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Introduction

About this Course

Last year I gave a four-day short course on
“introduction of data mining”

In that course, SVM was discussed

This year I received a request to specifically talk
about SVM

So I assume that some of you would like to learn
more details of SVM
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Introduction

About this Course (Cont’d)

Therefore, this short course will be more technical
than last year

More mathematics will be involved

We will have breaks at 9:50, 10:50, 13:50, and 14:50

Course slides:

www.csie.ntu.edu.tw/~cjlin/talks/itri.pdf

I may still update slides (e.g., if we find errors in our
lectures)
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SVM and kernel methods

Support Vector Classification

Training vectors : x i , i = 1, . . . , l

Feature vectors. For example,

A patient = [height, weight, . . .]T

Consider a simple case with two classes:

Define an indicator vector y ∈ R l

yi =

{
1 if x i in class 1
−1 if x i in class 2

A hyperplane which separates all data
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SVM and kernel methods
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wTx + b =
{
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0
−1

A separating hyperplane: wTx + b = 0

(wTx i) + b ≥ 1 if yi = 1
(wTx i) + b ≤ −1 if yi = −1

Decision function f (x) = sgn(wTx + b), x : test
data

Many possible choices of w and b
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SVM and kernel methods

Maximal Margin

Distance between wTx + b = 1 and −1:

2/‖w‖ = 2/
√

wTw

A quadratic programming problem (Boser et al.,
1992)

min
w ,b

1

2
wTw

subject to yi(wTx i + b) ≥ 1,

i = 1, . . . , l .
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SVM and kernel methods

Example

Given two training data in R1 as in the following
figure:

4
0

©
1

What is the separating hyperplane ?

Now two data are x1 = 1, x2 = 0 with

y = [+1,−1]T
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SVM and kernel methods

Example (Cont’d)

Now w ∈ R1. The optimization problem is

min
w ,b

1

2
w 2

subject to w · 1 + b ≥ 1, (1)

−1(w · 0 + b) ≥ 1. (2)

From (2), −b ≥ 1.

Putting this into (1), w ≥ 2.

That is, for any (w , b) satisfying (1) and (2),
w ≥ 2.
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SVM and kernel methods

Example (Cont’d)

We are minimizing 1
2w

2, so the smallest possibility is
w = 2.

Thus, (w , b) = (2,−1) is the optimal solution.

The separating hyperplane is 2x − 1 = 0, in the
middle of the two training data:

4
0

©
1

•
x = 1/2
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SVM and kernel methods

Data May Not Be Linearly Separable

An example:
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Allow training errors

Higher dimensional ( maybe infinite ) feature space

φ(x) = [φ1(x), φ2(x), . . .]T .
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SVM and kernel methods

Standard SVM (Boser et al., 1992; Cortes and
Vapnik, 1995)

min
w ,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(wTφ(x i) + b) ≥ 1− ξi ,
ξi ≥ 0, i = 1, . . . , l .

Example: x ∈ R3, φ(x) ∈ R10

φ(x) = [1,
√

2x1,
√

2x2,
√

2x3, x
2
1 ,

x2
2 , x

2
3 ,
√

2x1x2,
√

2x1x3,
√

2x2x3]T
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SVM and kernel methods

Finding the Decision Function

w : maybe infinite variables
The dual problem: finite number of variables

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0,

where Qij = yiyjφ(x i)
Tφ(x j) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(x i)

A finite problem: #variables = #training data
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SVM and kernel methods

Kernel Tricks

Qij = yiyjφ(x i)
Tφ(x j) needs a closed form

Example: x i ∈ R3, φ(x i) ∈ R10

φ(x i) = [1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3]T

Then φ(x i)
Tφ(x j) = (1 + xT

i x j)
2.

Kernel: K (x , y) = φ(x)Tφ(y); common kernels:

e−γ‖x i−x j‖2

, (Radial Basis Function or Gaussian kernel)

(xT
i x j/a + b)d (Polynomial kernel)
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SVM and kernel methods

Can be inner product in infinite dimensional space
Assume x ∈ R1 and γ > 0.

e−γ‖xi−xj‖
2

= e−γ(xi−xj)2

= e−γx
2
i +2γxixj−γx2

j

=e−γx
2
i −γx2

j
(
1 +

2γxixj
1!

+
(2γxixj)

2

2!
+

(2γxixj)
3

3!
+ · · ·

)
=e−γx

2
i −γx2

j
(
1 · 1+

√
2γ

1!
xi ·
√

2γ

1!
xj +

√
(2γ)2

2!
x2
i ·
√

(2γ)2

2!
x2
j

+

√
(2γ)3

3!
x3
i ·
√

(2γ)3

3!
x3
j + · · ·

)
= φ(xi)

Tφ(xj),

where

φ(x) = e−γx
2

[
1,

√
2γ

1!
x ,

√
(2γ)2

2!
x2,

√
(2γ)3

3!
x3, · · ·

]T
.

Chih-Jen Lin (National Taiwan Univ.) 17 / 181



SVM and kernel methods

Decision function

At optimum

w =
∑l

i=1 αiyiφ(x i)

Decision function

wTφ(x) + b

=
l∑

i=1

αiyiφ(x i)
Tφ(x) + b

=
l∑

i=1

αiyiK (x i , x) + b

Only φ(x i) of αi > 0 used ⇒ support vectors
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SVM and kernel methods

Support Vectors: More Important Data

Only φ(x i) of αi > 0 used ⇒ support vectors
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SVM and kernel methods

See more examples via SVM Toy available at libsvm web
page
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
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SVM and kernel methods

Example: Primal-dual Relationship

If separable, primal problem does not have ξi

min
w ,b

1

2
wTw

subject to yi(wTx i + b) ≥ 1, i = 1, . . . , l .

Dual problem is

min
α

1

2

∑l

i=1

∑l

j=1
αiαjyiyjxT

i x j −
∑l

i=1
αi

subject to 0 ≤ αi , i = 1, . . . , l ,∑l

i=1
yiαi = 0.
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SVM and kernel methods

Example: Primal-dual Relationship
(Cont’d)

Consider the earlier example:

4
0

©
1

Now two data are x1 = 1, x2 = 0 with

y = [+1,−1]T

The solution is (w , b) = (2,−1)

Chih-Jen Lin (National Taiwan Univ.) 22 / 181



SVM and kernel methods

Example: Primal-dual Relationship
(Cont’d)

The dual objective function

1

2

[
α1 α2

] [1 0
0 0

] [
α1

α2

]
−
[
1 1

] [α1

α2

]
=

1

2
α2

1 − (α1 + α2)

In optimization, objective function means the
function to be optimized
Constraints are

α1 − α2 = 0, 0 ≤ α1, 0 ≤ α2.
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SVM and kernel methods

Example: Primal-dual Relationship
(Cont’d)

Substituting α2 = α1 into the objective function,

1

2
α2

1 − 2α1

has the smallest value at α1 = 2.

