al., 1992)
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Data May Not Be Linearly Separable

@ An example:

@ We can never find a linear hyperplane to separate
data

@ Remedy: allow training errors
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Data May Not Be Linearly Separable
(Cont'd)

e Standard SVM (Boser et al., 1992; Cortes and
Vapnik, 1995)

I
1 |
e C g
o W W)
subject to  yi(w'x; +b) >1—¢,
5,’20,1.:1,...,/.

@ We explain later why this method is called support
vector machine
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The Bias Term b

@ Recall the decision function is
sgn(w ' x + b)
@ Sometimes the bias term b is omitted
sgn(w " x)
That is, the hyperplane always passes through the
origin
@ This is fine if the number of features is not too small

@ In our discussion, b is used for kernel, but omitted
for linear (due to some historical reasons)
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Outli

@ Linear classification

@ Regularization and losses
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ion Regularization and losses

Equivalent Optimization Problem

e Recall SVM optimization problem (without b) is

/
. 1 -
min —-w w+ C ;

subject to  y;w'x; >1—¢&;,
&>0,i=1,...,1.

e |t is equivalent to
1 /
- T T
min - Sww + CZmax(O, 1—yw'x;)) (1)
i=1
e This reformulation is useful for subsequent discussion
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Regularization and losses

Equivalent Optimization Problem (Cont'd)

e That is, at optimum,
& = max(0,1 — yyw ' x;)
@ Reason: from constraint
&>1—yw'xiand & >0

but we also want to minimize &;
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Regularization and losses

Equivalent Optimization Problem (Cont'd)

@ We now derive the same optimization problem (1)
from a different viewpoint

min (training errors)
w

@ To characterize the training error, we need a loss
function &(w; x, y) for each instance (x;, y;)

@ Ideally we should use 0-1 training loss:

1 ifyw'x <0,

§(w; x,y) {

0 otherwise
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Regularization and losses

Equivalent Optimization Problem (Cont'd)

@ However, this function is discontinuous. The
optimization problem becomes difficult

§(wix,y)
|

—yw'x

@ We need continuous approximations
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Common Loss Functions

@ Hinge loss (11 loss)
f(w; x,y) = max(0,1 — yw ' x)
@ Squared hinge loss (12 loss)
fa(w; x,y) = max(0,1 — yw " x)?
@ Logistic loss
Sr(wi x, y) = log(1 + e 7™'X)

e SVM: (2)-(3). Logistic regression (LR): (4)
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Regularization and losses

Common Loss Functions (Cont'd)

E(w; x,y)
€12

/fLR
% T

—yw'Xx

@ Logistic regression is very related to SVM
@ Their performance is usually similar
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Common Loss Functions (Cont'd)

@ However, minimizing training losses may not give a
good model for future prediction

e Overfitting occurs
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Overfitting

@ See the illustration in the next slide
@ For classification,
You can easily achieve 100% training accuracy
@ This is useless
@ When training a data set, we should
Avoid underfitting: small training error
Avoid overfitting: small testing error
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® and A: training; () and A: testing

® o
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Regularization

@ In training we manipulate the w vector so that it
fits the data

@ So we need a way to make w's values less extreme.
@ One idea is to make the objective function smoother
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General Form of Linear Classification

@ Training data {y;, x;},x; € R",i=1,...,1, yj =41
@ [: # of data, n: # of features

T

mMi/n f(w), f(w)= W2W

+ CZS(W; Xi, i)
- (5)

o w'w/2: regularization term
@ &(w;x,y): loss function
@ C: regularization parameter
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General Form of Linear Classification
(Cont'd)
@ If hinge loss
&1(w; x,y) = max(0,1 — yWTx)

is used, then (5) goes back to the SVM problem
described earlier (b omitted):

/
1 7
. - C ;
M g eLs
SUbjeCt to inTXi 2 1-— giu

>0 i=1,...1.
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Solving Optimization Problems

@ We have an unconstrained problem, so many
existing unconstrained optimization techniques can
be used

@ However,

&11: not differentiable
&1o: differentiable but not twice differentiable
&LR: twice differentiable

@ We may need different types of optimization

methods

@ Details of solving optimization problems will be
discussed later
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Outline

@ Linear classification

@ Other derivations
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Logistic Regression

@ Logistic regression can be traced back to the 19th
century

@ It's mainly from statistics community, so many
people wrongly think that this method is very
different from SVM

@ Indeed from what we have shown they are very
related.

