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Why distributed machine learning?

Why Distributed Machine Learning

The usual answer is that data are too big to be
stored in one computer

Some say that because “Hadoop” and “MapReduce
are buzzwords

No, we should never believe buzzwords

I will argue that things are more complicated than
we thought
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Why distributed machine learning?

In this talk I will consider only machine learning in
data-center environments

That is, clusters using regular PCs

I will not discuss machine learning in other parallel
environments:

GPU, multi-core, specialized clusters such as
supercomputers
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Why distributed machine learning?

Let’s Start with An Example

Using a linear classifier LIBLINEAR (Fan et al.,
2008) to train the rcv1 document data sets (Lewis
et al., 2004).

# instances: 677,399, # features: 47,236

On a typical PC

$time ./train rcv1_test.binary

Total time: 50.88 seconds

Loading time: 43.51 seconds

For this example

loading time � running time
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Why distributed machine learning?

Loading Time Versus Running Time I

To see why this happens, let’s discuss the complexity

Assume the memory hierarchy contains only disk
and number of instances is l

Loading time: l × (a big constant)

Running time: lq × (some constant), where q ≥ 1.

Running time is often larger than loading because
q > 1 (e.g., q = 2 or 3)

Example: kernel methods
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Why distributed machine learning?

Loading Time Versus Running Time II

Therefore,

lq−1 > a big constant

and traditionally machine learning and data mining
papers consider only running time

For example, in this ICML 2008 paper (Hsieh et al.,
2008), some training algorithms were compared for
rcv1
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Why distributed machine learning?

Loading Time Versus Running Time III

DCDL1 is what LIBLINEAR used

We see that in 2 seconds, final testing accuracy is
achieved
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Why distributed machine learning?

Loading Time Versus Running Time IV

But as we said, this 2-second running time is
misleading

So what happened? Didn’t you say that

lq−1 > a big constant?

The reason is that when l is large, we usually can
afford using only q = 1 (i.e., linear algorithm)

For some problems (in particular, documents), going
through data a few times is often enough

Now we see different situations
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Why distributed machine learning?

Loading Time Versus Running Time V

- If running time dominates, then we should design
algorithms to reduce number of operations

- If loading time dominates, then we should design
algorithms to reduce number of data accesses

Distributed environment is another layer of memory
hierarchy

So things become even more complicated
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Why distributed machine learning?

Data in a Distributed Environment

One apparent reason of using distributed systems is
that data are too large for one disk

But in addition to that, what are other reasons of
using distributed environments?

On the other hand, now disk is large. If you have
several TB data, should we use one or several
machines?

We will try to answer this question in the following
slides
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Why distributed machine learning?

Possible Advantages of Distributed Data
Classification

Parallel data loading

Reading several TB data from disk ⇒ a few hours

Using 100 machines, each has 1/100 data in its
local disk ⇒ a few minutes

Fault tolerance

Some data replicated across machines: if one fails,
others are still available

But how to efficiently/effectively achieve these is a
challenge
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Why distributed machine learning?

An Introduction of Distributed Systems I

Distributed file systems

We need it because a file is now managed at
different nodes

A file split to chunks and each chunk is replicated

⇒ if some nodes fail, data still available

Example: GFS (Google file system), HDFS (Hadoop
file system)

Parallel programming frameworks

A framework is like a language or a specification.
You can then have different implementations
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Why distributed machine learning?

An Introduction of Distributed Systems II
Example:
MPI (Snir and Otto, 1998): a parallel programming
framework
MPICH2 (Gropp et al., 1999): an implementation
Sample MPI functions

MPI Bcast: Broadcasts to all processes.
MPI AllGather: Gathers the data contributed by each

process on all processes.
MPI Reduce: A global reduction (e.g., sum)

to the specified root.
MPI AllReduce: A global reduction and

sending result to all processes.
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Why distributed machine learning?