Because [2, 2]T satisfies constraints

0 ≤ α1 and 0 ≤ α2,

it is optimal
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SVM and kernel methods

Example: Primal-dual Relationship
(Cont’d)

Using the primal-dual relation

w = y1α1x1 + y2α2x2

= 1 · 2 · 1 + (−1) · 2 · 0
= 2

This is the same as that by solving the primal
problem.
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SVM and kernel methods

More about Support vectors

We know

αi > 0⇒ support vector

We have

yi(wTx i + b) < 1⇒ αi > 0⇒ support vector,

yi(wTx i + b) = 1⇒ αi ≥ 0⇒ maybe SV

and

yi(wTx i + b) > 1⇒ αi = 0⇒ not SV
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Dual problem and solving optimization problems

Convex Optimization I

Convex problems are a important class of
optimization problems that possess nice properties

A function is convex if ∀x , y

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y),∀θ ∈ [0, 1]

That is, the line segment between any two points is
not lower than the function value
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Dual problem and solving optimization problems

Convex Optimization II

x y

f (x)

f (y)
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Dual problem and solving optimization problems

Convex Optimization III

A convex optimization problem takes the following
form

min f0(w)

subject to fi(w) ≤ 0, i = 1, . . . ,m, (3)

hi(w) = 0, i = 1, . . . , p,

where f0, . . . , fm are convex functions and h1, . . . , hp
are affine (i.e., a linear function):

hi(w) = aTw + b
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Dual problem and solving optimization problems

Convex Optimization IV
A nice property of convex optimization problems is
that

inf
w
{f0(w) | w satisfies constraints}

is unique

Optimal objective value is unique, but optimal w
may be not

There are other nice properties such as the
primal-dual relationship that we will use

To learn more about convex optimization, you can
check the book by Boyd and Vandenberghe (2004)
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Dual problem and solving optimization problems

Deriving the Dual

For simplification, consider the problem without ξi

min
w ,b

1

2
wTw

subject to yi(wTφ(x i) + b) ≥ 1, i = 1, . . . , l .

Its dual is

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi , i = 1, . . . , l ,

yTα = 0,

where
Qij = yiyjφ(x i)

Tφ(x j)
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Dual problem and solving optimization problems

Lagrangian Dual I

Lagrangian dual

max
α≥0

(
min
w ,b

L(w , b,α)
)
,

where

L(w , b,α)

=
1

2
‖w‖2 −

l∑
i=1

αi

(
yi(wTφ(x i) + b)− 1

)
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Dual problem and solving optimization problems

Lagrangian Dual II

Strong duality

min Primal = max
α≥0

(
min
w ,b

L(w , b,α)
)

After SVM is popular, quite a few people think that
for any optimization problem

⇒ Lagrangian dual exists and strong duality holds

Wrong! We usually need

The optimization problem is convex
Certain constraint qualification holds (details
not discussed)
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Dual problem and solving optimization problems

Lagrangian Dual III

We have them

SVM primal is convex and has linear constraints
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Dual problem and solving optimization problems

Simplify the dual. When α is fixed,

min
w ,b

L(w , b,α) =
−∞ if

l∑
i=1

αiyi 6= 0,

min
w

1
2w

Tw −
l∑

i=1

αi [yi(wTφ(x i)− 1] if
l∑

i=1

αiyi = 0.

If
∑l

i=1 αiyi 6= 0, we can decrease

−b
l∑

i=1

αiyi

in L(w , b,α) to −∞
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Dual problem and solving optimization problems

If
∑l

i=1 αiyi = 0, optimum of the strictly convex
function

1

2
wTw −

l∑
i=1

αi [yi(wTφ(x i)− 1]

happens when

∇wL(w , b,α) = 0.

Thus,

w =
l∑

i=1

αiyiφ(x i).
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Dual problem and solving optimization problems

Note that

wTw =

( l∑
i=1

αiyiφ(x i)

)T( l∑
j=1

αjyjφ(x j)

)
=
∑
i ,j

αiαjyiyjφ(x i)
Tφ(x j)

The dual is

max
α≥0


l∑

i=1

αi − 1
2

∑
i ,j

αiαjyiyjφ(x i)
Tφ(x j) if

l∑
i=1

αiyi = 0,

−∞ if
l∑

i=1

αiyi 6= 0.
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Dual problem and solving optimization problems

Lagrangian dual: maxα≥0

(
minw ,b L(w , b,α)

)
−∞ definitely not maximum of the dual
Dual optimal solution not happen when

l∑
i=1

αiyi 6= 0

.
Dual simplified to

max
α∈R l

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjφ(x i)
Tφ(x j)

subject to yTα = 0,

αi ≥ 0, i = 1, . . . , l .
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Dual problem and solving optimization problems

Our problems may be infinite dimensional (i.e.,
w ∈ R∞)

We can still use Lagrangian duality

See a rigorous discussion in Lin (2001)
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Dual problem and solving optimization problems

Primal versus Dual I

Recall the dual problem is

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0

and at optimum

w =
l∑

i=1

αiyiφ(x i) (4)
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Dual problem and solving optimization problems

Primal versus Dual II
What if we put (4) into primal

min
α,ξ

1

2
αTQα + C

∑l

i=1
ξi

subject to (Qα + by)i ≥ 1− ξi (5)

ξi ≥ 0

Note that

yiwTφ(x i) = yi

l∑
j=1

αjyjφ(x j)
Tφ(x i)

=
l∑

j=1

Qijαj = (Qα)i
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Dual problem and solving optimization problems

Primal versus Dual III

If Q is positive definite, we can prove that the
optimal α of (5) is the same as that of the dual

So dual is not the only choice to obtain the model
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Dual problem and solving optimization problems

Large Dense Quadratic Programming

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0

Qij 6= 0, Q : an l by l fully dense matrix

50,000 training points: 50,000 variables:

(50, 0002 × 8/2) bytes = 10GB RAM to store Q
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Dual problem and solving optimization problems

Large Dense Quadratic Programming
(Cont’d)

For quadratic programming problems, traditional
optimization methods assume that Q is available in
the computer memory

They cannot be directly applied here because Q
cannot even be stored

Currently, decomposition methods (a type of
coordinate descent methods) are what used in
practice
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Dual problem and solving optimization problems

Decomposition Methods

Working on some variables each time (e.g., Osuna
et al., 1997; Joachims, 1998; Platt, 1998)

Similar to coordinate-wise minimization

Working set B , N = {1, . . . , l}\B fixed

Sub-problem at the kth iteration:

min
αB

1

2

[
αT

B (αk
N)T
] [QBB QBN

QNB QNN

] [
αB

αk
N

]
−

[
eT
B (ek

N)T
] [αB

αk
N

]
subject to 0 ≤ αt ≤ C , t ∈ B , yTBαB = −yTNαk

N
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Dual problem and solving optimization problems

Avoid Memory Problems

The new objective function

1

2

[
αT

B (αk
N)T
] [QBBαB + QBNα

k
N

QNBαB + QNNα
k
N

]
− eT

BαB + constant

=
1

2
αT

BQBBαB + (−eB + QBNα
k
N)TαB + constant

Only |B | columns of Q are needed

In general |B | ≤ 10 is used

Calculated when used : trade time for space

But is such an approach practical?
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Dual problem and solving optimization problems

How Decomposition Methods Perform?

