
Optimization and Machine Learning

Chih-Jen Lin
Department of Computer Science

National Taiwan University

Talk at Summer School on Optimization, Big Data and

Applications, July, 2017

Chih-Jen Lin (National Taiwan Univ.) 1 / 164

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 2 / 164

Talk slides are available at http://www.csie.ntu.edu.
tw/~cjlin/talks/italy_optml.pdf

Chih-Jen Lin (National Taiwan Univ.) 3 / 164

http://www.csie.ntu.edu.tw/~cjlin/talks/italy_optml.pdf
http://www.csie.ntu.edu.tw/~cjlin/talks/italy_optml.pdf

Introduction: why optimization and machine learning are related?

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 4 / 164

Introduction: why optimization and machine learning are related?

What is Machine Learning?

Extract knowledge from data and make predictions

Representative tasks: classification, clustering, and
others

Classification Clustering

We will focus on classification

Chih-Jen Lin (National Taiwan Univ.) 5 / 164

Introduction: why optimization and machine learning are related?

Data Classification

Given training data in different classes (labels
known)

Predict test data (labels unknown)

Classic example

1. Find a patient’s blood pressure, weight, etc.

2. After several years, know if he/she recovers

3. Build a machine learning model

4. New patient: find blood pressure, weight, etc

5. Prediction

Two main stages: training and testing

Chih-Jen Lin (National Taiwan Univ.) 6 / 164

Introduction: why optimization and machine learning are related?

Why Is Optimization Used?

Usually the goal of classification is to

minimize the test error

Therefore, many classification methods solve
optimization problems

Chih-Jen Lin (National Taiwan Univ.) 7 / 164

Introduction: why optimization and machine learning are related?

Optimization and Machine Learning

Standard optimization packages may be directly
applied to machine learning applications

However, efficiency and scalability are issues

Very often machine learning knowledge must be
considered in designing suitable optimization
methods

Chih-Jen Lin (National Taiwan Univ.) 8 / 164

Introduction: why optimization and machine learning are related?

Optimization and Machine Learning
(Cont’d)

Sometimes optimization researchers fail to make
real impact because of not knowing the differences
between the two areas

I like to talk about the connection between these
two areas because I was trained as an optimization
researcher but now work on machine learning

Chih-Jen Lin (National Taiwan Univ.) 9 / 164

Introduction: why optimization and machine learning are related?

Optimization and Machine Learning
(Cont’d)

In this talk, I will discuss some lessons learned in
developing two popular packages

LIBSVM: 2000–now
A library for support vector machines
LIBLINEAR: 2007–now
A library for large linear classification

Let me shamelessly say a bit about how they have
been widely used

Chih-Jen Lin (National Taiwan Univ.) 10 / 164

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Introduction: why optimization and machine learning are related?

Optimization and Machine Learning
(Cont’d)

LIBSVM is probably the most widely used SVM
package. Its implementation paper has been cited
more than 32, 000 times (Google Scholar, 5/2017)

LIBLINEAR is popularly used in Internet companies
for large-scale linear classification

Chih-Jen Lin (National Taiwan Univ.) 11 / 164

Introduction: why optimization and machine learning are related?

Minimizing Training Errors

Basically a classification method starts with
minimizing the training errors

min
model

(training errors)

That is, all or most training data with labels should
be correctly classified by our model

A model can be a decision tree, a support vector
machine, a neural network, or other types

Chih-Jen Lin (National Taiwan Univ.) 12 / 164

Introduction: why optimization and machine learning are related?

Minimizing Training Errors (Cont’d)

We consider the model to be a vector w
That is, the decision function is

sgn(wTx)

For any data, x , the predicted label is{
1 if wTx ≥ 0

−1 otherwise

Chih-Jen Lin (National Taiwan Univ.) 13 / 164

Introduction: why optimization and machine learning are related?

Minimizing Training Errors (Cont’d)

The two-dimensional situation
◦ ◦
◦
◦◦◦
◦
◦4

4
44
4
4

4

wTx = 0

This seems to be quite restricted, but practically x
is in a much higher dimensional space

Chih-Jen Lin (National Taiwan Univ.) 14 / 164

Introduction: why optimization and machine learning are related?

Minimizing Training Errors (Cont’d)

To characterize the training error, we need a loss
function ξ(w ; x , y) for each instance (x , y)

Ideally we should use 0–1 training loss:

ξ(w ; x , y) =

{
1 if ywTx < 0,

0 otherwise

Chih-Jen Lin (National Taiwan Univ.) 15 / 164

Introduction: why optimization and machine learning are related?

Minimizing Training Errors (Cont’d)

However, this function is discontinuous. The
optimization problem becomes difficult

−ywTx

ξ(w ; x , y)

We need continuous approximations

Chih-Jen Lin (National Taiwan Univ.) 16 / 164

Introduction: why optimization and machine learning are related?