An Introduction of Distributed Systems III

They are reasonable functions that we can think
about

MapReduce (Dean and Ghemawat, 2008). A
framework now commonly used for large-scale data
processing

In MapReduce, every element is a (key, value) pair

Mapper: a list of data elements provided. Each
element transformed to an output element

Reducer: values with same key presented to a single
reducer
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Why distributed machine learning?

An Introduction of Distributed Systems IV

See the following illustration from Hadoop Tutorial
http:

//developer.yahoo.com/hadoop/tutorial
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Why distributed machine learning?

An Introduction of Distributed Systems V
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Why distributed machine learning?

An Introduction of Distributed Systems VI

Let’s compare MPI and MapReduce

MPI: communication explicitly specified

MapReduce: communication performed implicitly

In a sense, MPI is like an assembly language, but
MapReduce is high-level

MPI: sends/receives data to/from a node’s memory

MapReduce: communication involves expensive disk
I/O

MPI: no fault tolerance

MapReduce: support fault tolerance
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Why distributed machine learning?

An Introduction of Distributed Systems
VII

Because of disk I/O, MapReduce can be inefficient
for iterative algorithms

To remedy this, some modifications have been
proposed

Example: Spark (Zaharia et al., 2010) supports

- MapReduce and fault tolerance

- Cache data in memory between iterations

MapReduce is a framework; it can have different
implementations
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Why distributed machine learning?

An Introduction of Distributed Systems
VIII

For example, shared memory (Talbot et al., 2011)
and distributed clusters (Google’s and Hadoop)

An algorithm implementable by a parallel framework

6=
You can easily have efficient implementations

The paper (Chu et al., 2007) has the following title

Map-Reduce for Machine Learning on Multicore

The authors show that many machine learning
algorithms can be implemented by MapReduce
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Why distributed machine learning?

An Introduction of Distributed Systems IX

These algorithms include linear regression, k-means,
logistic regression, naive Bayes, SVM, ICA, PCA,
EM, Neural networks, etc

But their implementations are on shared-memory
machines; see the word “multicore” in their title

Many wrongly think that their paper implies that
these methods can be efficiently implemented in a
distributed environment. But this is wrong
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Why distributed machine learning?

Evaluation I

Traditionally a parallel program is evaluated by
scalability

(64, 530,474) (128, 1,060,938) (256, 2,121,863)
(number of machines, data size)
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Why distributed machine learning?

Evaluation II

We hope that when (machines, data size) doubled,
the speedup also doubled.

64 machines, 500k data ⇒ ideal speedup is 64

128 machines, 1M data ⇒ ideal speedup is 128

That is, a linear relationship in the above figure

But in some situations we can simply check
throughput.

For example, # documents per hour.
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Why distributed machine learning?

Data Locality I

Transferring data across networks is slow.

We should try to access data from local disk

Hadoop tries to move computation to the data.

If data in node A, try to use node A for computation

But most machine learning algorithms are not
designed to achieve good data locality.

Traditional parallel machine learning algorithms
distribute computation to nodes

This works well in dedicated parallel machines with
fast communication among nodes
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Why distributed machine learning?

Data Locality II

But in data-center environments this may not work
⇒ communication cost is very high

Example: in Chen et al. (2011), for sparse
matrix-vector products (size: 2 million)

#nodes Computation Communication Synchronization
16 3,351 2,287 667
32 1,643 2,389 485
64 913 2,645 404

128 496 2,962 428
256 298 3,381 362

This is by MPI. If using MapReduce, the situation
will be worse
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Why distributed machine learning?

Data Locality III

Another issue is whether users should be allowed to
explicitly control the locality
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Why distributed machine learning?

Now go back to machine learning algorithms

Two major types of machine learning methods are
classification and clustering

I will discuss more on classification
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Why distributed machine learning?

How People Train Large-scale Data Now?

Two approaches

Subsample data to one machine and run a
traditional algorithm

Run a distributed classification algorithm

I will discuss advantages and disadvantages of each
approach
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Why distributed machine learning?

Training a Subset

No matter how large the data set is, one can always
consider a subset fitting into one computer

Because subsampling may not downgrade the
performance, very sophisticated training methods
for small sets have been developed
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Why distributed machine learning?

