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About this Course

@ Last year | gave a four-day short course on
“introduction of data mining"”

@ In that course, SVM was discussed

@ This year | received a request to specifically talk
about SVM

@ So | assume that some of you would like to learn
more details of SVM
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About this Course (Cont'd)

@ Therefore, this short course will be more technical
than last year

More mathematics will be involved
We will have breaks at 9:50, 10:50, 13:50, and 14:50
Course slides:

www.csie.ntu.edu.tw/~cjlin/talks/itri.pdf

@ | may still update slides (e.g., if we find errors in our
lectures)
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© SVM and kernel methods
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SVM and kernel methods

Support Vector Classification

@ Training vectors : x;,i =1,...

@ Feature vectors. For example,
A patient = [height, weight, ...]"

@ Consider a simple case with two classes:
Define an indicator vector y € R/

o 1 ifxjinclass1
Yi=y 1 if x; in class 2

@ A hyperplane which separates all data
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SVM and kernel methods

+1
0
-1
e A separating hyperplane: w’x + b =10
(WTX,')—i—bZ]. Ify,:].
(wix)+b< -1 ify,=-1
e Decision function f(x) = sgn(w'x + b), x: test
data
Many possible choices of w and b

Chih-Jen Lin (National Taiwan Univ.) 8 /181



SVM and kernel methods

Maximal Margin

@ Distance between w'x +b =1 and —1:
2/|w| =2/VwTw

@ A quadratic programming problem (Boser et al.,
1992)

_ 1
min —WTW
w,b

subject to  y;(w'x; + b) > 1,
i=1,....1.
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Example

e Given two training data in R! as in the following

figure:
A o
0 1

What is the separating hyperplane ?
@ Now two data are x; = 1, x, = 0 with

y= [+17 _1]T
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SVM and kernel methods

Example (Cont'd)

@ Now w € R!. The optimization problem is

1
min  ~w?
w,b
subjectto w-1+b>1, (1)
—1(w-0+b) > 1. (2)

e From (2), —b > 1.
@ Putting this into (1), w > 2.
e That is, for any (w, b) satisfying (1) and (2),
w > 2.
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SVM and kernel methods

Example (Cont'd)

@ We are minimizing %W2
w = 2.

@ Thus, (w, b) = (2,—1) is the optimal solution.

@ The separating hyperplane is 2x — 1 =0, in the
middle of the two training data:

, so the smallest possibility is

I
<
1

A °
0 x=1/2
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SVM and kernel methods

Data May Not Be Linearly Separable

@ An example:

@ Allow training errors
@ Higher dimensional ( maybe infinite ) feature space

6() = [61(x). 62(x). .. 1.
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SVM and kernel methods

e Standard SVM (Boser et al., 1992; Cortes and
Vapnik, 1995)

/
: 1 -
min  Sw W+C2§i

W?b“,g

subject to  yi(w'(x;) +b) >1—¢&;,
5,’20, I:17,/

e Example: x € R3 ¢(x) € RY

¢(X) = [17 \/§X17 \/§X2a \/§X37 X127
X227 nga \/§X1X2; \/§X1X3, \/§X2X3] T

Chih-Jen Lin (National Taiwan Univ.)

14 / 181



SVM and kernel methods

Finding the Decision Function

@ w: maybe infinite variables
@ The dual problem: finite number of variables

1
min EaTQa—eTa
subjectto 0< ;< C,i=1,...,/
y a =0,

where Q; = yiy;o(xi)"é(x;) and e = [1,...,1]7
@ At optimum
2= Zi:l @;yip(x;)
@ A finite problem: #variables = #training data
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SVM and kernel methods

Kernel Tricks

o Q; = yiyid(x;)Td(x;) needs a closed form
e Example: x; € R®, ¢(x;) € RY®

¢(xf) = [17 \/E(Xi)lv \/§(X,')2, \/§(X/)3, (X/)%v
(x1)3, (313, V2(x:)1(x:)2, V2(xi)1(xi)3, V2(x:)2(xi)3] T

Then ¢(x;)To(x;) = (1 + x] x;)>.
o Kernel: K(x,y) = ¢(x)T¢(y); common kernels:

_ x:||2 . . . .
e lxi=xil" " (Radial Basis Function or Gaussian kernel)

T d -
x; Xj/a+ b)? (Polynomial kernel
(x/ xj/a+ b)* (Poly )
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SVM and kernel methods

Can be inner product in infinite dimensional space
Assume x € R! and v > 0.

e X=Xl _ a=v(xi=x)? _ g +2yxig -y

e (1 27XIXJ 4 (27XIXJ)2 4 (27X/XJ)3

—e —xF—yx? 1 1+\/7 \/TJ"‘ (2’7 (27 2
(27)3 (2
o[ C e B e oot

where

.
d(x) = e X [1, \/?x, (2;!)2x2, (2;!)3)(3’ . ]
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SVM and kernel methods

Decision function

@ At optimum

w = Zi:l a;yio(x;)
@ Decision function
w'o(x)+ b
/
— Z Oé,'y,'gb(X,')TQS(X) + b
i=1
/

= ) aiyiK(xj, x)+ b

i=1

Chih-Jen Lin (National Taiwan Univ.)
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SVM and kernel methods

Support Vectors: More Important Data

Only ¢(x;) of aj > 0 used = support vectors
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SVM and kernel methods

See more examples via SVM Toy available at libsvm web

page
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
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SVM and kernel methods

Example: Primal-dual Relationship

If separable, primal problem does not have ¢,
1
min  —w'w
w.b
subject to Yi(WTx,- +b)>1i=1,...,1
Dual problem is
_ 1 / / - /
moin 5 Zi:l Zj—l a,-ajy,-ij,- Xj — Zi:l Q;
subject to 0 < a, i=1,...,1,

/
Zizl yittj = 0.
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SVM and kernel methods

Example: Primal-dual Relationship

(Cont'd)

@ Consider the earlier example:

A a
- %
1

0

@ Now two data are x; = 1, x, = 0 with

y = [+17 _1]T

@ The solution is (w, b) = (2, —1)
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SVM and kernel methods

Example: Primal-dual Relationship
(Cont'd)

@ The dual objective function

ylow o [5 0] [ -1 u [2]
1

= 504% — (a1 + ap)

@ In optimization, objective function means the
function to be optimized
e Constraints are

a1 —apy=0,0< 1,0 < as.
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SVM and kernel methods