Loss Functions

Some commonly used ones:

ξL1(w ; x , y) ≡ max(0, 1− ywTx), (1)

ξL2(w ; x , y) ≡ max(0, 1− ywTx)2, (2)

ξLR(w ; x , y) ≡ log(1 + e−yw
Tx). (3)

SVM (Boser et al., 1992; Cortes and Vapnik, 1995):
(1)-(2)

Logistic regression (LR): (3)

Chih-Jen Lin (National Taiwan Univ.) 17 / 164

Introduction: why optimization and machine learning are related?

Loss Functions (Cont’d)

−ywTx

ξ(w ; x , y)

ξL1

ξL2

ξLR

Their performance is usually similar

Chih-Jen Lin (National Taiwan Univ.) 18 / 164

Introduction: why optimization and machine learning are related?

Loss Functions (Cont’d)

These loss functions have different differentiability

ξL1: not differentiable
ξL2: differentiable but not twice differentiable
ξLR: twice differentiable

The same optimization method may not be applicable to
all these losses

Chih-Jen Lin (National Taiwan Univ.) 19 / 164

Introduction: why optimization and machine learning are related?

Loss Functions (Cont’d)

However, minimizing training losses may not give a
good model for future prediction

Overfitting occurs

Chih-Jen Lin (National Taiwan Univ.) 20 / 164

Introduction: why optimization and machine learning are related?

Overfitting

See the illustration in the next slide

For classification,

You can easily achieve 100% training accuracy

This is useless

When training a data set, we should

Avoid underfitting: small training error

Avoid overfitting: small testing error

Chih-Jen Lin (National Taiwan Univ.) 21 / 164

Introduction: why optimization and machine learning are related?

l and s: training; © and 4: testing

Chih-Jen Lin (National Taiwan Univ.) 22 / 164

Introduction: why optimization and machine learning are related?

Regularization

To minimize the training error we manipulate the w
vector so that it fits the data

To avoid overfitting we need a way to make w ’s
values less extreme.

One idea is to make w values closer to zero

We can add, for example,

wTw
2

or ‖w‖1

to the function that is minimized

Chih-Jen Lin (National Taiwan Univ.) 23 / 164

Introduction: why optimization and machine learning are related?

Regularized Linear Classification

Training data {yi , x i}, x i ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

min
w

f (w), f (w) ≡ wTw
2

+ C
l∑

i=1

ξ(w ; x i , yi)

wTw/2: regularization term (we have no time to
talk about L1 regularization here)

ξ(w ; x , y): loss function: we hope ywTx > 0

C : regularization parameter

Chih-Jen Lin (National Taiwan Univ.) 24 / 164

Optimization methods for kernel support vector machines

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 25 / 164

Optimization methods for kernel support vector machines

Kernel Methods

Kernel methods are a class of classification
techniques where major operations are conducted by
kernel evaluations

A representative example is support vector machine
(Boser et al., 1992; Cortes and Vapnik, 1995)

Chih-Jen Lin (National Taiwan Univ.) 26 / 164

Optimization methods for kernel support vector machines

Support Vector Classification

• Training data (x i , yi), i = 1, . . . , l , x i ∈ Rn, yi = ±1

• Minimizing training losses with regularization

min
w ,b

1

2
wTw + C

l∑
i=1

max(1− yi(wTφ(x i) + b), 0)

• Note that here we add a bias term b so the decision
function is

sgn(wTφ(x) + b)

Chih-Jen Lin (National Taiwan Univ.) 27 / 164

Optimization methods for kernel support vector machines

Support Vector Classification (Cont’d)

• Then the hyperplane does not pass through 0

• If n (# of features) is small, b may be important.
Otherwise, it’s not

• There are also historical reasons

• In our discussion we sometimes include b but
sometimes do not

Chih-Jen Lin (National Taiwan Univ.) 28 / 164

Optimization methods for kernel support vector machines

Mapping Data to a Higher Dimensional
Space

To better separate the data, we map data to a
higher dimensional space

φ(x) = [φ1(x), φ2(x), . . .]T .

For example,
weight

height2

is a useful new feature to check if a person
overweights or not

Chih-Jen Lin (National Taiwan Univ.) 29 / 164

Optimization methods for kernel support vector machines

Difficulties After Mapping Data to a
High-dimensional Space

variables in w = dimensions of φ(x)

Infinite variables if φ(x) is infinite dimensional

Cannot do an infinite-dimensional inner product for
predicting a test instance

sgn(wTφ(x) + b)

Use kernel trick to go back to a finite number of
variables

Chih-Jen Lin (National Taiwan Univ.) 30 / 164

Optimization methods for kernel support vector machines

Support Vector Classification (Cont’d)

The dual problem (finite # variables)

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0,

where Qij = yiyjφ(x i)
Tφ(x j) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(x i)