Training a Subset: Advantages

It is easier to play with advanced methods on one
computer

Many training data + a so so method

may not be better than

Some training data + an advanced method

Also machines with large RAM (e.g., 1G) are now
easily available
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Why distributed machine learning?

Training a Subset: Disadvantage

Subsampling may not be an easy task

What if this part is more complicated than training?

It’s not convenient if features are calculated using
raw data in distributed environments

We may need to copy data to the single machine
several times (see an example later)

The whole procedure becomes disconnected and ad
hoc

You switch between distributed systems and regular
systems
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Why distributed machine learning?

Using Distributed Algorithms:
Disadvantages

It’s difficult to design and implement a distributed
algorithm

Communication and data loading are expensive

Scheduling a distributed task is sometimes an issue
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Why distributed machine learning?

Using Distributed Algorithms: Advantages

Integration with other parts of data management

Can use larger training sets
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Why distributed machine learning?

So Which Approach Should We Take?

It depends

Let me try a few examples to illustrate this point

Chih-Jen Lin (National Taiwan Univ.) 35 / 121



Why distributed machine learning?

Example: A Multi-class Classification
Problem I

Once I need to train some documents at an Internet
company

From log in data centers we select documents of a
time period to one machine

For each document we generate a feature vector
using words in the document (e.g., bigram)

Data set can fit into one machine (≥ 50G RAM)

It is easier to run various experiments (e.g., feature
engineering) on one machine
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Why distributed machine learning?

Example: A Multi-class Classification
Problem II

So for this application, reducing data to one
machine may be more suitable
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Why distributed machine learning?

Example: Features Calculated on Cloud I

Once I need to train some regression problems

Features include: “in a time period, the average
number of something”

Values of using a 3-month period differ from those
of using a 6-month period

We need engineers dedicated to extract these
features and then copy files to a single machine

We must maintain two lists of files in distributed
and regular file systems

1. In data center, files of using 3-, 6-, 9-month
averages, etc.
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Why distributed machine learning?

Example: Features Calculated on Cloud II

2. In a single computer, subsets of the bigger files

In this case, running everything in the distributed
environment may be more suitable
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Why distributed machine learning?

Resources of Distributes Machine Learning
I

There are many books about Hadoop and
MapReduce. I don’t list them here.

For things related to machine learning, a collection
of recent works is in the following book

Scaling Up Machine Learning, edited by Bekkerman,
Bilenko, and John Langford, 2011.

This book covers materials using various parallel
environments. Many of them use distributed
clusters.
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Why distributed machine learning?

Resources of Distributes Machine Learning
II

Existing tools

1. Apache Mahout, a machine learning library on
Hadoop (http://mahout.apache.org/)

2. Graphlab (graphlab.org/), a large-scale
machine learning library on graph data. Tools
include graphical models, clustering, and collaorative
filtering
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Why distributed machine learning?

Subsequently I will show some existing distributed
machine learning works

I won’t go through all of them, but these slides can
be references for you
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Distributed classification algorithms Kernel support vector machines

Support Vector Classification

Training data (xi , yi), i = 1, . . . , l , xi ∈ Rn, yi = ±1

Maximizing the margin (Boser et al., 1992; Cortes
and Vapnik, 1995)

min
w,b

1

2
wTw + C

l∑
i=1

max(1− yi(wTφ(xi) + b), 0)

High dimensional ( maybe infinite ) feature space

φ(x) = (φ1(x), φ2(x), . . .).

w: maybe infinite variables
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Distributed classification algorithms Kernel support vector machines

Support Vector Classification (Cont’d)

The dual problem (finite # variables)

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0,

where Qij = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

Kernel: K (xi , xj) ≡ φ(xi)
Tφ(xj) ; closed form

Example: Gaussian (RBF) kernel: e−γ‖xi−xj‖2
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Distributed classification algorithms Kernel support vector machines

Computational and Memory Bottleneck I

The square kernel matrix.