@ Let's see how to derive it from a statistical viewpoint
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Logistic Regression (Cont'd)

@ For a label-feature pair (y, x), assume the
probability model

1
plylx) = 11 eywx

@ Note that

p(11x) + p(=1]x)
1
1+ewx ' 14 ew'x
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I Other derivations

Logistic Regression (Cont'd)

@ ldea of this model

1 —1 ifw'x>0,
p(llx) = {

l+ew x| =0 ifw/x<0
@ Assume training instances are

(yi,xi),i=1,...,1
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Logistic Regression (Cont'd)

@ Logistic regression finds w by maximizing the
following likelihood

HP(MX,’)- (6)

@ Negative Iog—likelihood

|ong(y,|x, = Zlogp (vilx/)

— Iog (1 -+ e_y’WTX’)
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I Other derivations

Logistic Regression (Cont'd)

@ Logistic regression

I
min Z log (1 + e_y"WT"") :

i=1

@ Regularized logistic regression

I
: 1 T —yiwTx;
min - Sw w+C;Iog<1+e ) (7)

C: regularization parameter decided by users
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Discussion

We see that the same method can be derived from
different ways

SVM
@ Maximal margin

@ Regularization and training losses

LR

@ Regularization and training losses
@ Maximum likelihood
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© Kermnel classification
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© Kernel classification
@ Nonlinear mapping
o Kernel tricks
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Kernel classification Nonlinear mapping
Outline

© Kernel classification
@ Nonlinear mapping
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Data May Not Be Linearly Separable

@ This is an earlier example:

@ In addition to allowing training errors, what else can
we do?
@ For this data set, shouldn't we use a nonlinear

classifier?
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Nonlinear mapping

Mapping Data to a Higher Dimensional
Space

@ But modeling nonlinear curves is difficult. Instead,
we map data to a higher dimensional space

3(x) = [¢1(x), d2(x), .. ]
@ For example,
weight
height?
is a useful new feature to check if a person
overweights or not

39 /121




Nonlinear mapping

Kernel Support Vector Machines
@ Linear SVM:

: 1 7 /
MT[I)T]{ EW w + CZ/ZI fi
subject to  y;(w'x; +b) > 1—¢,

E>0,1=1,...,1
@ Kernel SVM:

: 1 - /
Mr/nlljn€ EW w + Czi:1§;
subject to  yi(w' o (x;) +b) >1—¢,

>0, i=1,...,1
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Nonlinear mapping

Kernel Logistic Regression

/
1 .
T/lg\ §WTW +C 'E_l log (1 — e_Yi(ch)(x,')—i-b)) .
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Nonlinear mapping

Difficulties After Mapping Data to a
High-dimensional Space

@ # variables in w = dimensions of ¢(x)
@ Infinite variables if ¢(x) is infinite dimensional

@ Cannot do an infinite-dimensional inner product for
predicting a test instance

sgn(w " ¢(x))

@ Use kernel trick to go back to a finite number of
variables
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© Kernel classification

@ Kernel tricks
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Kernel tricks

Kernel Tricks

@ It can be shown at optimum

/
w = yia(x;)
i=1
Details not provided here

@ Special ¢(x) such that the decision function
becomes

sen(0o()) = sen (32 yno() o))
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Kernel tricks

Kernel Tricks (Cont'd)

o &(x;)T¢(x;) needs a closed form
e Example: x; € R®, ¢(x;) € RY®

¢(xf) = [17 \/E(Xi)lv \/§(X,')2, \/§(X/)3, (X/)%v
(x1)3, (313, V2(x:)1(x:)2, V2(xi)1(xi)3, V2(x:)2(xi)3] T

