Training Support Vector Machines: Status and Challenges

Chih-Jen Lin Department of Computer Science National Taiwan University

Talk at Microsoft Research Asia October 13, 2009

Outline

• Training support vector machines

- Training large-scale SVM
- Linear SVM
- SVM with Low-Degree Polynomial Mapping
- Discussion and Conclusions

イロト イヨト イヨト イヨト

Support Vector Classification

- Training data $(\mathbf{x}_i, y_i), i = 1, \dots, I, \mathbf{x}_i \in R^n, y_i = \pm 1$
- Maximizing the margin [Boser et al., 1992, Cortes and Vapnik, 1995]

$$\min_{\mathbf{w},b} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + C\sum_{i=1}^{l} \max(1 - y_i(\mathbf{w}^{\mathsf{T}}\phi(\mathbf{x}_i) + b), 0)$$

• High dimensional (maybe infinite) feature space

$$\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots).$$

• w: maybe infinite variables

イロト 不得下 イヨト イヨト

Support Vector Classification (Cont'd)

• The dual problem (finite # variables)

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha} \\ \text{subject to} \quad 0 \le \alpha_i \le C, i = 1, \dots, I \\ \mathbf{y}^T \boldsymbol{\alpha} = 0,$$

where $Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ and $\mathbf{e} = [1, \dots, 1]^T$ • At optimum

$$\mathbf{w} = \sum_{i=1}^{l} \alpha_i y_i \phi(\mathbf{x}_i)$$

• Kernel: $K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$; closed form E.g., RBF kernel: $e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$

Large Dense Quadratic Programming

• $Q_{ij} \neq 0$, Q: an I by I fully dense matrix

$$\begin{array}{ll} \min_{\boldsymbol{\alpha}} & \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha} \\ \text{subject to} & 0 \leq \alpha_i \leq C, i = 1, \dots, I \\ & \mathbf{y}^T \boldsymbol{\alpha} = 0 \end{array}$$

- 50,000 training points: 50,000 variables: (50,000² × 8/2) bytes = 10GB RAM to store Q
- Traditional optimization methods cannot be directly applied
- Right now most use decomposition methods

Decomposition Methods

• Working on some variables each time (e.g., [Osuna et al., 1997, Joachims, 1998, Platt, 1998])

• Working set *B*,
$$N = \{1, \ldots, I\} \setminus B$$
 fixed

• Sub-problem at the *k*th iteration:

$$\begin{split} \min_{\boldsymbol{\alpha}_{B}} & \frac{1}{2} \begin{bmatrix} \boldsymbol{\alpha}_{B}^{T} & (\boldsymbol{\alpha}_{N}^{k})^{T} \end{bmatrix} \begin{bmatrix} Q_{BB} & Q_{BN} \\ Q_{NB} & Q_{NN} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_{B} \\ \boldsymbol{\alpha}_{N}^{k} \end{bmatrix} - \\ & \begin{bmatrix} \mathbf{e}_{B}^{T} & (\mathbf{e}_{N}^{k})^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{\alpha}_{B} \\ \boldsymbol{\alpha}_{N}^{k} \end{bmatrix} \\ \text{subject to} & 0 \leq \alpha_{i} \leq C, i \in B, \ \mathbf{y}_{B}^{T} \boldsymbol{\alpha}_{B} = -\mathbf{y}_{N}^{T} \boldsymbol{\alpha}_{N}^{k} \\ \end{split}$$

<ロ> (日) (日) (日) (日) (日)

Avoid Memory Problems

• The new objective function

$$\frac{1}{2}\boldsymbol{\alpha}_{B}^{\mathsf{T}}\boldsymbol{Q}_{BB}\boldsymbol{\alpha}_{B} + (-\mathbf{e}_{B} + \boldsymbol{Q}_{BN}\boldsymbol{\alpha}_{N}^{k})^{\mathsf{T}}\boldsymbol{\alpha}_{B} + \text{ constant}$$

- Only *B* columns of *Q* needed ($|B| \ge 2$)
- Calculated when used

Trade time for space

- Popular software such as SVM^{light} and LIBSVM are of this type
- Work well if data not too large (e.g., \leq 100k)

(日) (同) (三) (三)

Outline

• Training support vector machines

• Training large-scale SVM

- Linear SVM
- SVM with Low-Degree Polynomial Mapping
- Discussion and Conclusions

イロト イヨト イヨト イヨト

Is It Possible to Train Large SVM?