O(l2) memory and O(l2n) computation

If l = 106, then

1012 × 8 bytes = 8TB

Distributed implementations include, for example,
Chang et al. (2008); Zhu et al. (2009)

We will look at ideas of these two implementations

Because the computational cost is high (not linear),
the data loading and communication cost is less a
concern.
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Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) I

Kernel matrix approximation.

Original matrix Q with

Qij = yiyjK (xi , xj)

Consider
Q̄ = Φ̄T Φ̄ ≈ Q.

Φ̄ ≡ [x̄1, . . . , x̄l ] becomes new training data

Φ̄ ∈ Rd×l , d � l . # features � # data

Testing is an issue, but let’s not worry about it here
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Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) II

They follow Fine and Scheinberg (2001) to use
incomplete Cholesky factorization

What is Cholesky factorization?

Any symmetric positive definite Q can be factorized
as

Q = LLT ,

where L ∈ R l×l is lower triangular
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Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) III

There are several ways to do Cholesky factorization.
If we do it columnwisely
L11
L21
L31
L41
L51

⇒

L11
L21 L22
L31 L32
L41 L42
L51 L52

⇒

L11
L21 L22
L31 L32 L33
L41 L42 L43
L51 L52 L53


and stop before it’s fully done, then we get
incomplete Cholesky factorization
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Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) IV

To get one column, we need to use previous
columns:[

L43
L53

]
needs

[
Q43

Q53

]
−
[
L41 L42
L51 L52

] [
L31
L32

]
The matrix-vector product is parallelized. Each
machine is responsible for several rows

Using d =
√
l , they report the following training

time
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Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) V

Nodes Image (200k) CoverType (500k) RCV (800k)
10 1,958 16,818 45,135

200 814 1,655 2,671

We can see that communication cost is a concern

The reason they can get speedup is because the
complexity of the algorithm is more than linear

They implemented MPI in Google distributed
environments

If MapReduce is used, scalability will be worse
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Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) I

They consider stochastic gradient descent methods
(SGD)

SGD is popular for linear SVM (i.e., kernels not
used).

At the tth iteration, a training instance xit is chosen
and w is updated by

w← w−ηt∇S
(1

2
‖w‖22+C max(0, 1−yit wTφ(xit ))

)
,

∇S : a sub-gradient operator; η: learning rate.
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Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) II

Bias term b omitted here

The update rule becomes

If 1− yit w
Txit > 0, then

w← (1− ηt)w + ηtCyitφ(xit ).

For kernel SVM, neither φ(x) nor w can be stored.
So we need to store all η1, . . . , ηt
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Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) III

The calculation of
wTxit

becomes

t−1∑
s=1

(some coefficient)K (xis , xit ) (1)

Parallel implementation.

If xi1, . . . , xit distributedly stored, then (1) can be
computed in parallel

Two challenges
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Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) IV

1. xi1, . . . , xit must be evenly distributed to nodes,
so (1) can be fast.

2. The communication cost can be high

– Each node must have xit

– Results from (1) must be summed up

Zhu et al. (2009) propose some ways to handle
these two problems

Note that Zhu et al. (2009) use a more
sophisticated SGD by Shalev-Shwartz et al. (2011),
though concepts are similar.

MPI rather than MapReduce is used
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Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) V

Again, if they use MapReduce, the communication
cost will be a big concern
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Distributed classification algorithms Kernel support vector machines

Discussion: Parallel Kernel SVM

An attempt to use MapReduce is by Liu (2010)

As expected, the speedup is not good

From both Chang et al. (2008); Zhu et al. (2009),
we know that algorithms must be carefully designed
so that time saved on computation can compensate
communication/loading
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Distributed classification algorithms Linear support vector machines
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Distributed classification algorithms Linear support vector machines

Linear Support Vector Machines

By linear we mean kernels are not used

For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

Especially document classification

Number of features (bag-of-words model) very large

Recently there are many papers and software
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Distributed classification algorithms Linear support vector machines

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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Distributed classification algorithms Linear support vector machines
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Distributed classification algorithms Linear support vector machines

Parallel Linear SVM I

Training linear SVM is faster than kernel SVM
because w can be maintained

Recall that SGD’s update rule is

If 1− yit w
Txit > 0, then

w← (1− ηt)w + ηtCyit xit .
(2)
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Distributed classification algorithms Linear support vector machines

Parallel Linear SVM II

For linear, we directly calculate

wTxit

For kernel, w cannot be stored. So we need to store
all η1, . . . , ηt−1

t−1∑
s=1

(some coefficient)K (xis , xit )

For linear SVM, each iteration is cheap.