Then ¢(x;)To(x;) = (1 + x] x;)>.
o Kernel: K(x,y) = ¢(x)T¢(y); common kernels:

e‘””"l""f”i (Radial Basis Function)

(x]xj/a+ b)* (Polynomial kernel)
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Kernel tricks

K(x,y) can be inner product in infinite dimensional
space. Assume x € R! and v > 0.

e X=Xl _ a=v(xi=x)* _ g +2yxig

e (1 27XIXJ 4 (27XIXJ)2 4 (27X/XJ)3

—e —xF—yx? 1 1+\/7 \/TJ"‘ (2’7 (27 2
(27)3 (2
o[ C e B e oot

where

.
d(x) = e X [1, \/?x, (2;!)2x2, (2;!)3)(3’ . ]
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Linear versus kernel classification
Outli

@ Linear versus kernel classification
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Linear versus kernel classification
Outli

© Linear versus kernel classification
@ Comparison on the cost
@ Numerical comparisons
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Linear versus kernel classification Comparison on the cost
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© Linear versus kernel classification
@ Comparison on the cost
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linear and Kernel Classification

Now we see that methods such as SVM and logistic
regression can used in two ways

@ Kernel methods: data mapped to a higher
dimensional space

x = ¢(x)

d(x;)T(x;) easily calculated; little control on ¢(*)
@ Linear classification 4 feature engineering:

We have x without mapping. Alternatively, we can
say that ¢(x) is our x; full control on x or ¢(x)
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Comparison on the cost

Linear and Kernel Classification

@ The cost of using linear and kernel classification is
different

@ Let's check the prediction cost
I
T - .
w'Xx versus Zi:l yiaiK(x;, x)
o If K(xj, x;) takes O(n), then

O(n) versus  O(nl)

@ Linear is much cheaper
@ A similar difference occurs for training
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Linear and Kernel Classification (Cont'd)

@ In fact, linear is a special case of kernel

@ We can prove that accuracy of linear is the same as
Gaussian (RBF) kernel under certain parameters
(Keerthi and Lin, 2003)

@ Therefore, roughly we have

accuracy: kernel > linear
cost: kernel > linear

@ Speed is the reason to use linear
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Linear and Kernel Classification (Cont'd)

@ For some problems, accuracy by linear is as good as
nonlinear

But training and testing are much faster

@ This particularly happens for document classification
Number of features (bag-of-words model) very large
Data very sparse (i.e., few non-zeros)
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Linear versus kernel classification Numerical comparisons
O t I .

© Linear versus kernel classification

@ Numerical comparisons
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Comparison Between Linear and Kernel
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnnl 1.6 91.81 26.8 98.69
covtype 1.4 76.37 | 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 | 20,955.2 03.31
webspam 25.7 93.35 | 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances

. A .
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@ Solving optimization problems
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Outline

@ Solving optimization problems
Kernel: decomposition methods

@ Linear: coordinate descent method
@ Linear: second-order methods

@ Experiments
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Solving optimization problems Kernel: decomposition methods
Outli

@ Solving optimization problems
@ Kernel: decomposition methods

Chih-Jen Lin (National Taiwan Univ.) 58 / 121



Solving optimization problems Kernel: decomposition methods

@ Recall we said that the difficulty after mapping x to
¢(x) is the huge number of variables

@ We mentioned
/
w = Z @;yip(X;) (8)
i=1

and used kernels for prediction
@ Besides prediction, we must do training via kernels

@ The most common way to train SVM via kernels is
through its dual problem
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Kernel: decomposition methods

Dual Problem (Cont'd)

@ The dual problem

1

min -a' Qa—e'a
(8%
subjectto 0<o; <C,i=1,...,/
y a =0,

where Q; = yiy;0(x;) o(x;) and e =[1,...,1]7
@ From primal-dual relationship, at optimum (8) holds

@ Dual problem has a finite number of variables
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Kernel: decomposition methods