Example: Primal-dual Relationship

(Cont'd)

@ Substituting ar; = ay into the objective function,

1
ia% — 2

has the smallest value at a; = 2.
@ Because [2,2]7 satisfies constraints

OSO&landOSOéz,

it is optimal
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SVM and kernel methods

Example: Primal-dual Relationship

(Cont'd)

@ Using the primal-dual relation

W = Yy101X1 + yo0nXo
1-2-14+(-1)-2-0
= 2

@ This is the same as that by solving the primal
problem.
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SVM and kernel methods

More about Support vectors

e We know
a;j > 0 = support vector
e We have
yi(w'x;+ b) < 1= a; > 0= support vector,

yilw'x; +b) =1= a; > 0= maybe SV

and

-
(w'x;+b)>1=a; =0= not SV
yi( ) o
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Dual problem and solving optimization problems
Outli

© Dual problem and solving optimization problems
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Convex Optimization |

@ Convex problems are a important class of
optimization problems that possess nice properties

@ A function is convex if Vx, y
f(0x+ (1—0)y) <0f(x)+(1L—-0)f(y),V0 €[0,1]

@ That is, the line segment between any two points is
not lower than the function value
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Convex Optimization |l
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Convex Optimization Il

@ A convex optimization problem takes the following
form

min  fo(w)
subject to fi(w) <0,i=1,...,m, (3)
hi(w)=0,i=1,...,p,

where foy, ..., fy are convex functions and hy, ..., h,
are affine (i.e., a linear function):

hiiw)=a"w+ b
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Dual problem and solving optimization problems

Convex Optimization IV
@ A nice property of convex optimization problems is

that
inf{fy(w) | w satisfies constraints}
w
IS unique
@ Optimal objective value is unique, but optimal w
may be not

@ There are other nice properties such as the
primal-dual relationship that we will use

@ To learn more about convex optimization, you can
check the book by Boyd and Vandenberghe (2004)
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Dual problem and solving optimization problems

Deriving the Dual

e For simplification, consider the problem without &;
1 -

min  —-w'w
w,b

subject to  yi(w'(x;)+b)>1,i=1,...,1.

@ lIts dual is

1
min -a' Qa— e«
a 2
subject to 0 < «, i=1,...,1,
y a=0,

where

Qi = yiyid(x:) " o(x;)

Chih-Jen Lin (National Taiwan Univ.)

32 /181



Dual problem and solving optimization problems

Lagrangian Dual |

@ Lagrangian dual

max(mln L(w, b, at)),

a>0

where

Il = 3" (wlw o(x) + b) - 1)
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Dual problem and solving optimization problems

Lagrangian Dual Il
e Strong duality

min Primal = rgg(%((rwllr; L(w,b,ax))

e After SVM is popular, quite a few people think that
for any optimization problem

= Lagrangian dual exists and strong duality holds
@ Wrong! We usually need

o The optimization problem is convex
o Certain constraint qualification holds (details

not discussed)
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Lagrangian Dual Il

@ We have them

SVM primal is convex and has linear constraints
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@ Simplify the dual. When « is fixed,

mizl L(w,b,a) =

/
—0 if Z Qi Yi 7& 07
i=1

/ I
mMi/n wlw — 204,-[y,-(ngb(x,-) —1] if 2@,-y,- = 0.

/
o If ., a;yi # 0, we can decrease

/
—b Z Q;yi
i—1

in L(w, b,a) to —o0
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Dual problem and solving optimization problems

o If Zle a;y; = 0, optimum of the strictly convex
function

1 /
3w =3 aubi(wo(x) -1

happens when
Vuwl(w, b, a) =0.
@ Thus, /
W = Z @ yip(X;).
i=1
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Dual problem and solving optimization problems

@ Note that

(XI: yid(xi) > (ZI; %’W(Xi))
= Y aagiye(x) o(x))

iJ

@ The dual is

: /
'zlai B %Z&i&jyi”¢(xi)T¢(xj) if > ajy; =0,
1= iJj

max < i:/l
a>0 |
- if > aiy; #0.

) i=1
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Dual problem and solving optimization problems

o Lagrangian dual: maxaso(ming s L(w, b, )
@ —oo definitely not maximum of the dual
Dual optimal solution not happen when

/
Z Q;yi 7”é 0
i=1

@ Dual simplified to

/ [
1 T
T2 a2 2 ) o)
1= =L J=
subject to  y'a =0,
a;>0,i=1....1
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Dual problem and solving optimization problems

@ Our problems may be infinite dimensional (i.e.,
w € R®)

@ We can still use Lagrangian duality
See a rigorous discussion in Lin (2001)
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Primal versus Dual |

@ Recall the dual problem is

1
min -a' Qa—e'a
ot 2
subjectto 0<a; < C,i=1,...,1
y a=0

and at optimum

w = Oé,'y,'qf)(X,') (4)
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Dual problem and solving optimization problems

Primal versus Dual Il
e What if we put (4) into primal

. 1 I
r27|£1 Sa Qo + Czizl &

subject to (Qa + by); >1—¢; (5)
§& >0
@ Note that

yiw ¢X/ yIZ&jX/¢(XJ ( i)

/

= Z_; Qo = (Qav),
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Dual problem and solving optimization problems

Primal versus Dual Il

o If Q is positive definite, we can prove that the
optimal « of (5) is the same as that of the dual

@ So dual is not the only choice to obtain the model
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Dual problem and solving optimization problems

Large Dense Quadratic Programming

1

mn -a'Qa-—e'a
a 2
subjectto 0<a; < C,i=1,...,1
y a=0

® Qjj#0, Q: an/by/fully dense matrix
@ 50,000 training points: 50,000 variables:
(50,0002 x 8/2) bytes = 10GB RAM to store @

44 / 181
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Dual problem and solving optimization problems

Large Dense Quadratic Programming

(Cont'd)

@ For quadratic programming problems, traditional
optimization methods assume that @ is available in
the computer memory

@ They cannot be directly applied here because @)
cannot even be stored

@ Currently, decomposition methods (a type of
coordinate descent methods) are what used in
practice
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Dual problem and solving optimization problems

Decomposition Methods

@ Working on some variables each time (e.g., Osuna
et al., 1997; Joachims, 1998; Platt, 1998)

@ Similar to coordinate-wise minimization
o Working set B, N = {1,...,/}\B fixed
@ Sub-problem at the kth iteration:

_ 1, Qes Qsn| |OB
n(lan 5 [O‘B (a ) } [QNB QNN} [aN] -

el (et)) ]

subjectto 0<a,< C,t€ B, ylag= —yﬁa,\,
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Dual problem and solving optimization problems

Avoid Memory Problems

@ The new objective function

L v o\ | @ + Qenverf
~lal (a

o5 ()] Queas + Quvak,
— eEaB + constant
1

= EQEQBBQB + (—eB + QBNaﬁ,)TaB -+ constant

@ Only |B| columns of Q are needed
@ In general |B| < 10 is used

o Calculated when used : trade time for space

@ But is such an approach practical?
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Dual problem and solving optimization problems

How Decomposition Methods Perform?