Kernel: K (x i , x j) ≡ φ(x i)
Tφ(x j) ; closed form

Example: Gaussian (RBF) kernel: e−γ‖x i−x j‖2

Chih-Jen Lin (National Taiwan Univ.) 31 / 164

Optimization methods for kernel support vector machines

Kernel Tricks

• It can be shown that at optimum, w is a linear
combination of training data

w =
∑l

i=1
yiαiφ(x i)

Proofs not provided here.
• Special φ(x) such that the decision function becomes

sgn(wTφ(x) + b) = sgn

(∑l

i=1
yiαiφ(x i)

Tφ(x) + b

)
= sgn

(∑l

i=1
yiαiK (x i , x) + b

)
Chih-Jen Lin (National Taiwan Univ.) 32 / 164

Optimization methods for kernel support vector machines

Kernel Tricks (Cont’d)

φ(x i)
Tφ(x j) needs a closed form

Example: x i ∈ R3, φ(x i) ∈ R10

φ(x i) = [1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3]T

Then φ(x i)
Tφ(x j) = (1 + xT

i x j)
2.

Kernel: K (x , y) = φ(x)Tφ(y); common kernels:

e−γ‖x i−x j‖2

, (Radial Basis Function)

(xT
i x j/a + b)d (Polynomial kernel)

Chih-Jen Lin (National Taiwan Univ.) 33 / 164

Optimization methods for kernel support vector machines

K (x , y) can be inner product in infinite dimensional
space. Assume x ∈ R1 and γ > 0.

e−γ‖xi−xj‖
2

= e−γ(xi−xj)
2

= e−γx
2
i +2γxixj−γx2

j

=e−γx
2
i −γx2

j
(
1 +

2γxixj
1!

+
(2γxixj)

2

2!
+

(2γxixj)
3

3!
+ · · ·

)
=e−γx

2
i −γx2

j
(
1 · 1+

√
2γ

1!
xi ·
√

2γ

1!
xj +

√
(2γ)2

2!
x2i ·

√
(2γ)2

2!
x2j

+

√
(2γ)3

3!
x3i ·

√
(2γ)3

3!
x3j + · · ·

)
= φ(xi)

Tφ(xj),

where

φ(x) = e−γx
2

[
1,

√
2γ

1!
x ,

√
(2γ)2

2!
x2,

√
(2γ)3

3!
x3, · · ·

]T
.

Chih-Jen Lin (National Taiwan Univ.) 34 / 164

Optimization methods for kernel support vector machines

We don’t discuss the primal-dual relationship here

In this lecture we focus more on optimization
algorithms rather than optimization theory

Chih-Jen Lin (National Taiwan Univ.) 35 / 164

Optimization methods for kernel support vector machines

Support Vector Classification (Cont’d)

Only x i of αi > 0 used ⇒ support vectors

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5 0 0.5 1

Chih-Jen Lin (National Taiwan Univ.) 36 / 164

Optimization methods for kernel support vector machines

Large Dense Quadratic Programming

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0

Qij 6= 0, Q : an l by l fully dense matrix

50,000 training points: 50,000 variables:

(50, 0002 × 8/2) bytes = 10GB RAM to store Q

Chih-Jen Lin (National Taiwan Univ.) 37 / 164

Optimization methods for kernel support vector machines

Large Dense Quadratic Programming
(Cont’d)

Tradition optimization methods cannot be directly
applied here because Q cannot even be stored

Currently, decomposition methods (a type of
coordinate descent methods) are commonly used in
practice

Chih-Jen Lin (National Taiwan Univ.) 38 / 164

Optimization methods for kernel support vector machines Decomposition methods

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 39 / 164

Optimization methods for kernel support vector machines Decomposition methods

Decomposition Methods

Working on some variables each time (e.g., Osuna
et al., 1997; Joachims, 1998; Platt, 1998)

Similar to coordinate-wise minimization

Working set B , N = {1, . . . , l}\B fixed

Let the objective function be

f (α) =
1

2
αTQα− eTα

Chih-Jen Lin (National Taiwan Univ.) 40 / 164

Optimization methods for kernel support vector machines Decomposition methods

Decomposition Methods (Cont’d)

Sub-problem on the variable dB

min
dB

f ([αB
αN] +

[
dB
0

]
)

subject to −αi ≤ di ≤ C − αi ,∀i ∈ B

di = 0,∀i /∈ B ,

yTBdB = 0

The objective function of the sub-problem

f ([αB
αN] +

[
dB
0

]
)

=
1

2
dT
BQBBdB +∇B f (α)TdB + constant.