It is difficult to parallelize the code
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Distributed classification algorithms Linear support vector machines

Parallel Linear SVM III

Issues for parallelization

- Many methods (e.g., stochastic gradient descent
or coordinate descent) are inherently sequential

- Communication cost is a concern
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Distributed classification algorithms Linear support vector machines

Simple Distributed Linear Classification I

Bagging: train several subsets and ensemble results

- Useful in distributed environments; each node ⇒ a
subset

- Example: Zinkevich et al. (2010)

Some results by averaging models

yahoo-korea kddcup10 webspam epsilson
Using all 87.29 89.89 99.51 89.78
Avg. models 86.08 89.64 98.40 88.83

Using all: solves a single linear SVM
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Distributed classification algorithms Linear support vector machines

Simple Distributed Linear Classification II

Avg. models: each node solves a linear SVM on a
subset

Slightly worse but in general OK

Chih-Jen Lin (National Taiwan Univ.) 66 / 121



Distributed classification algorithms Linear support vector machines

ADMM by Boyd et al. (2011) I

Recall the SVM problem (bias term b omitted)

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiw
Txi)

An equivalent optimization problem

min
w1,...,wm,z

1

2
zTz + C

m∑
j=1

∑
i∈Bj

max(0, 1− yiw
T
j xi)+

ρ

2

m∑
j=1

‖wj − z‖2

subject to wj − z = 0,∀j
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Distributed classification algorithms Linear support vector machines

ADMM by Boyd et al. (2011) II
The key is that

z = w1 = · · · = wm

are all optimal w

This optimization problem was proposed in 1970s,
but is now applied to distributed machine learning

Each node has a subset Bj and updates wj

Only w1, . . . ,wm must be collected

Data are not moved; less communication cost

Still, we cannot afford too many iterations because
of communication cost
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Distributed classification algorithms Linear support vector machines

ADMM by Boyd et al. (2011) III

An MPI implementation is by Zhang et al. (2012)

I am not aware of any MapReduce implementation
yet
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Distributed classification algorithms Linear support vector machines

Vowpal Wabbit (Langford et al., 2007) I

It started as a linear classification package on a
single computer

It actually solves logistic regression rather than
SVM.

After version 6.0, Hadoop support has been provided

A hybrid approach: parallel SGD initially and switch
to LBFGS (quasi Newton)

They argue that AllReduce is a more suitable
operation than MapReduce

What is AllReduce?
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Distributed classification algorithms Linear support vector machines

Vowpal Wabbit (Langford et al., 2007) II

Every node starts with a value and ends up with the
sum at all nodes

In Agarwal et al. (2012), the authors argue that
many machine learning algorithms can be
implemented using AllReduce

LBFGS is an example

In the following talk

Scaling Up Machine Learning

the authors train 17B samples with 16M features on
1K nodes ⇒ 70 minutes
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Parallel Tree Learning I

We describe the work by Panda et al. (2009)

It considers two parallel tasks

- single tree generation

- tree ensembles

The main procedure of constructing a tree is to
decide how to split a node

This becomes difficult if data are larger than a
machine’s memory

Basic idea:

Chih-Jen Lin (National Taiwan Univ.) 73 / 121



Distributed classification algorithms Parallel tree learning

Parallel Tree Learning II

A

B

C D

If A and B are finished, then we can generate C and
D in parallel

But a more careful design is needed. If data for C
can fit in memory, we should generate all
subsequent nodes on a machine