Convergence not very fast. This is known because
of using only first-order information

But, no need to have very accurate α

decision function:

sgn(wTφ(x) + b) = sgn

(∑l

i=1
αiK (x i , x) + b

)
Prediction may still be correct with a rough α

Further, in some situations,

# support vectors � # training points

Initial α1 = 0, some instances never used
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Dual problem and solving optimization problems

How Decomposition Methods Perform?
(Cont’d)

An example of training 50,000 instances using the
software LIBSVM

$svm-train -c 16 -g 4 -m 400 22features

Total nSV = 3370

Time 79.524s

This was done on a typical desktop

Calculating the whole Q takes more time

#SVs = 3,370 � 50,000

A good case where some remain at zero all the time

Chih-Jen Lin (National Taiwan Univ.) 49 / 181

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Dual problem and solving optimization problems

How Decomposition Methods Perform?
(Cont’d)

Because many αi = 0 in the end, we can develop a
shrinking techniques

Variables are removed during the optimization
procedure. Smaller problems are solved
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Dual problem and solving optimization problems

Machine Learning Properties are Useful in
Designing Optimization Algorithms

We have seen that special properties of SVM contribute
to the viability of decomposition methods

For machine learning applications, no need to
accurately solve the optimization problem

Because some optimal αi = 0, decomposition
methods may not need to update all the variables

Also, we can use shrinking techniques to reduce the
problem size during decomposition methods
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Dual problem and solving optimization problems

Differences between Optimization and
Machine Learning

The two topics may have different focuses. We give
the following example

The decomposition method we just discussed
converges more slowly when C is large

Using C = 1 on a data set

# iterations: 508

Using C = 5, 000

# iterations: 35,241
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Dual problem and solving optimization problems

Optimization researchers may rush to solve difficult
cases of large C

It turns out that large C is less used than small C

Recall that SVM solves

1

2
wTw + C (sum of training losses)

A large C means to overfit training data

This does not give good test accuracy. More details
about overfitting will be discussed later
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Regulatization and linear versus kernel
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Regulatization and linear versus kernel

Equivalent Optimization Problem

• Recall SVM optimization problem is

min
w ,b,ξ

1

2
wTw + C

∑l

i=1
ξi

subject to yi(wTφ(x i) + b) ≥ 1− ξi ,
ξi ≥ 0, i = 1, . . . , l .

• It is equivalent to

min
w ,b

1

2
wTw + C

l∑
i=1

max(0, 1− yi(wTφ(x i) + b))

• The reformulation is useful to derive SVM from a
different viewpoint
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Regulatization and linear versus kernel

Equivalent Optimization Problem (Cont’d)

That is, at optimum,

ξi = max(0, 1− yi(wTφ(x i) + b))

Reason: from constraints

ξi ≥ 1− yi(wTφ(x i) + b) and ξi ≥ 0

but we also want to minimize ξi
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Regulatization and linear versus kernel

Linear and Kernel I

Linear classifier

sgn(wTx + b)

Kernel classifier

sgn(wTφ(x) + b) = sgn

(∑l

i=1
αiK (x i , x) + b

)
Linear is a special case of kernel

An important difference is that for linear we can
store w
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Regulatization and linear versus kernel

Linear and Kernel II

For kernel, w may be infinite dimensional and
cannot be stored

We will show that they are useful in different
circumstances
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Regulatization and linear versus kernel

The Bias Term b

Recall the decision function is

sgn(wTx + b)

Sometimes the bias term b is omitted

sgn(wTx)

This is fine if the number of features is not too small
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Regulatization and linear versus kernel

Minimizing Training Errors

For classification naturally we aim to minimize the
training error

min
w

(training errors)

To characterize the training error, we need a loss
function ξ(w ; x , y) for each instance (x , y)

Ideally we should use 0–1 training loss:

ξ(w ; x , y) =

{
1 if ywTx < 0,

0 otherwise
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Regulatization and linear versus kernel

Minimizing Training Errors (Cont’d)

However, this function is discontinuous. The
optimization problem becomes difficult

−ywTx

ξ(w ; x , y)

We need continuous approximations
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Regulatization and linear versus kernel

Common Loss Functions

Hinge loss (l1 loss)

ξL1(w ; x , y) ≡ max(0, 1− ywTx) (6)

Squared hinge loss (l2 loss)

ξL2(w ; x , y) ≡ max(0, 1− ywTx)2 (7)

Logistic loss

ξLR(w ; x , y) ≡ log(1 + e−yw
Tx) (8)

SVM: (6)-(7). Logistic regression (LR): (8)
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Regulatization and linear versus kernel

Common Loss Functions (Cont’d)

−ywTx

ξ(w ; x , y)

ξL1

ξL2

ξLR

Logistic regression is very related to SVM
Their performance (i.e., test accuracy) is usually
similar
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Regulatization and linear versus kernel

Common Loss Functions (Cont’d)

However, minimizing training losses may not give a
good model for future prediction

Overfitting occurs
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Regulatization and linear versus kernel

Overfitting

See the illustration in the next slide

For classification,

You can easily achieve 100% training accuracy

This is useless

When training a data set, we should

Avoid underfitting: small training error

Avoid overfitting: small testing error
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Regulatization and linear versus kernel

l and s: training; © and 4: testing
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Regulatization and linear versus kernel

Regularization

To minimize the training error we manipulate the w
vector so that it fits the data

To avoid overfitting we need a way to make w ’s
values less extreme.