Chih-Jen Lin (National Taiwan Univ.) 41 / 164

Optimization methods for kernel support vector machines Decomposition methods

Avoid Memory Problems

QBB is a sub-matrix of Q[
QBB QBN

QNB QNN

]
Note that

∇f (α) = Qα− e, ∇B f (α) = QB,:α− eB

Chih-Jen Lin (National Taiwan Univ.) 42 / 164

Optimization methods for kernel support vector machines Decomposition methods

Avoid Memory Problems (Cont’d)

Only B columns of Q are needed

In general |B | ≤ 10 is used. We need |B | ≥ 2
because of the linear constraint

yTBdB = 0

Calculated when used: trade time for space

But is such an approach practical?

Chih-Jen Lin (National Taiwan Univ.) 43 / 164

Optimization methods for kernel support vector machines Decomposition methods

Algorithm of Decomposition Methods

While α is not optimal

Select a working set B

Solve the sub-problem of dB

αB ← αB + dB

We will talk about the selection of B later

Chih-Jen Lin (National Taiwan Univ.) 44 / 164

Optimization methods for kernel support vector machines Decomposition methods

How Decomposition Methods Perform?

Convergence not very fast. This is known because
of using only first-order information

But, no need to have very accurate α

decision function:

sgn(wTφ(x) + b) = sgn

(∑l

i=1
αiyiK (x i , x) + b

)
Prediction may still be correct with a rough α

Further, in some situations,

support vectors � # training points

Initial α1 = 0, some instances never used
Chih-Jen Lin (National Taiwan Univ.) 45 / 164

Optimization methods for kernel support vector machines Decomposition methods

How Decomposition Methods Perform?
(Cont’d)

An example of training 50,000 instances using the
software LIBSVM

$svm-train -c 16 -g 4 -m 400 22features

Total nSV = 3370

Time 79.524s

This was done on a typical desktop

Calculating the whole Q takes more time

#SVs = 3,370 � 50,000

A good case where some remain at zero all the time

Chih-Jen Lin (National Taiwan Univ.) 46 / 164

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Optimization methods for kernel support vector machines Decomposition methods

How Decomposition Methods Perform?
(Cont’d)

Because many αi = 0 in the end, we can develop a
shrinking techniques

Variables are removed during the optimization
procedure. Smaller problems are solved

For example, if αi = 0 in more than 100 iterations,
probably we can remove it

More advanced techniques are possible

Of course in the end we must check all variables
again for the stopping condition

Chih-Jen Lin (National Taiwan Univ.) 47 / 164

Optimization methods for kernel support vector machines Decomposition methods

Machine Learning Properties are Useful in
Designing Optimization Algorithms

We have seen that special properties of SVM contribute
to the viability of decomposition methods

For machine learning applications, no need to
accurately solve the optimization problem

Because some optimal αi = 0, decomposition
methods may not need to update all the variables

Also, we can use shrinking techniques to reduce the
problem size during decomposition methods

Chih-Jen Lin (National Taiwan Univ.) 48 / 164

Optimization methods for kernel support vector machines Decomposition methods

Issues Related to Optimization

Working set selection

Asymptotic convergence

Finite termination & stopping conditions

Convergence rate

Numerical issues

Chih-Jen Lin (National Taiwan Univ.) 49 / 164

Optimization methods for kernel support vector machines Decomposition methods

Working Set Selection

In general we don’t choose a large |B | because of
the following reasons

1 The sub-problem becomes expensive: O(|B |3)
2 # iterations may not be significantly decreased

Currently a popular setting is to choose |B | = 2

B = {i , j}

This is called SMO (Sequential Minimal
Optimization)

Chih-Jen Lin (National Taiwan Univ.) 50 / 164

Optimization methods for kernel support vector machines Decomposition methods

Working Set Selection (Cont’d)

• One idea is to use gradient information
• If

αi < C , yi = 1, and −∇i f (α) > 0,

then we can enlarge αi

• Therefore, one possibility is

i ∈ arg max{−yt∇f (α)t |αt < C , yt = 1 or

αt > 0, yt = −1}
j ∈ arg min{−yt∇f (α)t |αt < C , yt = −1 or

αt > 0, yt = 1}
• They somewhat correspond to the maximal violation

of the optimality condition
Chih-Jen Lin (National Taiwan Univ.) 51 / 164

Optimization methods for kernel support vector machines Decomposition methods

Working Set Selection (Cont’d)

This setting was first used in Joachims (1998)

Can we use a more sophisticated one?