@ Convergence not very fast. This is known because
of using only first-order information

@ But, no need to have very accurate o

decision function:
/
sgn(w " ¢(x) + b) = sgn <Zi:1 a;K(x;, x) + b)

Prediction may still be correct with a rough o
@ Further, in some situations,
# support vectors < # training points
Initial a' = 0, some instances never used
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Dual problem and solving optimization problems

How Decomposition Methods Perform?

(Cont'd)

@ An example of training 50,000 instances using the
software LIBSVM

$svm-train -c 16 -g 4 -m 400 22features
Total nSV = 3370
Time 79.524s

@ This was done on a typical desktop
@ Calculating the whole @ takes more time
e #SVs = 3,370 <« 50,000
A good case where some remain at zero all the tim
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Dual problem and solving optimization problems

How Decomposition Methods Perform?

(Cont'd)

@ Because many «; = 0 in the end, we can develop a
shrinking techniques

Variables are removed during the optimization
procedure. Smaller problems are solved
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Machine Learning Properties are Useful in
Designing Optimization Algorithms

We have seen that special properties of SVM contribute
to the viability of decomposition methods

@ For machine learning applications, no need to
accurately solve the optimization problem

@ Because some optimal a; = 0, decomposition
methods may not need to update all the variables

@ Also, we can use shrinking techniques to reduce the
problem size during decomposition methods
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Dual problem and solving optimization problems

Differences between Optimization and
Machine Learning

@ The two topics may have different focuses. We give
the following example

@ The decomposition method we just discussed
converges more slowly when C is large

@ Using C =1 on a data set
# iterations: 508

e Using C = 5,000
# iterations: 35,241
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Dual problem and solving optimization problems

@ Optimization researchers may rush to solve difficult
cases of large C

It turns out that large C is less used than small C
@ Recall that SVM solves

1
EWTW + C(sum of training losses)

A large C means to overfit training data

This does not give good test accuracy. More details
about overfitting will be discussed later
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Regulatization and linear versus kernel
Outli

@ Regulatization and linear versus kernel
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Equivalent Optimization Problem

e Recall SVM optimization problem is
: 1 + /
Mr)1[|3nE §W W+CZ/:1€i
subject to  yi(w ' ¢(x;) +b) > 1—¢;,
>0, 1=1,....1

e |t is equivalent to
/
- 1 7 T
min  Sw'w + C; max(0,1 — y;(w' ¢(x;) + b))
e The reformulation is useful to derive SVM from a
different viewpoint
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Equivalent Optimization Problem (Cont'd)

e That is, at optimum,
& = max(0,1 — y;(w’¢(x;) + b))
@ Reason: from constraints
& >1—y(w'o(x;)+b)and & >0

but we also want to minimize &;
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Linear and Kernel |

@ Linear classifier
-
sgn(w'x + b)

@ Kernel classifier
/
sgn(w " ¢(x) + b) = sgn (Zl a;iK(xi, x) + b)

@ Linear is a special case of kernel
@ An important difference is that for linear we can

store w
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Linear and Kernel Il

@ For kernel, w may be infinite dimensional and
cannot be stored

@ We will show that they are useful in different
circumstances
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.
The Bias Term b

@ Recall the decision function is
T
sgn(w'x + b)
@ Sometimes the bias term b is omitted
T

sgn(w ' x)

@ This is fine if the number of features is not too small
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Minimizing Training Errors

@ For classification naturally we aim to minimize the
training error

min (training errors)
w

@ To characterize the training error, we need a loss
function &(w; x, y) for each instance (x, y)

@ Ideally we should use 0-1 training loss:

1 ifyw'x <0,

wix,y) = 0 otherwise
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Minimizing Training Errors (Cont'd)

@ However, this function is discontinuous. The
optimization problem becomes difficult

§(wix,y)
|

—yw'x

@ We need continuous approximations
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Common Loss Functions

@ Hinge loss (11 loss)
f(w; x,y) = max(0,1 — yw ' x)
@ Squared hinge loss (12 loss)
fa(w; x,y) = max(0,1 — yw " x)?
@ Logistic loss
Sr(wi x, y) = log(1 + e 7™'X)

@ SVM: (6)-(7). Logistic regression (LR): (8)

Chih-Jen Lin (National Taiwan Univ.)
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Common Loss Functions (Cont'd)

E(w; x,y)
&L2

/‘ELR
S :

—yw'x

@ Logistic regression is very related to SVM
@ Their performance (i.e., test accuracy) is usually
similar

Chih-Jen Lin (National Taiwan Univ.)
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Common Loss Functions (Cont'd)

@ However, minimizing training losses may not give a
good model for future prediction

e Overfitting occurs
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Overfitting

@ See the illustration in the next slide
@ For classification,
You can easily achieve 100% training accuracy
@ This is useless
@ When training a data set, we should
Avoid underfitting: small training error
Avoid overfitting: small testing error
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® and A: training; () and A: testing

® o
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Regularization

@ To minimize the training error we manipulate the w
vector so that it fits the data

@ To avoid overfitting we need a way to make w's
values less extreme.