Chih-Jen Lin (National Taiwan Univ.) 74 / 121



Distributed classification algorithms Parallel tree learning

Parallel Tree Learning III

That is, when we are close to leaf nodes, no need to
use parallel programs

If you have only few samples, a parallel
implementation is slower than one single machine

The concept looks simple, but generating a useful
code is not easy

The authors mentioned that they face some
challenges

- “MapReduce was not intended ... for highly
iterative process .., MapReduce start and tear down
costs were primary bottlenecks”
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Parallel Tree Learning IV

- “cost ... in determining split points ... higher than
expected”

- “... though MapReduce offers graceful handling of
failures within a specific MapReduce ..., since our
computation spans multiple MapReduce ...”

The authors address these issues using engineering
techniques.

In some places they even need RPCs (Remote
Procedure Calls) rather than standard MapReduce

For 314 million instances (> 50G storage), in 2009
they report
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Parallel Tree Learning V

nodes time (s)
25 ≈ 400

200 ≈ 1,350

This is good in 2009. At least they trained a set
where one single machine cannot handle at that
time

The running time does not decrease from 200 to
400 nodes

This study shows that
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Parallel Tree Learning VI

- Implementing a distributed learning algorithm is
not easy. You may need to solve certain engineering
issues

- But sometimes you must do it because of handling
huge data
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k-means I

One of the most basic and widely used clustering
algorithms

The idea is very simple.

Finding k cluster centers and assign each data to
the cluster of its closest center
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k-means II

Algorithm 1 k-means procedure
1 Find initial k centers
2 While not converge

- Find each point’s closest center

- Update centers by averaging all its members

We discuss difference between MPI and MapReduce
implementations of k-means

Chih-Jen Lin (National Taiwan Univ.) 82 / 121



Distributed clustering algorithms k-means

k-means: MPI Implementation I

Broadcast initial centers to all machines

While not converged

Each node assigns its data to k clusters and
compute local sum of each cluster

An MPI AllReduce operation obtains sum of all k
clusters to find new centers

Communication versus computation:

If x ∈ Rn, then each node transfer

kn elements (local sum) after kn × l/p operations,

l : total number of data and p: number of nodes.
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k-means: MapReduce implementation I

We describe one implementation by Thomas
Jungblut

http:

//codingwiththomas.blogspot.com/2011/05/

k-means-clustering-with-mapreduce.html

You don’t specifically assign data to nodes

That is, data has been stored somewhere at HDFS

Each instance: a (key, value) pair

key: its associated cluster center

value: the instance
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k-means: MapReduce implementation II

Map:

Each (key, value) pair find the closest center and
update the key (after loading all data centers)

Reduce:

For instances with the same key (cluster), calculate
the new cluster center (and save data centers)

As we said earlier, you don’t control where data
points are

Therefore, it’s unclear how expensive loading and
communication is
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Spectral Clustering I

Input: Data points x1, . . . , xn; k : number of desired
clusters.

1 Construct similarity matrix S ∈ Rn×n.

2 Modify S to be a sparse matrix.
3 Compute the Laplacian matrix L by

L = I − D−1/2SD−1/2,

4 Compute the first k eigenvectors of L; and construct
V ∈ Rn×k , whose columns are the k eigenvectors.
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Spectral Clustering II

5 Compute the normalized matrix U of V by

Uij =
Vij√∑k
r=1 V

2
ir

, i = 1, . . . , n, j = 1, . . . , k .