One idea is to make w values closer to zero

We can add, for example,

wTw
2

or ‖w‖1

to the objective function
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Regulatization and linear versus kernel

General Form of Linear Classification I

Training data {yi , x i}, x i ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), f (w) ≡ wTw
2

+ C
l∑

i=1

ξ(w ; x i , yi)

(9)

wTw/2: regularization term

ξ(w ; x , y): loss function

C : regularization parameter
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Regulatization and linear versus kernel

General Form of Linear Classification II

Of course we can map data to a higher dimensional
space

min
w

f (w), f (w) ≡ wTw
2

+ C
l∑

i=1

ξ(w ;φ(x i), yi)
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Regulatization and linear versus kernel

SVM and Logistic Regression I

If hinge (l1) loss is used, the optimization problem is

min
w

1

2
wTw + C

l∑
i=1

max(0, 1− yiwTx i)

It is the SVM problem we had earlier (without the
bias b)

Therefore, we have derived SVM from a different
viewpoint

We also see that SVM is very related to logistic
regression
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Regulatization and linear versus kernel

SVM and Logistic Regression II

However, many wrongly think that they are different

This is wrong.

Reason of this misunderstanding: traditionally,

when people say SVM ⇒ kernel SVM
when people say logistic regression ⇒ linear
logistic regression

Indeed we can do kernel logistic regression

min
w

1

2
wTw + C

l∑
i=1

log(1 + e−yiw
Tφ(x i ))
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Regulatization and linear versus kernel

SVM and Logistic Regression III

A main difference from SVM is that logistic
regression has probability interpretation

We will introduce logistic regression from another
viewpoint
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Regulatization and linear versus kernel

Logistic Regression

For a label-feature pair (y , x), assume the
probability model is

p(y |x) =
1

1 + e−ywTx .

Note that

p(1|x) + p(−1|x)

=
1

1 + e−wTx +
1

1 + ewTx

=
ewTx

1 + ewTx +
1

1 + ewTx

= 1

w is the parameter to be decided
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Regulatization and linear versus kernel

Logistic Regression (Cont’d)

Idea of this model

p(1|x) =
1

1 + e−wTx

{
→ 1 if wTx � 0,

→ 0 if wTx � 0

Assume training instances are

(yi , x i), i = 1, . . . , l
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Regulatization and linear versus kernel

Logistic Regression (Cont’d)

Logistic regression finds w by maximizing the
following likelihood

max
w

l∏
i=1

p (yi |x i) . (10)

Negative log-likelihood

− log
l∏

i=1

p (yi |x i) = −
l∑

i=1

log p (yi |x i)

=
l∑

i=1

log
(

1 + e−yiw
Tx i

)
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Regulatization and linear versus kernel

Logistic Regression (Cont’d)

Logistic regression

min
w

l∑
i=1

log
(

1 + e−yiw
Tx i

)
.

Regularized logistic regression

min
w

1

2
wTw + C

l∑
i=1

log
(

1 + e−yiw
Tx i

)
. (11)

C : regularization parameter decided by users
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Regulatization and linear versus kernel

Loss Functions: Differentiability

However,

ξL1: not differentiable
ξL2: differentiable but not twice differentiable
ξLR: twice differentiable

The same optimization method may not be applicable to
all these losses
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Regulatization and linear versus kernel

Discussion

We see that the same classification method can be
derived from different ways

SVM

Maximal margin

Regularization and training losses

LR

Regularization and training losses

Maximum likelihood
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Regulatization and linear versus kernel

Regularization

L1 versus L2

‖w‖1 and wTw/2

wTw/2: smooth, easier to optimize

‖w‖1: non-differentiable

sparse solution; possibly many zero elements

Possible advantages of L1 regularization:

Feature selection

Less storage for w
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Regulatization and linear versus kernel

Linear and Kernel Classification

Methods such as SVM and logistic regression can used in
two ways

Kernel methods: data mapped to a higher
dimensional space

x ⇒ φ(x)

φ(x i)
Tφ(x j) easily calculated; little control on φ(·)

Feature engineering + linear classification:

We have x without mapping. Alternatively, we can
say that φ(x) is our x ; full control on x or φ(x)

We refer to them as kernel and linear classifiers
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Regulatization and linear versus kernel

Linear and Kernel Classification

Let’s check the prediction cost

wTx + b versus
∑l

i=1
αiyiK (x i , x) + b

If K (x i , x j) takes O(n), then

O(n) versus O(nl)

Linear is much cheaper

A similar difference occurs for training
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Regulatization and linear versus kernel

Linear and Kernel Classification (Cont’d)

In a sense, linear is a special case of kernel

Indeed, we can prove that test accuracy of linear is
the same as Gaussian (RBF) kernel under certain
parameters (Keerthi and Lin, 2003)

Therefore, roughly we have

test accuracy: kernel ≥ linear
cost: kernel � linear

Speed is the reason to use linear
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Regulatization and linear versus kernel

Linear and Kernel Classification (Cont’d)

For some problems, accuracy by linear is as good as
nonlinear

But training and testing are much faster

This particularly happens for document classification

Number of features (bag-of-words model) very large

Data very sparse (i.e., few non-zeros)
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Regulatization and linear versus kernel

Comparison Between Linear and Kernel
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features
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Regulatization and linear versus kernel

Extension: Training Explicit Form of
Nonlinear Mappings I

Linear-SVM method to train φ(x1), . . . , φ(x l)

Kernel not used

Applicable only if dimension of φ(x) not too large

Low-degree Polynomial Mappings

K (x i , x j) = (xT
i x j + 1)2 = φ(x i)

Tφ(x j)

φ(x) = [1,
√

2x1, . . . ,
√

2xn, x
2
1 , . . . , x

2
n ,√

2x1x2, . . . ,
√

2xn−1xn]T
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Regulatization and linear versus kernel

Extension: Training Explicit Form of
Nonlinear Mappings II

For this mapping, # features = O(n2)

Recall O(n) for linear versus O(nl) for kernel

Now O(n2) versus O(nl)

Sparse data

n⇒ n̄, average # non-zeros for sparse data

n̄� n⇒ O(n̄2) may be much smaller than O(l n̄)

When degree is small, train the explicit form of φ(x)
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Regulatization and linear versus kernel

Testing Accuracy and Training Time

Data set
Degree-2 Polynomial Accuracy diff.