Example: Primal-dual Relationship

@ Consider the earlier example:

2 O
1

0

@ Now two data are x; = 1, x, = 0 with

y= [+17 _1]T

@ The solution is (w, b) = (2,-1)
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Kernel: decomposition methods

Example: Primal-dual Relationship
(Cont'd)

@ The dual objective function

ylow o [5 0] [ -1 u [2]
1

= 504% — (a1 + ap)

@ In optimization, objective function means the
function to be optimized
e Constraints are

a1 —apy=0,0< 1,0 < as.
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Kernel: decomposition methods
Example: Primal-dual Relationship

(Cont'd)

@ Substituting ar; = ay into the objective function,

1
ia% — 2

has the smallest value at a; = 2.
@ Because [2,2]7 satisfies constraints

OSO&landOSOéz,

it is optimal
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Kernel: decomposition methods

Example: Primal-dual Relationship

(Cont'd)

@ Using the primal-dual relation

W = Yy101X1 + yo0nXo
1-2-14+(-1)-2-0
= 2

@ This is the same as that by solving the primal
problem.
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Kernel: decomposition methods

Decision function

@ At optimum

w = > aiyid(x:)
@ Decision function
w'¢(x) + b
= Zj_l aiyid(x;) T o(x) + b
= Zizl a;yiK(xj,x)+ b

@ Recall 0 < a; < C in the dual problem

Chih-Jen Lin (National Taiwan Univ.)
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Support Vectors

Only x; of aj > 0 used = support vectors
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Kernel: decomposition methods

Large Dense Quadratic Programming

1

mn -a'Qa-—e'a
a 2
subjectto 0<a; < C,i=1,...,1
y a=0

® Qjj#0, Q: an/by/fully dense matrix
@ 50,000 training points: 50,000 variables:

(50,0002 x 8/2) bytes = 10GB RAM to store @
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Kernel: decomposition methods

Large Dense Quadratic Programming

(Cont'd)

@ Traditional optimization methods cannot be directly
applied here because () cannot even be stored

@ Currently, decomposition methods (a type of
coordinate descent methods) are what used in
practice
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ems Kernel: decomposition methods

Decomposition Methods

@ Working on some variables each time (e.g., Osuna
et al., 1997; Joachims, 1998; Platt, 1998)

@ Similar to coordinate-wise minimization
e Working set B, N ={1,...,/}\B fixed
@ Sub-problem at the kth iteration:

min 5 led (@h)] |G Go] |2 -
e (e 2]

subjectto 0<a,< C,t€ B, ylag= —yﬁaﬁ,
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Kernel: decomposition methods
Avoid Memory Problems

@ The new objective function

5@2@53043 + (—ep + Qsnaf)"ap + constant

Only B columns of @ are needed

In general |B| < 10 is used. We need |B| > 2
because of the linear constraint

T . T _k
YeOB = —YNyOpy

Calculated when used: trade time for space

But is such an approach practical?
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Kernel: decomposition methods
How Decomposition Methods Perform?

@ Convergence not very fast. This is known because
of using only first-order information

@ But, no need to have very accurate o
/
decision function: E - yiaiK(x;,x)+ b
i=1

Prediction may still be correct with a rough o
@ Further, in some situations,
# support vectors < # training points
Initial a' = 0, some instances never used
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Kernel: decomposition methods

How Decomposition Methods Perform?

(Cont'd)

@ An example of training 50,000 instances using the
software LIBSVM (|B| = 2)

$svm-train -c 16 -g 4 -m 400 22features
Total nSV = 3370
Time 79.524s

@ This was done on a typical desktop
@ Calculating the whole @ takes more time
e #SVs = 3,370 <« 50,000
A good case where some remain at zero all the tim
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Solving optimization problems Linear: coordinate descent method
Outli

@ Solving optimization problems

@ Linear: coordinate descent method
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Linear: coordinate descent method