It’s difficult because cost is a concern

For example, if we check the second-order
information (e.g., objective-value reduction) of all

{i , j} pairs,

then
O(l2)

cost is needed

Chih-Jen Lin (National Taiwan Univ.) 52 / 164

Optimization methods for kernel support vector machines Decomposition methods

Working Set Selection (Cont’d)

Currently in LIBSVM, we use

i ∈ arg max{−yt∇f (α)t |αt < C , yt = 1 or

αt > 0, yt = −1}

and select j by second-order information (Fan et al.,
2005)

The cost is still
O(l)

Chih-Jen Lin (National Taiwan Univ.) 53 / 164

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Optimization methods for kernel support vector machines Decomposition methods

Complexity of Decomposition Methods

Let’s describe the algorithm again

While α is not optimal

Select a working set B

Solve the sub-problem of dB

αB ← αB + dB

Chih-Jen Lin (National Taiwan Univ.) 54 / 164

Optimization methods for kernel support vector machines Decomposition methods

Complexity of Decomposition Methods
(Cont’d)

To construct the sub-problem,

∇B f (α) = QB,:α− eB

needs
O(|B | × l × n)

if each kernel evaluation costs O(n)
But for the working set selection, we need the whole
∇f (α)
The cost can be as large as

O(l × l × n)

Chih-Jen Lin (National Taiwan Univ.) 55 / 164

Optimization methods for kernel support vector machines Decomposition methods

Complexity of Decomposition Methods
(Cont’d)

Fortunately, we can use

∇f (α +

[
dB

0

]
) =Qα− e + Q

[
dB

0

]
=∇f (α) + Q:,BdB

Note that Q:,B is available earlier

Therefore, the cost of decomposition methods for
kernel SVM is

O(|B | × l × n)×# iterations

Chih-Jen Lin (National Taiwan Univ.) 56 / 164

Optimization methods for kernel support vector machines Decomposition methods

Differences between Optimization and
Machine Learning

The two topics may have different focuses. We give
the following example

The decomposition method we just discussed
converges more slowly when C is large

Using C = 1 on a data set

iterations: 508

Using C = 5, 000

iterations: 35,241

Chih-Jen Lin (National Taiwan Univ.) 57 / 164

Optimization methods for kernel support vector machines Decomposition methods

Optimization researchers may rush to solve difficult
cases of large C

That’s what I did before

It turns out that large C is less used than small C

Recall that SVM solves

1

2
wTw + C (sum of training losses)

A large C means to overfit training data

This does not give good test accuracy

Chih-Jen Lin (National Taiwan Univ.) 58 / 164

Optimization methods for linear classification

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 59 / 164

Optimization methods for linear classification

Linear and Kernel Classification

We have
Kernel ⇒ map data to a higher space
Linear ⇒ use the original data; φ(x) = x

Intuitively, kernel should give superior accuracy than
linear

There are even theoretical proofs. Roughly
speaking, from the Taylor expansion of the Gaussian
(RBF) kernel

e−γ‖x i−x j‖2

linear SVM is a special case of RBF-kernel SVM
(Keerthi and Lin, 2003)

Chih-Jen Lin (National Taiwan Univ.) 60 / 164

Optimization methods for linear classification

Linear and Kernel Classification

Optimization people may think there is no need to
specially consider linear SVM

That is, same optimization algorithms are enough
for both linear and kernel cases

However, this is wrong if we consider their practical
use

Chih-Jen Lin (National Taiwan Univ.) 61 / 164

Optimization methods for linear classification

Linear and Kernel Classification (Cont’d)

Classification methods such as SVM and logistic
regression can be used in two ways

Kernel methods: data mapped to a higher
dimensional space

x ⇒ φ(x)

φ(x i)
Tφ(x j) easily calculated; little control on φ(·)

Feature engineering + linear classification :

We have x without mapping. Alternatively, we can
say that φ(x) is our x ; full control on x or φ(x)

Chih-Jen Lin (National Taiwan Univ.) 62 / 164

Optimization methods for linear classification

Linear and Kernel Classification (Cont’d)

For some problems, accuracy by linear is as good as
nonlinear

But training and testing are much faster

This particularly happens for document classification

Number of features (bag-of-words model) very large

Data very sparse (i.e., few non-zeros)

Chih-Jen Lin (National Taiwan Univ.) 63 / 164

Optimization methods for linear classification

Comparison Between Linear and Kernel
(Training Time & Test Accuracy)

Linear RBF Kernel
Data set #data #features Time Acc. Time Acc.
MNIST38 11,982 752 0.1 96.82 38.1 99.70
ijcnn1 49,990 22 1.6 91.81 26.8 98.69
covtype multiclass 464,810 54 1.4 76.37 46,695.8 96.11
news20 15,997 1,355,191 1.1 96.95 383.2 96.90
real-sim 57,848 20,958 0.3 97.44 938.3 97.82
yahoo-japan 140,963 832,026 3.1 92.63 20,955.2 93.31
webspam 280,000 254 25.7 93.35 15,681.8 99.26

Chih-Jen Lin (National Taiwan Univ.) 64 / 164

Optimization methods for linear classification

Comparison Between Linear and Kernel
(Training Time & Test Accuracy)