Training time (s)
Accuracy Linear RBF

LIBLINEAR LIBSVM
a9a 1.6 89.8 85.06 0.07 0.02
real-sim 59.8 1,220.5 98.00 0.49 0.10
ijcnn1 10.7 64.2 97.84 5.63 −0.85
MNIST38 8.6 18.4 99.29 2.47 −0.40
covtype 5,211.9 NA 80.09 3.74 −15.98
webspam 3,228.1 NA 98.44 5.29 −0.76

Training φ(x i) by linear: faster than kernel, but
sometimes competitive accuracy
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Regulatization and linear versus kernel

Example: Dependency Parsing I

This is an NLP Application

Kernel Linear
RBF Poly-2 Linear Poly-2

Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x 1x 1652x 103x
UAS 89.92 91.67 89.11 91.71
LAS 88.55 90.60 88.07 90.71

We get faster training/testing, while maintain good
accuracy
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Regulatization and linear versus kernel

Example: Dependency Parsing II

We achieve this by training low-degree
polynomial-mapped data by linear classification

That is, linear methods to explicitly train φ(x i),∀i
We consider the following low-degree polynomial
mapping:

φ(x) = [1, x1, . . . , xn, x
2
1 , . . . , x

2
n , x1x2, . . . , xn−1xn]T
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Regulatization and linear versus kernel

Handing High Dimensionality of φ(x)

A multi-class problem with sparse data

n Dim. of φ(x) l n̄ w ’s # nonzeros
46,155 1,065,165,090 204,582 13.3 1,438,456

n̄: average # nonzeros per instance

Dimensionality of w is very high, but w is sparse

Some training feature columns of xixj are entirely
zero

Hashing techniques are used to handle sparse w
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Regulatization and linear versus kernel

Example: Classifier in a Small Device

In a sensor application (Yu et al., 2014), the
classifier can use less than 16KB of RAM

Classifiers Test accuracy Model Size
Decision Tree 77.77 76.02KB
AdaBoost (10 trees) 78.84 1,500.54KB
SVM (RBF kernel) 85.33 1,287.15KB

Number of features: 5

We consider a degree-3 polynomial mapping

dimensionality =

(
5 + 3

3

)
+ bias term = 57.
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Regulatization and linear versus kernel

Example: Classifier in a Small Device

One-against-one strategy for 5-class classification(
5

2

)
× 57× 4bytes = 2.28KB

Assume single precision

Results

SVM method Test accuracy Model Size
RBF kernel 85.33 1,287.15KB
Polynomial kernel 84.79 2.28KB
Linear kernel 78.51 0.24KB
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Multi-class classification

Multi-class Classification

SVM and logistic regression are methods for
two-class classification

We need certain ways to extend them for multi-class
problems

This is not a problem for methods such as nearest
neighbor or decision trees

Chih-Jen Lin (National Taiwan Univ.) 94 / 181



Multi-class classification

Multi-class Classification (Cont’d)

k classes
One-against-the rest: Train k binary SVMs:

1st class vs. (2, · · · , k)th class
2nd class vs. (1, 3, . . . , k)th class

...

k decision functions

(w 1)Tφ(x) + b1

...

(w k)Tφ(x) + bk
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Multi-class classification

Prediction:

arg max
j

(w j)Tφ(x) + bj

Reason: If x ∈ 1st class, then we should have

(w 1)Tφ(x) + b1 ≥ +1

(w 2)Tφ(x) + b2 ≤ −1
...

(w k)Tφ(x) + bk ≤ −1
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Multi-class classification

Multi-class Classification (Cont’d)

One-against-one: train k(k − 1)/2 binary SVMs

(1, 2), (1, 3), . . . , (1, k), (2, 3), (2, 4), . . . , (k − 1, k)

If 4 classes ⇒ 6 binary SVMs

yi = 1 yi = −1 Decision functions
class 1 class 2 f 12(x) = (w 12)Tx + b12

class 1 class 3 f 13(x) = (w 13)Tx + b13

class 1 class 4 f 14(x) = (w 14)Tx + b14

class 2 class 3 f 23(x) = (w 23)Tx + b23

class 2 class 4 f 24(x) = (w 24)Tx + b24

class 3 class 4 f 34(x) = (w 34)Tx + b34
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Multi-class classification

For a testing data, predicting all binary SVMs

Classes winner
1 2 1
1 3 1
1 4 1
2 3 2
2 4 4
3 4 3

Select the one with the largest vote

class 1 2 3 4
# votes 3 1 1 1

May use decision values as well
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Multi-class classification

Solving a Single Problem

An approach by Crammer and Singer (2002)

min
w 1,...,w k

1

2

k∑
m=1

‖wm‖2
2 + C

l∑
i=1

ξ({wm}km=1; x i , yi),

where

ξ({wm}km=1; x , y) ≡ max
m 6=y

max(0, 1− (w y−wm)Tx).

We hope the decision value of x i by the model w yi

is larger than others
Prediction: same as one-against-the rest

arg max
j

(w j)
Tx
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Multi-class classification

Discussion

Other variants of solving a single optimization
problem include Weston and Watkins (1999); Lee
et al. (2004)

A comparison in Hsu and Lin (2002)

RBF kernel: accuracy similar for different methods

But 1-against-1 is the fastest for training
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Multi-class classification

Maximum Entropy

Maximum Entropy: a generalization of logistic
regression for multi-class problems

It is widely applied by NLP applications.

Conditional probability of label y given data x .

P(y |x) ≡
exp(wT

y x)∑k
m=1 exp(wT

mx)
,
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Multi-class classification

Maximum Entropy (Cont’d)

We then minimizes regularized negative
log-likelihood.

min
w 1,...,wm

1

2

k∑
m=1

‖w k‖2 + C
l∑

i=1

ξ({wm}km=1; x i , yi),

where

ξ({wm}km=1; x , y) ≡ − logP(y |x).
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Multi-class classification

Maximum Entropy (Cont’d)

Is this loss function reasonable?

If
wT

yi
x i � wT

mx i ,∀m 6= yi ,

then
ξ({wm}km=1; x i , yi) ≈ 0

That is, no loss

In contrast, if

wT
yi
x i � wT

mx i ,m 6= yi ,

then P(yi |x i)� 1 and the loss is large.
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Multi-class classification

Features as Functions

NLP applications often use a function f (x , y) to
generate the feature vector

P(y |x) ≡ exp(wT f (x , y))∑
y ′ exp(wT f (x , y ′))

. (12)

The earlier probability model is a special case by

f (x , y) =


0
...
0
x
0
...
0


}
y − 1

∈ Rnk and w =

[ w 1

...
w k

]
.
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Support vector regression

Least Square Regression I

Given training data (x1, y1), . . . , (x l , yl)

Now
yi ∈ R

is the target value

Regression: find a function so that

f (x i) ≈ yi
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Support vector regression

Least Square Regression II

Least square regression:

min
w ,b

l∑
i=1

(yi − (wTx i + b))2

That is, we model f (x) by

f (x) = wTx + b

An example
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Support vector regression

Least Square Regression III
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note: picture is from

http://tex.stackexchange.com/questions/119179/

how-to-add-a-regression-line-to-randomly-generated-points-using-pgfplots-in-tikz
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Support vector regression

Least Square Regression IV

This is equivalent to

min
w ,b

∑l

i=1
ξ(w , b; x i , yi)

where

ξ(w , b; x i , yi) = (yi − (wTx i + b))2
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Support vector regression