6 Use k-means algorithm to cluster n rows of U into
k groups.

Early studies of this method were by, for example, Shi
and Malik (2000); Ng et al. (2001)

We discuss the parallel implementation by Chen et al.
(2011)
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MPI and MapReduce

Similarity matrix

Only done once: suitable for MapReduce

But size grows in O(n2)

First k Eigenvectors

An iterative algorithm called implicitly restarted
Arnoldi

Iterative: not suitable for MapReduce

MPI is used but no fault tolerance
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Sample Results I

2,121,863 points and 1,000 classes

(64, 530,474) (128, 1,060,938) (256, 2,121,863)
(number of machines, data size)

Sp
ee

du
p

 

 

Total time
Similarity matrix
Eigendecomposition
K−means

28

27

25

26
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Sample Results II

We can see that scalability of eigen decomposition is not
good

Nodes Similarity Eigen kmeans Total Speedup
16 752542s 25049s 18223s 795814s 16.00
32 377001s 12772s 9337s 399110s 31.90
64 192029s 8751s 4591s 205371s 62.00

128 101260s 6641s 2944s 110845s 114.87
256 54726s 5797s 1740s 62263s 204.50
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How to Scale Up?

We can see two bottlenecks

- computation: O(n2) similarity matrix

- communication: finding eigenvectors

To handle even larger sets we may need to use
non-iterative algorithms (e.g., Nyström
approximation)

Slightly worse performance, but may scale up better
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Latent Dirichlet Allocation I

LDA (Blei et al., 2003) detects topics from
documents

Finding the hidden structure of texts

For example, Figure 2 of Blei (2012) shows that
100-topic LDA to science paper gives frequent
words like

“Genetics” “Evolution” “Disease” “Computers”
human evolution disease computer
genome evolutionary host models

...
...

...
...
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Latent Dirichlet Allocation II

The LDA model

p(w, z,Θ,Φ|α,β) = m∏
i=1

mi∏
j=1

p(wij |zij ,Φ)p(zij |θi)

[ m∏
i=1

p(θi |α)

] k∏
j=1

p(φj |β)


wij : jth word from ith document

zij : the topic

p(wij |zij ,Φ) and p(zij |θi): multinomial distributions

That is, wij is drawn from zij ,Φ and zij is drawn
from θi
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Latent Dirichlet Allocation III

Φ: distribution over vocabulary

θi : topic proportion for the ith document

p(θi |α), p(φj |β): Dirichlet distributions

α,β: prior of Θ,Φ, respectively

Maximizing the likelihood is not easy, so Griffiths
and Steyvers (2004) propose using Gipps sampling
to iteratively estimate the posterior p(z|w)

Chih-Jen Lin (National Taiwan Univ.) 96 / 121



Distributed clustering algorithms Topic models

Latent Dirichlet Allocation IV

While the model looks complicated, Θ and Φ can
be integrated out to

p(w, z|α,β)

Then at each iteration only a counting procedure is
needed

We omit details but essentially the algorithm is
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Latent Dirichlet Allocation V

Algorithm 2 LDA Algorithm
For each iteration

For each document i

For each word j in document i

Sampling and counting

Distributed learning seems straightforward

- Divide data to several nodes

- Each node counts local data

- Models are summed up
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Latent Dirichlet Allocation VI

However, an efficient implementation is not that
simple

Some existing implementations

Wang et al. (2009): both MPI and MapReduce

Newman et al. (2009): MPI

Smola and Narayanamurthy (2010): Something else

Smola and Narayanamurthy (2010) claim higher
throughputs.

These works all use same algorithm, but
implementations are different
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Latent Dirichlet Allocation VII

A direct MapReduce implementation may not be
efficient due to I/O at each iteration

Smola and Narayanamurthy (2010) use quite
sophisticated techniques to get high throughputs

- They don’t partition documents to several
machines. Otherwise machines need to wait for
synchronization

- Instead, they consider several samplers and
synchronize between them

- They use memcached so data stored in memory
rather than disk
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Latent Dirichlet Allocation VIII

- They use Hadoop streaming so C++ rather than
Java is used

- And some other techniques

We can see that a efficient implementation is not
easy
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Integration with the Whole Workflow I

We mentioned before that sometimes copy data
from distributed systems to a single machine isn’t
convenient

Workflow is broken

Training is sometimes only a “small part” of the
whole data management workflow

Example: the approach at Twitter (Lin and Kolcz,
2012)

They write Pig scripts for data management tasks
(including classification)
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Integration with the Whole Workflow II
It’s just like you write Matlab code

Sample code in Lin and Kolcz (2012)

-- Filter for positive examples

positive = filter status by ContainsPositiveEmoticon(text) and length(text) > 20;

positive = foreach positive generate 1 as label, RemovePositiveEmoticons(text) as text, random;

positive = order positive by random; -- Randomize ordering of tweets.

positive = limit positive $N; -- Take N positive examples.