@ One idea is to make w values closer to zero
@ We can add, for example,

WTW

2

or |lwll

to the objective function
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General Form of Linear Classification |

@ Training data {y;, x;},x; € R",i=1,...,1, yi=+1
@ /. # of data, n: # of features

/
WTW

minf(w), f(w)= 9 +CZ§(W;thi)

w

e w'w/2: regularization term
@ &(w;x,y): loss function

e C: regularization parameter
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General Form of Linear Classification |l

@ Of course we can map data to a higher dimensional
space

Tw /
mMi/nf(W), f(W)EW2 +CZ§(W;O(X/),}/,')
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SVM and Loglstlc Regression |

@ If hinge (I1) loss is used, the optimization problem is

mMi/n %WTW + Ciz:; max(0,1 — y;w x;)
It is the SVM problem we had earlier (without the
bias b)
@ Therefore, we have derived SVM from a different
viewpoint
@ We also see that SVM is very related to logistic

regression

70 / 181
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SVM and Loglstlc Regressmn I

However, many wrongly think that they are different

This is wrong.
@ Reason of this misunderstanding: traditionally,

o when people say SVM = kernel SVM
o when people say logistic regression = linear
logistic regression

@ Indeed we can do kernel logistic regression

[
1 o
min EWTW + C E log(1 + e~ Y™ o)y

i=1
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SVM and Logistic Regression |l

@ A main difference from SVM is that logistic
regression has probability interpretation

@ We will introduce logistic regression from another
viewpoint
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Logistic Regression

@ For a label-feature pair (y, x), assume the
probability model is

1
plylx) = 11 eywx

@ Note that

p(11x) + p(—1]x)
11
Cldtewx 1 4ewx
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Logistic Regression (Cont'd)

@ ldea of this model

p(Llx) =

1 —1 ifw'x>0,
l+ew ™| =0 ifw/x<0

@ Assume training instances are
(yi7xi)7l = 17"'7/
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Logistic Regression (Cont'd)

@ Logistic regression finds w by maximizing the
following likelihood

HP(MX,’)- (10)

@ Negative Iog—likelihood

|ong(y,|x, = Zlogp (vilx/)

— Iog (1 -+ e_y’WTX’)
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Logistic Regression (Cont'd)

@ Logistic regression

I
min Z log (1 + e_y"WT"") :

i=1

@ Regularized logistic regression
1 /
. — ., T —yiw T x;
min - Sw W+C§_1Iog(1+e ) (11)

C: regularization parameter decided by users
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Loss Functions: Differentiability

However,

&L1: not differentiable
£Lo: differentiable but not twice differentiable
£LRr: twice differentiable

The same optimization method may not be applicable to
all these losses
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Discussion

We see that the same classification method can be
derived from different ways

SVM
@ Maximal margin

@ Regularization and training losses

LR

@ Regularization and training losses
@ Maximum likelihood
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Regularization

@ L1 versus L2
|wl|; and w'w/2

° WTW/22 smooth, easier to optimize
@ ||wl|1: non-differentiable
sparse solution; possibly many zero elements
@ Possible advantages of L1 regularization:
Feature selection
Less storage for w
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linear and Kernel Classification

Methods such as SVM and logistic regression can used in
two ways

@ Kernel methods: data mapped to a higher
dimensional space

x = ¢(x)

o(x;)T(x;) easily calculated; little control on ¢(*)
@ Feature engineering + linear classification:

We have x without mapping. Alternatively, we can
say that ¢(x) is our x; full control on x or ¢(x)

We refer to them as kernel and linear classifiers
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Linear and Kernel Classification

@ Let's check the prediction cost

/
w'x+ b versus Z/ a;yiK(x;, x) + b
o If K(xj,x;) takes O(n), then
O(n) versus  O(nl)

@ Linear is much cheaper
@ A similar difference occurs for training
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Linear and Kernel Classification (Cont'd)

@ In a sense, linear is a special case of kernel

@ Indeed, we can prove that test accuracy of linear is
the same as Gaussian (RBF) kernel under certain
parameters (Keerthi and Lin, 2003)

@ Therefore, roughly we have

test accuracy: kernel > linear
cost: kernel > linear

@ Speed is the reason to use linear
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Linear and Kernel Classification (Cont'd)

@ For some problems, accuracy by linear is as good as
nonlinear

But training and testing are much faster

@ This particularly happens for document classification
Number of features (bag-of-words model) very large
Data very sparse (i.e., few non-zeros)
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Comparison Between Linear and Kernel
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnnl 1.6 91.81 26.8 98.69
covtype 1.4 76.37 | 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 | 20,955.2 03.31
webspam 25.7 93.35 | 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances

. A .
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Extension: Training Explicit Form of
Nonlinear Mappings |

Linear-SVM method to train ¢(x1), ..., ¢(x/)

@ Kernel not used

@ Applicable only if dimension of ¢(x) not too large
Low-degree Polynomial Mappings

K(xi,xj) = (x] x; + 1) = ¢(x;) "o(x;))

O(x) = [1,V2x1, ...,V 2xn, X2, ... X2,

V2x150, . oy V2Xp-1]
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Extension: Training Explicit Form of
Nonlinear Mappings Il

For this mapping, # features = O(n?)

Recall O(n) for linear versus O(nl) for kernel

Now O(n?) versus O(nl)

Sparse data

n = n, average # non-zeros for sparse data

i < n= O(A?) may be much smaller than O(/n)
@ When degree is small, train the explicit form of ¢(x)
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Testing Accuracy and Training Time

Degree-2 Polynomial Accuracy diff.
Data set LI;[?K;EE;TE(SS\)/M Accuracy |Linear  RBF
a%a 1.6 89.8 85.06| 0.07  0.02
real-sim 59.8 1,220.5 98.00| 0.49 0.10
ijcnnl 10.7 64.2 97.84| 563 —0.85
MNIST38 8.6 18.4 99.29| 247 —0.40
covtype 5,211.9 NA 80.09| 3.74 —15.98
webspam 3,228.1 NA 08.44| 529 —-0.76

Training ¢(x;) by linear: faster than kernel, but
sometimes competitive accuracy

Chih-Jen Lin (National Taiwan Univ.)
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Example Dependency Parsing |

@ This is an NLP Application

Kernel Linear
RBF Poly-2 | Linear Poly-2
Training time | 3h34m53s 3h21mb1ls | 3m36s 3m43s

Parsing speed 0.7x 1x | 1652x  103x
UAS 89.92 91.67 | 89.11 91.71
LAS 88.55 90.60 | 88.07 90.71

@ We get faster training/testing, while maintain good

accuracy
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Example Dependency Parsing |l

@ We achieve this by training low-degree
polynomial-mapped data by linear classification