Regularized Least Square

ξ(w , b; x i , yi) is a kind of loss function

We can add regularization.

min
w ,b

1

2
wTw + C

∑l

i=1
ξ(w , b; x i , yi)

C is still the regularization parameter

Other loss functions?
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Support vector regression

Support Vector Regression I

ε-insensitive loss function (b omitted)

max(|wTx i − yi | − ε, 0)

max(|wTx i − yi | − ε, 0)2
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Support vector regression

Support Vector Regression II

wTx i − yi
0

loss

−ε ε

L2

L1

ε: errors small enough are treated as no error

This make the model more robust (less overfitting
the data)
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Support vector regression

Support Vector Regression III

One more parameter (ε) to decide

An equivalent form of the optimization problem

min
w ,b,ξ,ξ∗

1

2
wTw + C

l∑
i=1

ξi + C
l∑

i=1

ξ∗i

subject to wTφ(x i) + b − yi ≤ ε + ξi ,

yi −wTφ(x i)− b ≤ ε + ξ∗i ,

ξi , ξ
∗
i ≥ 0, i = 1, . . . , l .

This form is similar to the SVM formulation derived
earlier
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Support vector regression

Support Vector Regression IV

The dual problem is

min
α,α∗

1

2
(α−α∗)TQ(α−α∗) + ε

l∑
i=1

(αi + α∗i )

+
l∑

i=1

yi(αi − α∗i )

subject to eT (α−α∗) = 0,

0 ≤ αi , α
∗
i ≤ C , i = 1, . . . , l ,

where Qij = K (x i , x j) ≡ φ(x i)
Tφ(x j).
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Support vector regression

Support Vector Regression V

After solving the dual problem,

w =
l∑

i=1

(−αi + α∗i )φ(x i)

and the approximate function is

l∑
i=1

(−αi + α∗i )K (x i , x) + b.
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Support vector regression

Discussion

SVR and least-square regression are very related

Why people more commonly use l2 (least-square)
rather than l1 losses?

Easier because of differentiability
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SVM for clustering

One-class SVM I

Separate data to normal ones and outliers
(Schölkopf et al., 2001)

min
w ,ξ,ρ

1

2
wTw − ρ +

1

νl

l∑
i=1

ξi

subject to wTφ(x i) ≥ ρ− ξi ,
ξi ≥ 0, i = 1, . . . , l .
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SVM for clustering

One-class SVM II

Instead of the parameter C is SVM, here the
parameter is ν.

wTφ(x i) ≥ ρ− ξi

means that we hope most data satisfy

wTφ(x i) ≥ ρ.

That is, most data are on one side of the hyperplane

Those on the wrong side are considered as outliers
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SVM for clustering

One-class SVM III

The dual problem is

min
α

1

2
αTQα

subject to 0 ≤ αi ≤ 1/(νl), i = 1, . . . , l ,

eTα = 1,

where Qij = K (x i , x j) = φ(x i)
Tφ(x j).

The decision function is

sgn

(
l∑

i=1

αiK (x i , x)− ρ

)
.
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SVM for clustering

One-class SVM IV

The role of −ρ is similar to the bias term b earlier

From the dual problem we can see that

ν ∈ (0, 1]

Otherwise, if ν > 1, then

eTα ≤ 1/ν < 1

violates the linear constraint.

Clearly, a larger ν means we don’t need to push ξi
to zero ⇒ more data are considered as outliers
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SVM for clustering

Support Vector Data Description (SVDD)
I

SVDD is another technique to identify outliers (Tax
and Duin, 2004)

min
R,a,ξ

R2 + C
l∑

i=1

ξi

subject to ‖φ(x i)− a‖2 ≤ R2 + ξi , i = 1, . . . , l ,

ξi ≥ 0, i = 1, . . . , l ,
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SVM for clustering

Support Vector Data Description (SVDD)
II

We obtain a hyperspherical model characterized by
the center a and the radius R .

A test instance x is detected as an outlier if

‖φ(x)− a‖2 > R2.
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SVM for clustering

Support Vector Data Description (SVDD)
III

The dual problem

min
α

αTQα−
l∑

i=1

αiQi ,i

subject to eTα = 1, (13)

0 ≤ αi ≤ C , i = 1, . . . , l ,

This dual problem is very close to that of one-class
SVM
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SVM for clustering

Support Vector Data Description (SVDD)
IV

Consider a scaled version of one-class SVM dual

min
α

1

2
αTQα

subject to 0 ≤ αi ≤ 1, i = 1, . . . , l ,

eTα = νl .

If Gaussian kernel is used,

Qi ,i = e−γ‖x i−x i‖2

= 1

and the two dual problems are equivalent
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SVM for clustering

Discussion

For unsupervised settings, evaluation is very difficult

Usually the evaluation is by a subjective way
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Practical use of support vector classification

Let’s Try a Practical Example

A problem from astroparticle physics

1 2.61e+01 5.88e+01 -1.89e-01 1.25e+02

1 5.70e+01 2.21e+02 8.60e-02 1.22e+02

1 1.72e+01 1.73e+02 -1.29e-01 1.25e+02

0 2.39e+01 3.89e+01 4.70e-01 1.25e+02

0 2.23e+01 2.26e+01 2.11e-01 1.01e+02

0 1.64e+01 3.92e+01 -9.91e-02 3.24e+01

Training and testing sets available: 3,089 and 4,000
Data available at LIBSVM Data Sets
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Practical use of support vector classification

Training and Testing

Training the set svmguide1 to obtain svmguide1.model

$./svm-train svmguide1

Testing the set svmguide1.t

$./svm-predict svmguide1.t svmguide1.model out

Accuracy = 66.925% (2677/4000)

We see that training and testing accuracy are very
different. Training accuracy is almost 100%

$./svm-predict svmguide1 svmguide1.model out

Accuracy = 99.7734% (3082/3089)
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Practical use of support vector classification

Why this Fails

Gaussian kernel is used here

We see that most kernel elements have

Kij = e−‖x i−x j‖2/4

{
= 1 if i = j ,

→ 0 if i 6= j .

because some features in large numeric ranges

For what kind of data,

K ≈ I?
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Practical use of support vector classification

Why this Fails (Cont’d)

If we have training data

φ(x1) = [1, 0, . . . , 0]T

...

φ(x l) = [0, . . . , 0, 1]T

then
K = I

Clearly such training data can be correctly
separated, but how about testing data?