-- Filter for negative examples

...

-- Randomize order of positive and negative examples

training = foreach training generate $0 as label, $1 as text, RANDOM() as random;

training = order training by random parallel $PARTITIONS;

training = foreach training generate label, text;
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Integration with the Whole Workflow III

store training into $OUTPUT using TextLRClassifierBuilder();

They use stochastic gradient descent methods

You may question that this is a sequential algorithm

But according to the authors, they go through all
data only once

But that’s enough for their application

Software engineering issues to put things together
become the main issues rather than machine
learning algorithms
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Training Size versus Accuracy I

More training data may be helpful for some
problems, but not others

See the following two figures of cross-validation
accuracy versus training size
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Training Size versus Accuracy II

If more data points don’t help, probably there is no
need to run a distributed algorithm

Can we easily know how many data points are
enough?

Could machine learning people provide some
guidelines?
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System Issues I

Systems related to distributed data management are
still being rapidly developed

An important fact is that existing distributed
systems or parallel frameworks are not particularly
designed for machine learning algorithms

For example, Hadoop is slow for iterative algorithms
due to heavy disk I/O

I will illustrate this point by the following example
for a bagging implementation

Assume data is large, say 1TB. You have 10
machines with 100GB RAM each.
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System Issues II

One way to train this large data is a bagging
approach

machine 1 trains 1/10 data
2 1/10
...

...
10 1/10

Then use 10 models for prediction and combine
results

Reasons of doing so is obvious: parallel data loading
and parallel computation
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System Issues III

But it is not that simple if using MapReduce and
Hadoop.

Hadoop file system is not designed so we can easily
copy a subset of data to a node

That is, you cannot say: block 10 goes to node 75

A possible way is

1. Copy all data to HDFS

2. Let each n/p points to have the same key
(assume p is # of nodes). The reduce phase
collects n/p points to a node. Then we can do the
parallel training
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System Issues IV

As a result, we may not get 1/10 loading time

In Hadoop, data are transparent to users

We don’t know details of data locality and
communication

Here is an interesting communication between me and a
friend (called D here)

Me: If I have data in several blocks and would like
to copy them to HDFS, it’s not easy to specifically
assign them to different machines

D: yes, that’s right.
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System Issues V
Me: So probably using a poor-man’s approach is
easier. I use USB to copy block/code to 10
machines and hit return 10 times

D: Yes, but you can do better by scp and ssh.
Indeed that’s usually how I do “parallel
programming”

This example is a bit extreme, but it clearly shows that
large-scale machine learning is strongly related to many
system issues

Also, some (Lin, 2012) argue that instead of developing
new systems to replace Hadoop, we should modify
machine learning algorithms to “fit” Hadoop
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Easy of Use I

Distributed programs and systems are complicated

Simplicity and easy of use are very important in
designing such tools

From a Google research blog by Simon Tong on
their classification tool SETI:

“It is perhaps less academically interesting to design
an algorithm that is slightly worse in accuracy, but
that has greater ease of use and system reliability.
However, in our experience, it is very valuable in
practice.”
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Easy of Use II

Title of the last slide of another Google tool Sibyl at
MLSS Santa Cruz 2012:

“Lesson learned (future direction): Focus on easy of
use”

Also from Simon Tong’s blog: it is recommended to
“start with a few specific applications in mind”

That is, let problems drive the tools (Lin and Kolcz,
2012)
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Conclusions

Distributed machine learning is still an active
research topic

It is related to both machine learning and systems

An important fact is that existing distributed
systems or parallel frameworks are not particularly
designed for machine learning algorithms

Machine learning people can

- help to affect how systems are designed

- design new algorithms for existing systems
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