Linear RBF Kernel
Data set #data #features Time Acc. Time Acc.
MNIST38 11,982 752 0.1 96.82 38.1 99.70
ijcnn1 49,990 22 1.6 91.81 26.8 98.69
covtype multiclass 464,810 54 1.4 76.37 46,695.8 96.11
news20 15,997 1,355,191 1.1 96.95 383.2 96.90
real-sim 57,848 20,958 0.3 97.44 938.3 97.82
yahoo-japan 140,963 832,026 3.1 92.63 20,955.2 93.31
webspam 280,000 254 25.7 93.35 15,681.8 99.26

Chih-Jen Lin (National Taiwan Univ.) 64 / 164

Optimization methods for linear classification

Comparison Between Linear and Kernel
(Training Time & Test Accuracy)

Linear RBF Kernel
Data set #data #features Time Acc. Time Acc.
MNIST38 11,982 752 0.1 96.82 38.1 99.70
ijcnn1 49,990 22 1.6 91.81 26.8 98.69
covtype multiclass 464,810 54 1.4 76.37 46,695.8 96.11
news20 15,997 1,355,191 1.1 96.95 383.2 96.90
real-sim 57,848 20,958 0.3 97.44 938.3 97.82
yahoo-japan 140,963 832,026 3.1 92.63 20,955.2 93.31
webspam 280,000 254 25.7 93.35 15,681.8 99.26

Therefore, there is a need to develop optimization
methods for large linear classification

Chih-Jen Lin (National Taiwan Univ.) 64 / 164

Optimization methods for linear classification

Why Linear is Faster in Training and
Prediction?

The reason is that

for linear, x i is available

but

for kernel, φ(x i) is not

To illustrate this point, let’s modify kernel
decomposition methods discussed earlier for linear

Chih-Jen Lin (National Taiwan Univ.) 65 / 164

Optimization methods for linear classification Decomposition method

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 66 / 164

Optimization methods for linear classification Decomposition method

Decomposition Method for Linear
Classification

• Recall for kernels, we solve the sub-problem:

min
dB

1

2

[
(αB + dB)T (αN)T

] [QBB QBN

QNB QNN

] [
αB + dB

αN

]
−
[
eT
B eT

N

] [αB + dB

αN

]
subject to 0 ≤ αt ≤ C , t ∈ B , yTB (αB + dB) = −yTNαN

• The objective function over dB is

1

2
dT
BQBBdB + (−eB + QB,:α)TdB

Chih-Jen Lin (National Taiwan Univ.) 67 / 164

Optimization methods for linear classification Decomposition method

Decomposition Method for Linear
Classification (Cont’d)

We need
QB,:α =

[
QBB QBN

]
α

The cost is
O(|B | × l × n)

because for i ∈ B ,

Qi ,:α =
∑l

j=1
yiyjK (x i , x j)αj

n: # features, l : # data

Chih-Jen Lin (National Taiwan Univ.) 68 / 164

Optimization methods for linear classification Decomposition method

Decomposition Method for Linear
Classification (Cont’d)

In the linear case,

K (x i , x j) = xT
i x j

⇒
∑l

j=1
yiyjK (x i , x j)αj = yixT

i

(∑l

j=1
yjx jαj

)
Assume

u ≡
∑l

j=1
yjαjx j (4)

is available

Chih-Jen Lin (National Taiwan Univ.) 69 / 164

Optimization methods for linear classification Decomposition method

Decomposition Method for Linear
Classification (Cont’d)

The cost is significantly reduced

O(|B | × l × n) ⇒ O(|B | × n)

The main difference is that in kernel∑l

j=1
yjαjφ(x j)

cannot be written down. But for linear we can!

Chih-Jen Lin (National Taiwan Univ.) 70 / 164

Optimization methods for linear classification Decomposition method

Decomposition Method for Linear
Classification (Cont’d)

All we need is to maintain u

u =
∑l

j=1
yjαjx j

Then the following update rule can be applied

u← u +
∑
i :i∈B

(di)yix i .

The cost is also
O(|B | × n)

Chih-Jen Lin (National Taiwan Univ.) 71 / 164

Optimization methods for linear classification Decomposition method

Decomposition Method for Linear
Classification (Cont’d)

Note that eventually

u→ primal optimal w

Chih-Jen Lin (National Taiwan Univ.) 72 / 164

Optimization methods for linear classification Decomposition method

One-variable Procedure

This is what people use now in practice
Let’s consider the optimization problem without the
bias term

min
w

1

2
wTw + C

l∑
i=1

max(1− yiwTx i , 0)

The dual problem now doesn’t have a linear
constraint

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l ,

Chih-Jen Lin (National Taiwan Univ.) 73 / 164

Optimization methods for linear classification Decomposition method

One-variable Procedure (Cont’d)

Here

f (α) ≡ 1

2
αTQα− eTα

and
Qij = yiyjxT

i x j , e = [1, . . . , 1]T

Without the linear constraint

yTα = 0

we can choose one variable at a time

Chih-Jen Lin (National Taiwan Univ.) 74 / 164

Optimization methods for linear classification Decomposition method

One-variable Procedure (Cont’d)