Coordinate Descent Methods for Linear
Classification

@ We consider L1-loss SVM as an example here

@ The same method can be extended to L2 and
logistic loss

@ More details in Hsieh et al. (2008); Yu et al. (2011)
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Linear: coordinate descent method
SVM Dual (Linear without Kernel)

@ From primal dual relationship

moin fla)

subjectto 0<a; < C,Vi,

where 1
fla) = EaTQa —e'a
and
Qj = y,-ij,-ij, e=1[1,..., 1]T
@ No linear constraint y" e = 0 because of no bias

term b
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Linear: coordinate descent method
Dual Coordinate Descent

@ Very simple: minimizing one variable at a time
@ While a not optimal
Fori=1,...,1
min (..., q;,...)
(o

@ A classic optimization technique

@ Traced back to Hildreth (1957) if constraints are
not considered
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Linear: coordinate descent method

The Procedure

e Given current a. Let e; =[0,...,0,1,0,...,0]".
1
mdin flaa+ dej) = 5Q,-,-d2 + V,f(a)d + constant
@ Without constraints

optimal d = —
P Qji

@ Now 0 <a;+d<C
if
Qj <— min (max (a,- — v Q(__a),O) ,C)
~
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Linear: coordinate descent method

The Procedure (Cont d)

/
V,f(a) = (Qa), —1= Zj:l QUOdJ —1
! T
= Zj:l viyix; xjap —1

@ Directly calculating gradients costs O(/n)
I:# data, n: # features
@ For linear SVM, define

/
u= E QX
j:1yJ X

e Easy gradient calculation: costs O(n)

Vifla) =yu'x; -1
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Linear: coordinate descent method
The Procedure (Cont'd)

@ All we need is to maintain u
/
u= QX
oy YI%D
o If
a; : old ; o . new
then
u<—u-+ (Ck,' — 5z,-)y,-x,-.
Also costs O(n)
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Algorithm: Dual Coordinate Descent

@ Given initial o and find
u= ZY:’OéiXi-

@ While v is not optimal  (Outer iteration)
Fori=1,...,1 (Inner iteration)
(a) Q) < Q;
(b) G = y,'UTX,' —1
(c) If a; can be changed
a; < min(max(a; — G/Q;;,0), C)
u < U—I—(Oz,'—O_é,')y,'X,'
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Linear: coordinate descent method

Difference from the Kernel Case

e \We have seen that coordinate descent is also the main
method to train kernel classifiers

e Recall the i-th element of gradient costs O(n) by
I

/
Vif(e) = Y yiypx! xja; = 1= (yixi)T (D vixje) — 1
j=1

j=1
= (yix;)'u—1
but we cannot do this for kernel because
K(xi,x;) = ¢(x;)  o(x;)
cannot be separated
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Difference from the Kernel Case (Cont'd)

@ If using kernel, the cost of calculating V;f(a) must
be O(/n)

@ However, if O(/n) cost is spent, the whole V()
can be maintained (details not shown here)

@ In contrast, the setting of using u knows V;f(a)
rather than the whole Vf(a)
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Linear: coordinate descent method
Difference from the Kernel Case (Cont'd)

@ In existing coordinate descent methods for kernel
classifiers, people also use Vf(a) information to
select variables (i.e., select the set B) for update

@ In optimization there are two types of coordinate
descent methods:

sequential or random selection of variables
greedy selection of variables

@ To do greedy selection, usually the whole gradient
must be available
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Linear: coordinate descent method
Difference from the Kernel Case (Cont'd)

@ Existing coordinate descent methods for linear =
related to sequential or random selection

Existing coordinate descent methods for kernel =
related to greedy selection
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Linear: coordinate descent method
Bias Term b and Linear Constraint in Dual

@ In our discussion, b is used for kernel but not linear
@ Mainly history reason

@ For kernel SVM, we can also omit b to get rid of
the linear constraint y’ o =0

@ Then for kernel decomposition method, |B| =1 can

also be possible
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Solving optimization problems Linear: second-order methods
Outli

@ Solving optimization problems

@ Linear: second-order methods
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Optimization for Linear and Kernel Cases