@ That is, linear methods to explicitly train ¢(x;), Vi

@ We consider the following low-degree polynomial
mapping:

o(x)=[1,x1,... ,xn,xf, . ,x,?,xle, . ,X,,_1Xn]T
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Handing ngh Dlmen5|ona||ty of ¢(x)

A multi-class problem with sparse data

n| Dim. of ¢(x) | I| A|w's# nonzeros

46,155 | 1,065,165,00 | 204,582 | 133 | 1,438,456

@ n1: average # nonzeros per instance
@ Dimensionality of w is very high, but w is sparse

Some training feature columns of x;x; are entirely
zero

@ Hashing techniques are used to handle sparse w
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Example: Classifier in a Small Device

@ In a sensor application (Yu et al., 2014), the
classifier can use less than 16KB of RAM

Classifiers | Test accuracy | Model Size
Decision Tree 77.77 76.02KB
AdaBoost (10 trees) 78.84 | 1,500.54KB
SVM (RBF kernel) 85.33 | 1,287.15KB

@ Number of features: 5
@ We consider a degree-3 polynomial mapping

5+3

3 > + bias term = 57.

dimensionality = (
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Example: Classifier in a Small Device
@ One-against-one strategy for 5-class classification
5
(2) X 57 x 4bytes = 2.28KB

Assume single precision

@ Results
SVM method \ Test accuracy \ Model Size
RBF kernel 85.33 | 1,287.15KB
Polynomial kernel 84.79 2.28KB
Linear kernel 78.51 0.24KB

Chih-Jen Lin (National Taiwan Univ.)
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© Muilti-class classification
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Multi-class Classification

@ SVM and logistic regression are methods for
two-class classification

@ We need certain ways to extend them for multi-class
problems

@ This is not a problem for methods such as nearest
neighbor or decision trees
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Multi-class Classification (Cont'd)

@ k classes
@ One-against-the rest: Train k binary SVMs:

Ist class  vs. (2,---,k)th class
2nd class vs. (1,3,...,k)th class

@ k decision functions

(wh) ¢(x) + by

(Wk)ch.(X) + bk
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@ Prediction:

argmax (w/)"é(x) + b;
J

@ Reason: If x € 1st class, then we should have
(W) o(x) + by > +1
(w?)"o(x) + by < -1
(w¥) T o(x) + b < -1
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Multi-class Classification (Cont'd)

@ One-against-one: train k(k — 1)/2 binary SVMs
(1,2),(1,3),...,(1,k),(2,3),(2,4),...,(k—1,k)
@ If 4 classes = 6 binary SVMs

yi=1 yi=-1 Decision functions
class 1 class 2 f¥(x) = (w!?)Tx + b'?

class 1 class3  f13(x) = (w!3)"x + b'3
class 1 class 4 f¥*(x) = (w'*)"x + p'*
class 2 class 3 f3(x) = (w?)Tx + p?3
class 2 class 4 f*(x) = (w?")"x + p**
class 3 class 4 f¥*(x) = (w3 x + b*
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e For a testing data, predicting all binary SVMs

winner

Classes
1 2
1 3
1 4
2 3
2 4
3 4

1

W AN ==

@ Select the one with the largest vote

class

1 2 3 4

#wvotes 3 1 1 1
@ May use decision values as well
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Solving a Single Problem

@ An approach by Crammer and Singer (2002)

Jmin o Z w13 + 625({wm}k 11 X0, i),

where
5({Wm},kn:1; x,y) = mix max(0,1— (w, — Wm)TX).
m#y

@ We hope the decision value of x; by the model w,
is larger than others
@ Prediction: same as one-against-the rest

argmax (w;)"x
J
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Discussion

@ Other variants of solving a single optimization
problem include Weston and Watkins (1999); Lee
et al. (2004)

@ A comparison in Hsu and Lin (2002)
@ RBF kernel: accuracy similar for different methods
But 1-against-1 is the fastest for training
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Maximum Entropy

e Maximum Entropy: a generalization of logistic
regression for multi-class problems

o It is widely applied by NLP applications.
e Conditional probability of label y given data x.
exp(w] x)

anzl exp(w,Zx)’

P(y|x)
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Maximum Entropy (Cont’d)

@ We then minimizes regularized negative
log-likelihood.

Wi,..., w

E({Wm}m-1i x,y) = —log P(y|x).
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Maximum Entropy (Cont’d)

@ Is this loss function reasonable?

o If
wyTix,- > w;x,-,Vm Z Vi,

then
E{Wm 1 xi,yi) = 0

That is, no loss
@ In contrast, if

T T
Wy X < WX, m = Vi,

then P(yj|x;) < 1 and the loss is large.
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Features as Functions

@ NLP applications often use a function f(x,y) to
generate the feature vector
exp(w'f(x,y))
= :
yexp(w’f(x,y’))

P( (12)

ylx) = 5

@ The earlier probability model is a special case by

0
5 }y—l

f(x,y) = % ER”kandW:[;]

W

H
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Least Square Regression |

@ Given training data (x1,y1),-.., (X1, y)
o Now
Yi € R

is the target value
@ Regression: find a function so that

f(x;) ~y
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Least Square Regression ||

@ Least square regression:

/

w,b 4
i=1

e That is, we model f(x) by
f(x)=w'x+b

@ An example

Chih-Jen Lin (National Taiwan Univ.)

min Z(YI — (w'x; + b))
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Least Square Regression |l

®0.60 - Weight + 130.2

50
40 50 60 70 80 90 100
Weight (kg)

note: picture is from
http://tex.stackexchange.com/questions/119179/
how—to—add-a—regression—1ine—to—random1y—generat]
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Least Square Regression |V

@ This is equivalent to

/
min Y &(w, bix;,y)

b

where

Chih-Jen Lin (National Taiwan Univ.)
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Regularized Least Square

e &(w, b; x;,y;) is a kind of loss function

@ We can add regularization.
min 1WTw+ CZ/ E(w, b; x;, i)
Wvb 2 i=1 ) ! I).yl

@ C is still the regularization parameter
@ Other loss functions?
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Support Vector Regression |

@ e-insensitive loss function (b omitted)

max(|w’ x; — yi| — €,0)

max(|w " x; — yi| — €,0)?
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Support Vector Regression ||

loss

L1

N /

N | /s

W X[y

@ ¢: errors small enough are treated as no error
@ This make the model more robust (less overfitting

the data)
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Support Vector Regression Il