Given current α. Let the working set be B = {i}
Let

e i = [0, . . . , 0, 1, 0, . . . , 0]T

The sub-problem is

min
d

f (α + de i) =
1

2
Qiid

2 +∇i f (α)d + constant

subject to 0 ≤ αi + d ≤ C

Without constraints

optimal d = −∇i f (α)

Qii

Chih-Jen Lin (National Taiwan Univ.) 75 / 164

Optimization methods for linear classification Decomposition method

One-variable Procedure (Cont’d)

Now 0 ≤ αi + d ≤ C

αi ← min

(
max

(
αi −

∇i f (α)

Qii
, 0

)
,C

)
Note that

∇i f (α) = (Qα)i − 1 =
∑l

j=1
Qijαj − 1

=
∑l

j=1
yiyjxT

i x jαj − 1

Chih-Jen Lin (National Taiwan Univ.) 76 / 164

Optimization methods for linear classification Decomposition method

One-variable Procedure (Cont’d)

As before, define

u ≡
∑l

j=1
yjαjx j ,

Easy gradient calculation: the cost is O(n)

∇i f (α) = yiu
Tx i − 1

Chih-Jen Lin (National Taiwan Univ.) 77 / 164

Optimization methods for linear classification Decomposition method

Algorithm: Dual Coordinate Descent

Given initial α and find

u =
∑
i

yiαix i .

While α is not optimal (Outer iteration)

For i = 1, . . . , l (Inner iteration)

(a) ᾱi ← αi

(b) G = yiuTx i − 1

(c) αi ← min(max(αi − G/Qii , 0),C)

(d) If αi needs to be changed

u← u + (αi − ᾱi)yix i

Chih-Jen Lin (National Taiwan Univ.) 78 / 164

Optimization methods for linear classification Decomposition method

One-variable Procedure (Cont’d)

Maintaining u also costs

O(n)

Thus the total cost is

O(n)×# iterations

Recall that the cost for kernel is

O(l × n)×# iterations

if we don’t have b and select |B | = 1
We will explain some interesting differences between
the two

Chih-Jen Lin (National Taiwan Univ.) 79 / 164

Optimization methods for linear classification Decomposition method

Recap: Dual Coordinate Descent

It’s very simple: minimizing one variable at a time

While α not optimal

For i = 1, . . . , l

min
αi

f (. . . , αi , . . .)

A classic optimization technique

Traced back to Hildreth (1957) if constraints are
not considered

So what’s new?

Chih-Jen Lin (National Taiwan Univ.) 80 / 164

Optimization methods for linear classification Decomposition method

Recap: Dual Coordinate Descent (Cont’d)

Having

u ≡
∑l

j=1
yjαjx j ,

∇i f (α) = yiu
Tx i − 1

and
ᾱi : old ; αi : new

u← u + (αi − ᾱi)yix i .

is very essential

This is another example where we take the problem
structure into account

Chih-Jen Lin (National Taiwan Univ.) 81 / 164

Optimization methods for linear classification Decomposition method

Recap: Dual Coordinate Descent (Cont’d)

Such a setting was first developed at Hsieh et al.
(2008)

Chih-Jen Lin (National Taiwan Univ.) 82 / 164

Optimization methods for linear classification Decomposition method

Careful Implementation

Some techniques can improve the running speed

Shrinking: remove αi if it is likely to be bounded at
the end
Easier to conduct shrinking than the kernel case
(details not shown)
Cyclic order to update elements

α1 → α2 → · · · → αl

A random order gives faster convergence

απ(1) → απ(2) → · · · → απ(l)

We will go back to this issue later
Chih-Jen Lin (National Taiwan Univ.) 83 / 164

Optimization methods for linear classification Decomposition method

Difference from the Kernel Case

• We have seen that coordinate-descent type of
methods are used for both linear and kernel classifiers
• Recall the i -th element of gradient costs O(n) by

∇i f (α) =
l∑

j=1

yiyjxT
i x jαj − 1 = (yix i)

T
(l∑
j=1

yjx jαj

)
− 1

= (yix i)
Tu− 1

but we cannot do this for kernel because

K (x i , x j) = φ(x i)
Tφ(x j)

cannot be separated
Chih-Jen Lin (National Taiwan Univ.) 84 / 164

Optimization methods for linear classification Decomposition method

Difference from the Kernel Case (Cont’d)

If using kernel, the cost of calculating ∇i f (α) must
be O(ln)

However, if O(ln) cost is spent, the whole ∇f (α)
can be maintained

∇f (α)← ∇f (α) + Q:,idi

In contrast, the linear setting of using u knows only
∇i f (α) rather than the whole ∇f (α)