@ Recall that /
w = Zyiai¢(xi)
i=1

@ Kernel: can only solve an optimization problem of
@ Linear: can solve either w or «
@ We will show an example to minimize over w
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Solving optimization problems Linear: second-order methods

@ Let's minimize a twice-differentiable function

muiln f(w)

@ For example, logistic regression has

I
1
mMi/n §WTW + C; log (1 + e‘y"“’T""> .

o Newton direction at iterate w*

1
: T o o 2T o2e( vk
min Vi(w") s+5s Vof(w")s
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Truncated Newton Method

@ The above sub-problem is equivalent to solving
Newton linear system

V3 (wk)s = —VF(wh)

@ Approximately solving the linear system =-
truncated Newton

@ However, Hessian matrix V2f(w*) is too large to be
stored

V2f(wX):nx n, n: number of features

@ For document data, n can be millions or more
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Linear: second-order methods

Using Special Properties of Data
Classification

@ But Hessian has a special form
V3 (w) =T+ CXTDX,
@ D diagonal. For logistic regression,

—vw ! x.

ey,w X

Eii— —ow T x
]_ ey,w X

e X: data, # instances X # features

X =[x1,....,x]"

90 / 121




Linear: second-order methods

Using Special Properties of Data
Classification (Cont'd)

@ Using Conjugate Gradient (CG) to solve the linear
system.

@ CG is an iterative procedure. Each CG step mainly
needs one Hessian-vector product

V?f(w)s =s+ C- XT(D(Xs))

@ Therefore, we have a Hessian-free approach
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Linear: second-order methods

Using Special Properties of Data
Classification (Cont'd)

@ Now the procedure has two layers of iterations
Outer: Newton iterations
Inner: CG iterations per Newton iteration

@ Past machine learning works used Hessian-free
approaches include, for example, (Keerthi and
DeCoste, 2005; Lin et al., 2008)

@ Second-order information used: faster convergence
than first-order methods
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Solving optimization problems Experiments
Outli

@ Solving optimization problems

@ Experiments
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Experiments

Comparisons

L2-loss SVM is used

@ DCDL2: Dual coordinate descent (Hsieh et al.,
2008)

e DCDL2-S: DCDL2 with shrinking (Hsieh et al.,
2008)

@ PCD: Primal coordinate descent (Chang et al.,
2008)

@ TRON: Trust region Newton method (Lin et al.,
2008)
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Analysis

@ Dual coordinate descents are very effective if #
data and # features are both large

Useful for document classification
@ Half million data in a few seconds
@ However, it is less effective if
# features small: should solve primal; or

large penalty parameter C; problems are more
ill-conditioned
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An Example When # Features Small

@ # instance: 32,561, # features: 123

°

%

>
L

b

Relative function value difference
: oz

2

Testing accuracy difference (%)
|
o

s

o 0.085 o1 015 0.2 0.25 03 0.35 0.4 0 0.0s 0 015 0z 0.25
Training Time (s) Training Time (s)

Objective value Accuracy
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© Big-data linear classification
@ Multi-core linear classification
@ Distributed linear classification
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Big-data Linear Classification

o Parallelization in shared-memory system: use the
power of multi-core CPU if data can fit in memory

@ Distributed linear classification: if data cannot be
stored in one computer

@ Example: we can parallelize the 2nd-order method
(i.e., the Newton method) discussed earlier.

@ Recall the bottleneck is the Hessian-vector product
V?f(w)s =s+ C- XT(D(Xs))

See the analysis in the next slide
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Matrix-vector Multiplications

@ Two sets:
Data set | / n Hnonzeros
epsilon 400,000 2,000 800,000,000
webspam | 350,000 16,609,143 1,304,697,446

@ Matrix-vector multiplications occupy the majority of
the running time

Data set | matrix-vector ratio
epsilson 99.88%
webspam 97.95%

@ This is by Newton methods using one core
@ We should parallelize matrix-vector multiplications
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Big-data linear classification Multi-core linear classification
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© Big-data linear classification
@ Multi-core linear classification
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Big-data linear classification Multi-core linear classification