@ One more parameter (¢€) to decide
@ An equivalent form of the optimization problem

/ /
1 7
min —w w+C§ §;+C§ &
wbgg 2 P —

subject to WTgb(x,-) +b—y <e+E&,
yi—w!o(xi) —b<e+§f,
5175,*20,’:1,,/

@ This form is similar to the SVM formulation derived

earlier
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Support Vector Regression 1V

@ The dual problem is

/
min %(a —a’) Q(a—a’) + EZ(OM + ;)

o,o* -
i=1

/
+3iai - a)
i=1

subject to e’ (a —a*) =0,
0<aj,a: <C,i=1,...,1,

where Q; = K(x;, x;) = é(x;) T ¢(x;).
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Support Vector Regression V

After solving the dual problem,

/

w = (—ai+aj)p(x)

i=1

and the approximate function is
/
D (—ai+af)K(xi,x) + b.
i=1
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Discussion

@ SVR and least-square regression are very related

@ Why people more commonly use 12 (least-square)
rather than I1 losses?

@ Easier because of differentiability
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Outline

@ SVM for clustering
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SVM for clustering

One-class SVM |

@ Separate data to normal ones and outliers
(Scholkopf et al., 2001)

) 1
min  —w'w—p+ — ,
wép 2 : Zﬁ

subject to w ¢(x,-) > p— 5/;
&>00i=1,...,1.
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One-class SVM I

@ Instead of the parameter C is SVM, here the
parameter is 1.

w'o(xi) > p—¢&
means that we hope most data satisfy
WT¢(XI') > p-

That is, most data are on one side of the hyperplane
@ Those on the wrong side are considered as outliers
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SVM for clustering

One-class SVM I

@ The dual problem is

1
min  -a' Qo
a 2

subjectto 0<o; <1/(vl),i=1,...,1,

ela =1,

where Q; = K(x;, x;) = ¢(x;)T ¢(x;).
@ The decision function is

/
sgn <Z a;K(xj, x) — p) :
i=1
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One-class SVM |V

@ The role of —p is similar to the bias term b earlier
@ From the dual problem we can see that

v € (0,1]
Otherwise, if v > 1, then
ela<1/v<1

violates the linear constraint.

@ Clearly, a larger v means we don't need to push &;
to zero = more data are considered as outliers
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SVM for clustering

Support Vector Data Description (SVDD)
I

@ SVDD is another technique to identify outliers (Tax
and Duin, 2004)

/
in RP+C)Y &
m R e
subject to  |[¢(x;) —al|? < R*+&,i=1,...,1,
&>0i=1,...,1
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SVM for clustering

Support Vector Data Description (SVDD)
Il

@ We obtain a hyperspherical model characterized by
the center a and the radius R.

@ A test instance x is detected as an outlier if

lo(x) —all* > R%.
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SVM for clustering

Support Vector Data Description (SVDD)
1

@ The dual problem

/
min o Qo — Z a; Qi
i=1
subject to e’a =1, (13)
OSOé,'S C,i:1,...,/,

@ This dual problem is very close to that of one-class
SVM
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SVM for clustering

Support Vector Data Description (SVDD)
\Y

@ Consider a scaled version of one-class SVM dual

1
min  -a' Qa
ey 2
subjectto 0<a; <1, /

e a=ul.

1.1,

@ If Gaussian kernel is used,
_ .2
Qi,i — e YlIxi—xil|* 1

and the two dual problems are equivalent
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Discussion

@ For unsupervised settings, evaluation is very difficult

@ Usually the evaluation is by a subjective way
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Practical use of support vector classification
Outli

@ Practical use of support vector classification
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Practical use of support vector classification

Let's Try a Practical Example

A problem from astroparticle physics

1 2.61e+01 5.88e+01 -1.89e-01 1.25e+02
1 5.70e+01 2.21e+02 8.60e-02 1.22e+02
1 1.72e+01 1.73e+02 -1.29e-01 1.25e+02
0 2.39e+01 3.89e+01 4.70e-01 1.25e+02
0 2.23e+01 2.26e+01 2.11e-01 1.01e+02
0 1.64e+01 3.92e+01 -9.91e-02 3.24e+01

Training and testing sets available: 3,089 and 4,000
Data available at LIBSVM Data Sets
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http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Practical use of support vector classification

Training and Testing

Training the set svmguidel to obtain svmguidel.model
$./svm-train svmguidel

Testing the set svmguidel.t

$./svm-predict svmguidel.t svmguidel.model out
Accuracy = 66.925% (2677/4000)

We see that training and testing accuracy are very
different. Training accuracy is almost 100%

$./svm-predict svmguidel svmguidel.model out
Accuracy = 99.7734% (3082/3089)
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Why this Fails

@ Gaussian kernel is used here
@ We see that most kernel elements have

=1 ifi=],

K, = e Ixi—xl/4
/ —0 ifi#].

because some features in large numeric ranges
@ For what kind of data,

K= |?
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Practical use of support vector classificatio

Why this Falls (Cont d)

o If we have training data

o(x1) =[1,0,...,0]"

o(x)=10,...,0,1]"
then
K=I

@ Clearly such training data can be correctly
separated, but how about testing data?

@ So overfitting occurs
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Overfitting

@ See the illustration in the next slide
@ In theory
You can easily achieve 100% training accuracy
@ This is useless
@ When training and predicting a data, we should
Avoid underfitting: small training error
Avoid overfitting: small testing error
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® and A: training; () and A: testing
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Practical use of support vector classification

Data Scaling
e Without scaling, the above overfitting situation may
occur
@ Also, features in greater numeric ranges may
dominate
e Example:
height gender
X1 150 F
x, 180 M
X3 185 M
and
n=0y=1y=1
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Practical use of support vector classification

Data Scaling (Cont'd)

@ The separating hyperplane almost vertical
X1 :
! 0

@ Strongly depends on the first attribute; but second

may be also important
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Data Scaling (Cont'd)

@ A simple solution is to linearly scale each feature to
[0, 1] by: .
feature value — min

max — min ’

where max, min are maximal and minimal value of
each feature

@ There are many other scaling methods
@ Scaling generally helps, but not always
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Practical use of support vector classification

Data Scaling (Cont'd)

@ Scaling is needed for methods relying on similarity
between instances

For example, k-nearest neighbor

@ It's not needed to methods such as decision trees
which rely on relative positions with an attribute
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Practical use of support vector classification

Data Scaling: Same Factors

A common mistake

$./svm-scale -1 -1 -u 1 svmguidel > svmguidel.s
$./svm-scale -1 -1 -u 1 svmguidel.t > svmguidel

-1 -1 -u 1: scaling to [—1,1]
We need to use same factors on training and testing

$./svm-scale -s rangel svmguidel > svmguidel.sc
$./svm-scale -r rangel svmguidel.t > svmguidel.