So overfitting occurs
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Practical use of support vector classification

Overfitting

See the illustration in the next slide

In theory

You can easily achieve 100% training accuracy

This is useless

When training and predicting a data, we should

Avoid underfitting: small training error

Avoid overfitting: small testing error
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Practical use of support vector classification

l and s: training; © and 4: testing
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Practical use of support vector classification

Data Scaling

Without scaling, the above overfitting situation may
occur

Also, features in greater numeric ranges may
dominate

Example:

height gender
x1 150 F
x2 180 M
x3 185 M

and
y1 = 0, y2 = 1, y3 = 1.
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Practical use of support vector classification

Data Scaling (Cont’d)

The separating hyperplane almost vertical

x1

x2x3

Strongly depends on the first attribute; but second
may be also important
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Practical use of support vector classification

Data Scaling (Cont’d)

A simple solution is to linearly scale each feature to
[0, 1] by:

feature value−min

max−min
,

where max,min are maximal and minimal value of
each feature

There are many other scaling methods

Scaling generally helps, but not always
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Practical use of support vector classification

Data Scaling (Cont’d)

Scaling is needed for methods relying on similarity
between instances

For example, k-nearest neighbor

It’s not needed to methods such as decision trees
which rely on relative positions with an attribute
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Practical use of support vector classification

Data Scaling: Same Factors

A common mistake

$./svm-scale -l -1 -u 1 svmguide1 > svmguide1.scale

$./svm-scale -l -1 -u 1 svmguide1.t > svmguide1.t.scale

-l -1 -u 1: scaling to [−1, 1]

We need to use same factors on training and testing

$./svm-scale -s range1 svmguide1 > svmguide1.scale

$./svm-scale -r range1 svmguide1.t > svmguide1.t.scale

Later we will give a real example
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Practical use of support vector classification

After Data Scaling

Train scaled data and then predict

$./svm-train svmguide1.scale

$./svm-predict svmguide1.t.scale svmguide1.scale.model

svmguide1.t.predict

Accuracy = 96.15%

Training accuracy is now similar

$./svm-predict svmguide1.scale svmguide1.scale.model o

Accuracy = 96.439%

For this experiment, we use parameters C = 1, γ = 0.25,
but sometimes performances are sensitive to parameters
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Practical use of support vector classification

Parameters versus Performances

If we use C = 20, γ = 400

$./svm-train -c 20 -g 400 svmguide1.scale

$./svm-predict svmguide1.scale svmguide1.scale.model o

Accuracy = 100% (3089/3089)

100% training accuracy but

$./svm-predict svmguide1.t.scale svmguide1.scale.model o

Accuracy = 82.7% (3308/4000)

Very bad test accuracy

Overfitting happens
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Practical use of support vector classification

Parameter Selection

For SVM, we may need to select suitable parameters

They are C and kernel parameters

Example:

γ of e−γ‖x i−x j‖2

a, b, d of (xT
i x j/a + b)d

How to select them so performance is better?
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Practical use of support vector classification

Performance Evaluation

Available data ⇒ training and validation

Train the training; test the validation to estimate
the performance

A common way is k-fold cross validation (CV):

Data randomly separated to k groups

Each time k − 1 as training and one as testing

Select parameters/kernels with best CV result

There are many other methods to evaluate the
performance
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Practical use of support vector classification

Contour of CV Accuracy
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Practical use of support vector classification

The good region of parameters is quite large

SVM is sensitive to parameters, but not that
sensitive

Sometimes default parameters work

but it’s good to select them if time is allowed
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Practical use of support vector classification

Example of Parameter Selection

Direct training and test

$./svm-train svmguide3

$./svm-predict svmguide3.t svmguide3.model o

→ Accuracy = 2.43902%

After data scaling, accuracy is still low

$./svm-scale -s range3 svmguide3 > svmguide3.scale

$./svm-scale -r range3 svmguide3.t > svmguide3.t.scale

$./svm-train svmguide3.scale

$./svm-predict svmguide3.t.scale svmguide3.scale.model o

→ Accuracy = 12.1951%
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Practical use of support vector classification

Example of Parameter Selection (Cont’d)

Select parameters by trying a grid of (C , γ) values

$ python grid.py svmguide3.scale

· · ·
128.0 0.125 84.8753

(Best C=128.0, γ=0.125 with five-fold cross-validation
rate=84.8753%)

Train and predict using the obtained parameters

$ ./svm-train -c 128 -g 0.125 svmguide3.scale

$ ./svm-predict svmguide3.t.scale svmguide3.scale.model svmguide3.t.predict

→ Accuracy = 87.8049%
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Practical use of support vector classification

Selecting Kernels

RBF, polynomial, or others?

For beginners, use RBF first

Linear kernel: special case of RBF

Accuracy of linear the same as RBF under certain
parameters (Keerthi and Lin, 2003)

Polynomial kernel:

(xT
i x j/a + b)d

Numerical difficulties: (< 1)d → 0, (> 1)d →∞
More parameters than RBF
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Practical use of support vector classification

Selecting Kernels (Cont’d)

Commonly used kernels are Gaussian (RBF),
polynomial, and linear

But in different areas, special kernels have been
developed. Examples

1. χ2 kernel is popular in computer vision

2. String kernel is useful in some domains
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Practical use of support vector classification

A Simple Procedure for Beginners

After helping many users, we came up with the following
procedure

1. Conduct simple scaling on the data

2. Consider RBF kernel K (x , y) = e−γ‖x−y‖
2

3. Use cross-validation to find the best parameter C and
γ

4. Use the best C and γ to train the whole training set

5. Test

In LIBSVM, we have a python script easy.py
implementing this procedure.
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Practical use of support vector classification

A Simple Procedure for Beginners
(Cont’d)

We proposed this procedure in an “SVM guide”
(Hsu et al., 2003) and implemented it in LIBSVM

From research viewpoints, this procedure is not
novel. We never thought about submitting our
guide somewhere

But this procedure has been tremendously useful.