- Accurately solve quadratic programs with millions of variables or more?
- General approach: very unlikely Cases with many support vectors: quadratic time bottleneck on

Q_{SV, SV}

 Parallelization: possible but Difficult in distributed environments due to high communication cost

イロト イ押ト イヨト イヨト

Training large-scale SVM

Is It Possible to Train Large SVM? (Cont'd)

- For large problems, approximation almost unavoidable
- That is, don't accurately solve the quadratic program of the full training set

Approximately Training SVM

- Can be done in many aspects
- Data level: sub-sampling
- Optimization level:

Approximately solve the quadratic program

- Other non-intuitive but effective ways I will show one today
- Many papers have addressed this issue

イロト イ押ト イヨト イヨト

Approximately Training SVM (Cont'd)

Subsampling

• Simple and often effective

Many more advanced techniques

- Incremental training: (e.g., [Syed et al., 1999])
 Data ⇒ 10 parts
 train 1st part ⇒ SVs, train SVs + 2nd part, ...
- Select and train good points: KNN or heuristics e.g., [Bakır et al., 2005]

イロト イ理ト イヨト イヨト

Training large-scale SVM

Approximately Training SVM (Cont'd)

- Approximate the kernel; e.g., [Fine and Scheinberg, 2001, Williams and Seeger, 2001]
- Use part of the kernel; e.g., [Lee and Mangasarian, 2001, Keerthi et al., 2006]
- Early stopping of optimization algorithms [Tsang et al., 2005] and most parallel works
- And many others

Some simple but some sophisticated

イロト 人間ト イヨト イヨト

Approximately Training SVM (Cont'd)

- But sophisticated techniques may not be always useful
- Sometimes slower than sub-sampling
- covtype: 500k training and 80k testing rcv1: 550k training and 14k testing rcv1 covtype Training size Accuracy Training size Accuracy 50k 92.5% 50k 97.2% 97.4% 100k 95.3% 100k 500k 98.2% 550k 97.8%

(日) (同) (三) (三)

Approximately Training SVM (Cont'd)

- But sophisticated techniques may not be always useful
- Sometimes slower than sub-sampling
- covtype: 500k training and 80k testing
 rcv1: 550k training and 14k testing

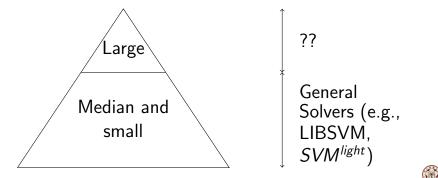
covtype		rcv1		
Training size	Accuracy	Training size	Accuracy	
50k	92.5%	50k	97.2%	
100k	95.3%	100k	97.4%	
500k	98.2%	550k	97.8%	
		1		

イロト イ押ト イヨト イヨト

Training large-scale SVM

Approximately Training SVM (Cont'd)

- Personally I prefer specialized approach for large-scale scenarios
- Distribution of training data



イロト イ押ト イヨト イヨト

Approximately Training SVM (Cont'd)

- We don't have many large and well labeled sets
- They appear in certain application domains
- Specific properties of data should be considered May significantly improve the training speed We will illustrate this point using linear SVM
- The design of software for large and median/small problems should be different

イロト イ伺ト イヨト イヨト

Outline

- Training support vector machines
- Training large-scale SVM
- Linear SVM
- SVM with Low-Degree Polynomial Mapping
- Discussion and Conclusions

イロト イヨト イヨト イヨト

Linear SVM

- Data not mapped to another space
- Primal without the bias term b

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^{T} \mathbf{w} + C \sum_{i=1}^{l} \max\left(0, 1 - y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)$$

• Dual

$$\min_{\boldsymbol{\alpha}} \quad f(\boldsymbol{\alpha}) \equiv \frac{1}{2} \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{\alpha} - \boldsymbol{e}^{\mathsf{T}} \boldsymbol{\alpha}$$
subject to $0 \le \alpha_i \le C, \forall i$