Parallelization by OpenMP

@ The Hessian-vector product can be done by

/
XTDXs =) 1x,-D,-,-x,Ts

1=

@ We can easily parallelize this loop by OpenMP
@ Speedup; details in Lee et al. (2015)

6
10 e % openie] PapEr =
- 5

8 > x
o - .
3 » g4 »
S 6 . S -
o e g3
o o O
o 4 . &2 kd

.
2l 1
* *
07 4 6 8 10 12 07 4 6 8 0 12
# threads # threads
epsilon webspam :
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Big-data linear classification Distributed linear classification
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© Big-data linear classification

@ Distributed linear classification
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Big-data linear classification Distributed linear classification

Parallel Hessian-vector Product

@ Now data matrix X is distributedly stored

node 1 — X1
node 2 — X2
node p — Xo

XTDXs =X/ DiXis + -+ X D,Xps
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Distributed linear classification

Parallel Hessian-vector Product (Cont'd)

We use allreduce to let every node get X" DXs

S —)XlTDles \ /\ XTDXs

s =X, DXss — |ALL REDUCE| — XT7Dxs

s —X; D3X3s / \ XTDXs

Allreduce: reducing all vectors (X, D;Xix, Vi) to a single
vector (XTDXs € R™) and then sending the result to
every node
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)<iw,2 Xfw,l:Xfw,2:Xfw,3
)<iw,3
Instance-wise Feature-wise

@ Feature-wise: each machine calculates part of the
Hessian-vector product

(V2f(W)S)fW,]_ =S+ CXfVCle(XfW’lsl‘{" . -—i—XfW,pSp
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Distributed linear classification

Instance-wise and Feature-wise Data Splits

(Cont'd)

@ Xpy,151+ -+ Xaw,pSp € R! must be available on all
nodes (by allreduce)

@ Data moved per Hessian-vector product
Instance-wise: O(n), Feature-wise: O(/)
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Experiments

@ We compare

o TRON: Newton method

o ADMM: alternating direction method of
multipliers (Boyd et al., 2011; Zhang et al.,
2012)

o Vowpal Wabbit (Langford et al., 2007)

@ TRON and ADMM are implemented by MPI
@ Details in Zhuang et al. (2015)
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Big-data linear classification Distributed linear classification

Experiments (Cont'd)

Q Q 5
g - 10 -
5 VW & VW
L0 ADMM-FW| 2 ADMM-FW|
o N ADMM-IW ok ADMM-IW
2 ~TRON-FW 210 +TRON-FW
s 0 *TRON-IW > R *TRON-IW
S0t s %
=10 Y 5, 2l
g 2107
2 % \ 2|
2 SN g |
s 4 8 4|
[} [} L
@00 700 200 300 400 00 £'C0 1000 2000 3000 4000 5000
Time (sec.) Time (sec.)
epsilon webspam

@ 32 machines are used
@ Horizontal line: test accuracy has stabilized

@ Instance-wise and feature-wise splits useful for
[ > n and | < n, respectively
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Some resources

Software

e Most materials in this talks are based on our
experiences in developing two popular software

e Kernel: LIBSVM (Chang and Lin, 2011)
http://www.csie.ntu.edu.tw/~cjlin/libsvm

e Linear: LIBLINEAR (Fan et al., 2008).
http://www.csie.ntu.edu.tw/~cjlin/liblinear

See also a survey on linear classification in Yuan et al.
(2012)
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Discus: and ns Some resources

Distributed LIBLINEAR

@ An extension of the software LIBLINEAR

@ See http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/distributed-1liblinear

@ We support both MPI (Zhuang et al., 2015) and
Spark (Lin et al., 2014)

@ The development is still in an early stage.
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Outli

@ Discussion and conclusions

@ Conclusions
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Conclusions

@ Linear and kernel classification are old topics

@ However, novel techniques are still being developed
to handle large-scale data or new applications

@ You are welcome to join to this interesting research
area
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