Later we will give a real example
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After Data Scaling

Train scaled data and then predict

$./svm-train svmguidel.scale

$./svm-predict svmguidel.t.scale svmguidel.scal
svmguidel.t.predict

Accuracy = 96.15}

Training accuracy is now similar

$./svm-predict svmguidel.scale svmguidel.scale.:
Accuracy = 96.439Y

For this experiment, we use parameters C = 1,y = 0.25,

but sometimes performances are sensitive to parameters ®
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Practical use of support vector classification

Parameters versus Performances

o If we use C =20,v =400

$./svm-train -c 20 -g 400 svmguidel.scale
$./svm-predict svmguidel.scale svmguidel.sc:
Accuracy = 100% (3089/3089)

@ 100% training accuracy but

$./svm-predict svmguidel.t.scale svmguidel.:
Accuracy = 82.7% (3308/4000)

@ Very bad test accuracy
e Overfitting happens
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Parameter Selection

For SVM, we may need to select suitable parameters

They are C and kernel parameters

Example:

~ of e Mxi=xil’
a, b, d of (x/x;/a+ b)?

@ How to select them so performance is better?
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Performance Evaluation

Available data = training and validation

@ Train the training; test the validation to estimate
the performance

@ A common way is k-fold cross validation (CV):
Data randomly separated to k groups
Each time k — 1 as training and one as testing

Select parameters/kernels with best CV result

@ There are many other methods to evaluate the
performance
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Practical use of support vector classification

@ The good region of parameters is quite large

@ SVM is sensitive to parameters, but not that
sensitive

@ Sometimes default parameters work
but it's good to select them if time is allowed
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Practical use of support vector classification

Example of Parameter Selection

Direct training and test

$./svm-train svmguide3
$./svm-predict svmguide3.t svmguide3.model o

— Accuracy = 2.43902%

After data scaling, accuracy is still low

$./svm-scale -s range3 svmguide3 > svmguide3.sc
$./svm-scale -r range3 svmguide3.t > svmguide3.

$./svm-train svmguide3.scale
$./svm-predict svmguide3.t.scale svmguide3.scal

— Accuracy = 12.1951%
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Practical use of support vector classification

Example of Parameter Selection (Cont'd)

Select parameters by trying a grid of (C,~) values

$ python grid.py svmguide3.scale

128.0 0.125 84.8753

(Best C=128.0, v=0.125 with five-fold cross-validation
rate=84.8753%)

Train and predict using the obtained parameters

$ ./svm-train -c 128 -g 0.125 svmguide3.scale
$ ./svm-predict svmguide3.t.scale svmguide3.sca

— Accuracy = 87.8049%
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Practical use of support vector classification

Selecting Kernels

e RBF, polynomial, or others?
@ For beginners, use RBF first
@ Linear kernel: special case of RBF

Accuracy of linear the same as RBF under certain
parameters (Keerthi and Lin, 2003)

@ Polynomial kernel:
(x] x;/a+ b)°

Numerical difficulties: (< 1) — 0, (> 1) — oo
More parameters than RBF
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Selecting Kernels (Cont'd)

@ Commonly used kernels are Gaussian (RBF),
polynomial, and linear

@ But in different areas, special kernels have been
developed. Examples

1. x? kernel is popular in computer vision
2. String kernel is useful in some domains
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Practical use of support vector classification

A Simple Procedure for Beginners

After helping many users, we came up with the following
procedure

1. Conduct simple scaling on the data

2. Consider RBF kernel K(x,y) = e lx-¥I°

3. Use cross-validation to find the best parameter C and
8

4. Use the best C and «y to train the whole training set

5. Test

In LIBSVM, we have a python script easy.py
implementing this procedure.
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http://www.csie.ntu.edu.tw/~cjlin/libsvm

Practical use of support vector classification

A Simple Procedure for Beginners

(Cont'd)

@ We proposed this procedure in an “SVM guide”
(Hsu et al., 2003) and implemented it in LIBSVM

@ From research viewpoints, this procedure is not
novel. We never thought about submitting our
guide somewhere

@ But this procedure has been tremendously useful.

Now almost the standard thing to do for SVM
beginners
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Practical use of support vector classification

A Real Example of Wrong Scaling

Separately scale each feature of training and testing data
to [0, 1]

$ ../svm-scale -1 O svmguide4 > svmguide4.scale
$ ../svm-scale -1 O svmguided4.t > svmguided.t.s
$ python easy.py svmguide4.scale svmguided.t.sc
Accuracy = 69.2308% (216/312) (classification)

The accuracy is low even after parameter selection

$ ../svm-scale -1 0 -s ranged svmguide4 > svmgu
$ ../svm-scale -r ranged4 svmguide4.t > svmguide
$ python easy.py svmguided4.scale svmguide4.t.sc
Accuracy = 89.4231% (279/312) (classificationf
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Practical use of support vector classification

A Real Example of Wrong Scaling
(Cont'd)

With the correct setting, the 10 features in the test data
svmguide4.t.scale have the following maximal values:

0.7402, 0.4421, 0.6291, 0.8583, 0.5385, 0.7407, 0.3982,
1.0000, 0.8218, 0.9874

Scaling the test set to [0, 1] generated an erroneous set.
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Practical use of support vector classification

More about Cross Validation

@ CV can be used for other classification methods

@ For example, a common way to select k of k nearest
neighbor is by CV

@ However, it's easy that CV is misused
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Practical use of support vector classification

More about Cross Validation (Cont'd)

@ CV is a biased estimate

@ Think about this. If you have many parameters, you
may adjust them to boost your CV accuracy

@ In some papers, people compare CV accuracy of
different methods

@ This is not very appropriate
@ It's better to report independent test accuracy

@ Indeed you are allowed to predict the test set only
once for reporting the results
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Practical use of support vector classification

More about Cross Validation (Cont'd)

@ Sometimes you must be careful in splitting data for
cVv

@ Assume you have 20,000 images of 200 users:
User 1: 100 images

User 200: 100 images

@ The standard CV may overestimate the performance
because of easier predictions
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Practical use of support vector classification

More about Cross Validation (Cont'd)

@ An instance in the validation set may find a close
one in the training set.