•
$$Q_{ij} = y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

イロト イヨト イヨト イヨト

Linear SVM (Cont'd)

 In theory, RBF kernel with certain parameters
 ⇒ as good as linear [Keerthi and Lin, 2003] RBF kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

• That is,

Test accuracy of linear ≤Test accuracy of RBF

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Linear SVM not better than nonlinear; but An approximation to nonlinear SVM

Linear SVM for Large Document Sets

- Bag of words model (TF-IDF or others)
 A large # of features
- Accuracy similar with/without mapping vectors
- What if training is much faster?
 A very effective approximation to nonlinear SVM

イロト イ押ト イヨト イヨト

A Comparison: LIBSVM and LIBLINEAR

- rcv1: # data: > 600k, # features: > 40k TF-IDF
- Using LIBSVM (linear kernel)

> 10 hours

• Using LIBLINEAR

Computation: < 5 seconds; I/O: 60 seconds

- Same stopping condition
- Accuracy similar to nonlinear; more than 100x speedup

イロト イ押ト イヨト イヨト

Linear SVM

Why Training Linear SVM Is Faster?

• In optimization, each iteration we often need

$$abla_i f(oldsymbollpha) = (Qoldsymbollpha)_i - 1$$

Nonlinear SVM

$$abla_i f(oldsymbollpha) = \sum_{j=1}^l y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) lpha_j - 1$$

cost: O(nl); n: # features, l: # data

Linear: use

$$\mathbf{w} \equiv \sum_{j=1}^{l} y_j \alpha_j \mathbf{x}_j$$
 and $\nabla_i f(\boldsymbol{\alpha}) = y_i \mathbf{w}^T \mathbf{x}_i - 1$

• Only O(n) cost if **w** is maintained

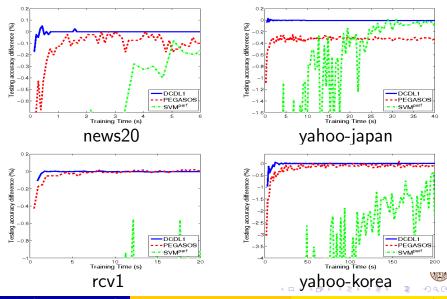
通 とう キョン・キョン・

- Faster if # iterations not / times more
- For details, see
 - C.-J. Hsieh K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. *A dual coordinate descent method for large-scale linear SVM*. ICML 2008.
 - R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. *LIBLINEAR: A library for large linear classification*. Journal of Machine Learning Research 9(2008), 1871-1874.
- Experiments

Problem	<i>I</i> : # data	<i>n</i> : # features
news20	19,996	1,355,191
yahoo-japan	176,203	832,026
rcv1	677,399	47,236
yahoo-korea	460,554	3,052,939
-	I	・ロト ・ 一下・ ・ モト ・ モト

Linear SVM

Testing Accuracy versus Training Time



Chih-Jen Lin (National Taiwan Univ.)

Training Linear SVM Always Much Faster?

No

- If #data $\gg \#$ features, the algorithm used above may not be very good
- Need some other ways
- But document data are not of this type
- Large-scale SVM training is domain specific

イロト イ伺ト イヨト イヨト

Outline

- Training support vector machines
- Training large-scale SVM
- Linear SVM

• SVM with Low-Degree Polynomial Mapping

• Discussion and Conclusions

(日) (同) (三) (三)

Training Nonlinear SVM via Linear SVM

• Revisit nonlinear SVM

$$\min_{\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i=1}^{l} \max(1 - y_{i}\mathbf{w}^{T}\phi(\mathbf{x}_{i}), 0)$$

- Dimension of $\phi(\mathbf{x})$: large
- If not very large, directly train SVM without kernel

イロト イヨト イヨト イヨト

Degree-2 Polynomial Mapping

Degree-2 polynomial kernel

$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$$

Instead we do

$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \dots, \sqrt{2}x_n, x_1^2, \dots, x_n^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{n-1}x_n]^T$$