Now almost the standard thing to do for SVM
beginners
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Practical use of support vector classification

A Real Example of Wrong Scaling

Separately scale each feature of training and testing data
to [0, 1]

$ ../svm-scale -l 0 svmguide4 > svmguide4.scale

$ ../svm-scale -l 0 svmguide4.t > svmguide4.t.scale

$ python easy.py svmguide4.scale svmguide4.t.scale

Accuracy = 69.2308% (216/312) (classification)

The accuracy is low even after parameter selection

$ ../svm-scale -l 0 -s range4 svmguide4 > svmguide4.scale

$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale

$ python easy.py svmguide4.scale svmguide4.t.scale

Accuracy = 89.4231% (279/312) (classification)
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Practical use of support vector classification

A Real Example of Wrong Scaling
(Cont’d)

With the correct setting, the 10 features in the test data
svmguide4.t.scale have the following maximal values:

0.7402, 0.4421, 0.6291, 0.8583, 0.5385, 0.7407, 0.3982,
1.0000, 0.8218, 0.9874

Scaling the test set to [0, 1] generated an erroneous set.
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Practical use of support vector classification

More about Cross Validation

CV can be used for other classification methods

For example, a common way to select k of k nearest
neighbor is by CV

However, it’s easy that CV is misused
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Practical use of support vector classification

More about Cross Validation (Cont’d)

CV is a biased estimate

Think about this. If you have many parameters, you
may adjust them to boost your CV accuracy

In some papers, people compare CV accuracy of
different methods

This is not very appropriate

It’s better to report independent test accuracy

Indeed you are allowed to predict the test set only
once for reporting the results
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Practical use of support vector classification

More about Cross Validation (Cont’d)

Sometimes you must be careful in splitting data for
CV

Assume you have 20,000 images of 200 users:

User 1: 100 images

· · ·
User 200: 100 images

The standard CV may overestimate the performance
because of easier predictions

Chih-Jen Lin (National Taiwan Univ.) 155 / 181



Practical use of support vector classification

More about Cross Validation (Cont’d)

An instance in the validation set may find a close
one in the training set.

A more suitable setting is to split data by meta-level
information (i.e., users here).
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A practical example of SVR
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A practical example of SVR

Electricity Load Forecasting

EUNITE world wide competition 2001
http://neuron-ai.tuke.sk/competition

We were given

Load per half hour from 1997 to 1998
Average daily temperature from 1995 to 1998
List of holidays

Goal:

Predict daily maximal load of January 1999

A time series prediction problem
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A practical example of SVR

SVR for Time Series Prediction I

Given (· · · , yt−∆, · · · , yt−1, yt , · · · , yl) as training
series

Generate training data:
(yt−∆, · · · , yt−1) as attributes (features) of x i

yt as the target value x i

One-step ahead prediction

Prediction:
Starting from the last segment

(yl−∆+1, . . . , yl)→ ŷl+1

Repeat by using newly predicted values
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A practical example of SVR

Data Analyses I

Maximal load of each day

Didn’t know how to use all half-hour data
Not used for later analyses/experiments
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A practical example of SVR

Data Analyses II

Issues largely discussed in earlier works

Seasonal periodicity
Weekly periodicity
Weekday: higher, Weekend: lower
Holiday effect
All above known for January 1999
Weather influence
Temperature unknown for January 1999

Temperature is very very important

The main difficulty of this competition

Chih-Jen Lin (National Taiwan Univ.) 161 / 181



A practical example of SVR

Data Analyses III

Most early work on short-term prediction:
Temperature available
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A practical example of SVR

Data Analyses IV

Error propagation of time series prediction is an
issue
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A practical example of SVR

Methods

In addition to SVR, another simple and effective
method is local modeling

It is like nearest neighbor in classification

Local modeling:

Finding segments closely resemble the segment
proceeding the point to be predicted

�����
�����
�����
�����

�����
�����
�����
�����

Average of elements after these similar
segments of points.
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A practical example of SVR

Data Encoding I

Both methods:

Use a a segment (a vector) for predicting the next
value

Encoding: contents of a segment

The simplest:

Each segment: load of the previous ∆ days

Used for local model: ∆ = 7

For SVM: more information is incorporated

Seven attributes: maximal loads of the past 7
days
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A practical example of SVR

Data Encoding II
Seven binary (i.e. 0 or 1) attributes:
target day in which day of a week
One binary attribute: target day holiday or not
One attribute (optional): temperature of the
target day

Temperature unknown: train two SVMs

One for load and one for temperature(
yt−∆

Tt−∆

)
, · · · ,

(
yt−1

Tt−1

)
SVM1−−−−→ yt

Tt−∆, · · · ,Tt−1
SVM2−−−−→ Tt
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A practical example of SVR

Model Selection I

Parameters and features

∆: for both approaches
Local model: # of similar segments
SVR:

1 C : cost of error
2 ε: width of the ε-insensitive loss
3 mapping function φ

Extremely important for data prediction

Known data separated to

Training, validation, and testing
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A practical example of SVR

Model Selection II

January 1997 or January 1998 as validation

Model selection is expensive

Restrict the search space: via reasonable choices or
simply guessing

∆ = 7
SVR:
RBF function φ(xi)

Tφ(xj) = e−γ‖xi−xj‖
2

Use default width ε = 0.5 of LIBSVM
C = 212, γ = 2−4: decided by validation
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A practical example of SVR

Summer Data I

Without summer:

Result for testing January 1998 (or 1997) better

Give up information from April to September

This is an example where domain knowledge is used

However, can we do automatic time series
segmentation to see that summer and winter are
different?
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A practical example of SVR

Evaluation of Time Series Prediction I

MSE (Mean Square Error):

n∑
i=1

(yi − ŷi)
2

MAPE (Mean absolute percentage error)

1

n

n∑
i=1

|yi − ŷi |
|yi |

Error propagation: larger error later

Unfair to earlier prediction if MSE is used
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A practical example of SVR

Evaluation of Time Series Prediction II

There are other criteria
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A practical example of SVR

Results: Local Model I

Validation on different number of segments

Results in the competition: slightly worse than SVR
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A practical example of SVR

Results: SVR I

Two SVRs: very difficult to predict temperature

If in one day, temperature suddenly drops or
increases

⇒ Erroneous after that day

We conclude if temperature is used, the variation is
higher

We decide to give up using the temperature
information

Only one SVM used

Prediction results for January 1998:
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A practical example of SVR

Results: SVR II
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The load of each week is similar

However, the model manages to find the trend
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A practical example of SVR

Results: SVR III

Holiday is lower but error larger
Results after encountering a holiday more inaccurate
Holidays: January 1 and 6

Treat all 31 days in January 1999 as non-holidays

Some earlier work consider holidays and
non-holidays separately

We cannot do this because information about
holidays is quite limited

Overall we take a very conservative approach

Forgot to manually lower load of January 6
Reason why our maxi(errori) not good
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A practical example of SVR

Results: SVR IV

MAPE: 1.98839%

MSE: 364.498
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A practical example of SVR

Discussion I

Instead of this conservative approach, can we do
better ?

Is there a good way to use temperature information?

Feature selection is the key for our approach

Example: removing summer data, treating holidays
as non-holidays

Parameter selection: needed but a large range is ok

For example, if C = 212, γ = 2−4 becomes
C = 212, γ = 2−5

⇒ results do not change much
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Discussion and conclusions

Conclusions

In this short course, we have introduced details of
SVM

Linear versus kernel is an important issue. You must
decide when to use which

No matter how many advanced techniques are
developed, simple models like linear SVM or logistic
regression will remain to be the first thing to try
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