@ A more suitable setting is to split data by meta-level
information (i.e., users here).
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Outline

© A practical example of SVR
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A practical example of SVR

Electricity Load Forecasting

e EUNITE world wide competition 2001
http://neuron-ai.tuke.sk/competition

e We were given

o Load per half hour from 1997 to 1998
o Average daily temperature from 1995 to 1998
o List of holidays

e Goal:
Predict daily maximal load of January 1999
@ A time series prediction problem
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A practical example of SVR

SVR for Time Series Prediction |

@ Given (-, ¥t A," "+, ¥e1, Y&, -+ , ) as training
series

@ Generate training data:
(Ve—n, -+, yr—1) as attributes (features) of x;
y: as the target value x;

@ One-step ahead prediction

@ Prediction:
Starting from the last segment

(y/—A+17 <o 7y/) — }/}/—i-l

Repeat by using newly predicted values
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Data Analyses |

@ Maximal load of each day

o Didn’t know how to use all half-hour data
o Not used for later analyses/experiments

900
850 |
800
750
700 |
650 |
600 |
550 |
500 |
450 |

400 L L L L L L L
0 100 200 300 400 500 600 700
time

max_load
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A practical example of SVR

Data Analyses |l

@ Issues largely discussed in earlier works
o Seasonal periodicity
o Weekly periodicity
Weekday: higher, Weekend: lower
o Holiday effect
o All above known for January 1999
o Weather influence
Temperature unknown for January 1999

@ Temperature is very very important

The main difficulty of this competition
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Data Analyses lI

@ Most early work on short-term prediction:
Temperature available

900 . . . T T T T T
.
850 + . . + ]
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E e U
L R i, 4
800 AR
+ 1
750 | P S ]
P
ke 3 Rty + F A
® o et TR v
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temperture
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Data Analyses IV

@ Error propagation of time series prediction is an
Issue

Chih-Jen Lin (National Taiwan Univ.) 163 / 181



Methods

@ In addition to SVR, another simple and effective
method is local modeling

@ It is like nearest neighbor in classification
@ Local modeling:

o Finding segments closely resemble the segment
proceeding the point to be predicted

o Average of elements after these similar
segments of points.
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Data Encoding |

@ Both methods:

Use a a segment (a vector) for predicting the next

value
Encoding: contents of a segment
@ The simplest:
Each segment: load of the previous A days
Used for local model: A =7
@ For SVM: more information is incorporated

o Seven attributes: maximal loads of the past 7

days
Chih-Jen Lin (National Taiwan Univ.)
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A practical example of SVR

Data Encoding |l

o Seven binary (i.e. 0 or 1) attributes:
target day in which day of a week
o One binary attribute: target day holiday or not
o One attribute (optional): temperature of the
target day

@ Temperature unknown: train two SVMs
One for load and one for temperature

Yi-A Yi-1 SVM1
<Tt—A) ) ) <Tt—1> _yt
SVM2
Tt—A7 Tty Tt—l —_— Tt
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Model Selection |

@ Parameters and features

o A: for both approaches
o Local model: # of similar segments
o SVR:

Q@ C: cost of error
@ c: width of the e-insensitive loss
© mapping function ¢

@ Extremely important for data prediction
@ Known data separated to
Training, validation, and testing
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A practical example of SVR

Model Selection I

@ January 1997 or January 1998 as validation
@ Model selection is expensive
Restrict the search space: via reasonable choices or
simply guessing
o A=7
e SVR:
RBF function ¢(x;)7 ¢(x;) = eIkl
o Use default width e = 0.5 of LIBSVM
o C =212 ~=2"%* decided by validation
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Summer Data |

e Without summer:
Result for testing January 1998 (or 1997) better
@ Give up information from April to September
@ This is an example where domain knowledge is used

@ However, can we do automatic time series

segmentation to see that summer and winter are
different?
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A practical example of SVR

Evaluation of Time Series Prediction |

@ MSE (Mean Square Error):

n

> i 9)

i=1

@ MAPE (Mean absolute percentage error)

Z lyi —

@ Error propagation: Iarger error later

Iy,

Unfair to earlier prediction if MSE is used
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A practical example of SVR

Evaluation of Time Series Prediction |l

@ There are other criteria
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Results: Local Model |

e Validation on different number of segments

@ Results in the competition: slightly worse than SVR
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Results: SVR |

@ Two SVRs: very difficult to predict temperature

@ If in one day, temperature suddenly drops or
Increases

= Erroneous after that day

@ We conclude if temperature is used, the variation is
higher

@ We decide to give up using the temperature
information

@ Only one SVM used
@ Prediction results for January 1998:
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A practical example of SVR

Results: SVR I

max_load

550 r
500 r
450

0 5 16 1‘5 éO 2‘5 30
98 Jan
@ The load of each week is similar

@ However, the model manages to find the trend
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Results: SVR I

Holiday is lower but error larger
Results after encountering a holiday more inaccurate
Holidays: January 1 and 6

Treat all 31 days in January 1999 as non-holidays

@ Some earlier work consider holidays and

non-holidays separately

We cannot do this because information about
holidays is quite limited

@ Overall we take a very conservative approach

Forgot to manually lower load of January 6
Reason why our max;(error;) not good
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A practical example of SVR

Results: SVR IV

o MAPE: 1.98839%
o MSE: 364.498

900

850 r

max_load

600

.
real

predict -------

0 5 10 15 20
time
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Discussion |

@ Instead of this conservative approach, can we do
better 7

@ |s there a good way to use temperature information?
@ Feature selection is the key for our approach

Example: removing summer data, treating holidays
as non-holidays

@ Parameter selection: needed but a large range is ok
For example, if C = 2% v = 27% becomes
C=22 =27
= results do not change much
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Discussion and conclusions
O t I .

@ Discussion and conclusions
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Conclusions

@ In this short course, we have introduced details of
SVM

@ Linear versus kernel is an important issue. You must
decide when to use which

@ No matter how many advanced techniques are
developed, simple models like linear SVM or logistic
regression will remain to be the first thing to try
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