Now we can just consider

$$\phi(\mathbf{x}) = [1, x_1, \dots, x_n, x_1^2, \dots, x_n^2, x_1 x_2, \dots, x_{n-1} x_n]^T$$

O(n²) dimensions can cause troubles; some considerations are needed

Accuracy Difference with linear and RBF

Data cat	Degree-2 Polynomial Time		Accuracy diff.	
Data set	LIBLINEAR	LIBSVM	linear	RBF
a9a	1.6	89.8	0.07	0.02
real-sim	59.8	1,220.5	0.49	0.10
ijcnn1	10.7	64.2	5.63	-0.85
MNIST38	8.6	18.4	2.47	-0.40
covtype	5,211.9	$\geq 3 imes 10^5$	3.74	-15.98
webspam	3,228.1	$\geq 3 imes 10^5$	5.29	-0.76

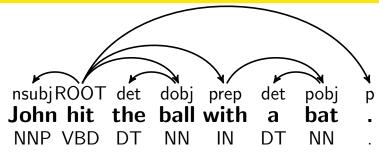
- Some problems: accuracy similar to RBF; but training much faster
- Less nonlinear SVM to approximate highly nonlinear SVM

NLP Applications

- In NLP (Natural Language Processing) degree-2 or degree-3 polynomial kernels very popular
- Competitive with RBF; better than linear
- No theory yet; but possible reasons Bigram/trigram useful
- This is different from other areas (e.g., image), which mainly use RBF
- Currently people complain that training is slow

SVM with Low-Degree Polynomial Mapping

Dependency Parsing



SVM with Low-Degree Polynomial Mapping

Dependency Parsing

nsubjROOT det dobj prep det pobj p John hit the ball with a bat . NNP VBD DT NN IN DT NN .						
	LIBSVM		LIBLI	NEAR		
	RBF	Poly	Linear	Poly		
Training time	3h34m53s	3h21m51s	3m36s	3m43s		
Parsing speed	0.7x	1x	1652x	103x		
UAS	89.92	91.67	89.11	91.71 🚕		
LAS	88.55	90.60	88.07	90.71 W		

SVM with Low-Degree Polynomial Mapping

Dependency Parsing (Cont'd)

Details:

• Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Low-degree polynomial mapping of data for SVM, 2009.

イロト 人間ト イヨト イヨト

Outline

- Training support vector machines
- Training large-scale SVM
- Linear SVM
- SVM with Low-Degree Polynomial Mapping
- Discussion and Conclusions

イロト イ団ト イヨト イヨト

Discussion and Conclusions

What If Data Cannot Fit in Memory?

- We can manage to train data in disk Details not shown here
- However, what if data too large to store in one machine?
- So far not many such cases with well labeled data It's expensive to label data
- We do see very large but low quality data Dealing with such data is different

L1-regularized Classifiers

• Replacing $\|\mathbf{w}\|_2$ with $\|\mathbf{w}\|_1$

$$\min_{\mathbf{w}} \|\mathbf{w}\|_1 + C \times (\text{losses})$$

- Sparsity: many **w** elements are zeros Feature selection
- LIBLINEAR supports L2 loss and logistic regression

$$\max\left(0,1-y_{i}oldsymbol{w}^{T}oldsymbol{x}_{i}
ight)^{2}$$
 and $\log(1+e^{-y_{i}oldsymbol{w}^{T}oldsymbol{x}_{i}})$

 If using least-square loss and y ∈ R^l, related to L1-regularized problems in signal processing

Conclusions

- Training large SVM is difficult The (at least) quadratic time bottleneck
- Approximation is often needed; but some are non-intuitive ways

E.g., linear SVM good approximation to nonlinear SVM for some applications

• Difficult to have a general approach for all large scenarios

Special techniques are needed

Conclusions (Cont'd)

- Software design for large and median/small problems should be different Median/small problems: general and simple software
- Sources for my past work are available on my page. In particular,
 - LIBSVM:

http://www.csie.ntu.edu.tw/~cjlin/libsvm LIBLINEAR: http:

//www.csie.ntu.edu.tw/~cjlin/liblinear

• I will be happy to talk to any machine learning users here

イロト イヨト イヨト イヨト