This situation affects the working set selection

Chih-Jen Lin (National Taiwan Univ.) 85 / 164

Optimization methods for linear classification Decomposition method

Difference from the Kernel Case (Cont’d)

• We have mentioned that for existing decomposition
methods (or say coordinate descent methods) for
kernel classifiers, ∇f (α) information is used to select
variables for update
• Therefore, we have the following situations for two

working set selections
1 Greedy: Using ∇f (α)
2 Cyclic

Kernel Linear
Greedy Cyclic Greedy Cyclic

Update αi O(1) O(ln) O(1) O(n)
Maintain ∇f (α) O(ln) NA O(ln) NA

Chih-Jen Lin (National Taiwan Univ.) 86 / 164

Optimization methods for linear classification Decomposition method

Difference from the Kernel Case (Cont’d)

In optimization there are two types of coordinate
descent methods

1 Gauss-Seidel: sequential selection of variables
2 Gauss-Southwell: greedy selection of variables

To do greedy selection, usually the whole gradient
must be available

Existing coordinate descent methods for linear ⇒
related to Gauss-Seidel

Existing coordinate descent methods for kernel ⇒
related to Gauss-Southwell

Chih-Jen Lin (National Taiwan Univ.) 87 / 164

Optimization methods for linear classification Decomposition method

Difference from the Kernel Case (Cont’d)

In general greedy leads to fewer iterations than
cyclic

So is the cyclic setting for linear practically viable?

Chih-Jen Lin (National Taiwan Univ.) 88 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection

Without gradient information, looks like we can only
do a cyclic update

1, 2, 3, . . .

However, Hsieh et al. (2008, Section 3.1) showed
that with random permutation, the convergence is
much faster

Let’s try an example by using LIBLINEAR

real-sim is a data set with

72,309 instances and 20,958 features

Chih-Jen Lin (National Taiwan Univ.) 89 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection (Cont’d)

With random permutation

$./train ~/Desktop/real-sim

optimization finished, #iter = 13

Objective value = -4396.370629

Here an iteration means to go through all instances
once (though shrinking is applied)

Without random permutation (cyclic)

$./train ~/Desktop/real-sim

optimization finished, #iter = 326

Objective value = -4391.706239

Chih-Jen Lin (National Taiwan Univ.) 90 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection (Cont’d)

Here l1 loss is used

Both approaches are under the same stopping
condition

Let’s see the algorithm with random permutation

Chih-Jen Lin (National Taiwan Univ.) 91 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection (Cont’d)

While α is not optimal (Outer iteration)

Randomly permute 1, . . . , l

For i = 1, . . . , l (Inner iteration)

(a) ᾱi ← αi

(b) G = yiuTx i − 1

(c) αi ← min(max(αi − G/Qii , 0),C)

(d) If αi needs to be changed

u← u + (αi − ᾱi)yix i

Note that it’s not useful if we only randomly
permute data once

Chih-Jen Lin (National Taiwan Univ.) 92 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection (Cont’d)

Randomly permute 1, . . . , l

While α is not optimal (Outer iteration)

For i = 1, . . . , l (Inner iteration)

(a) ᾱi ← αi

(b) G = yiuTx i − 1

(c) αi ← min(max(αi − G/Qii , 0),C)

(d) If αi needs to be changed

u← u + (αi − ᾱi)yix i

On the other hand, random CD works:

Chih-Jen Lin (National Taiwan Univ.) 93 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection (Cont’d)

While α is not optimal (Outer iteration)

Randomly select i

(a) ᾱi ← αi

(b) G = yiuTx i − 1

(c) αi ← min(max(αi − G/Qii , 0),C)

(d) If αi needs to be changed

u← u + (αi − ᾱi)yix i

Turns out it is easier to analyze the complexity of
the random CD; see Shalev-Shwartz and Zhang
(2013) and many subsequent works

Chih-Jen Lin (National Taiwan Univ.) 94 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection (Cont’d)

It’s difficult to analyze the setting of using random
permutations. Some recent attempts (for simplified
situations) include Lee and Wright (2016)

This is still an ongoing research issue

Another line of research is to cheaply find some
important indices.

See Glasmachers and Dogan (2013) and other
developments

In other words, we think some distributions are
better than uniform

Chih-Jen Lin (National Taiwan Univ.) 95 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection (Cont’d)

However, it is difficult to beat the uniform setting if
shrinking has been applied

Chih-Jen Lin (National Taiwan Univ.) 96 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection and Bias Term

Recall if we use

sgn(wTx + b)

as the decision function, then the dual problem has
a linear constraint

yTα = 0

Then at each iteration, two indices

{i , j}

must be selected
Chih-Jen Lin (National Taiwan Univ.) 97 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection and Bias Term
(Cont’d)

If we use a cyclic setting, this means

(1, 2), (1, 3), (1, 4), . . . , (2, 3), . . .

The training may be terribly slow because for many
pairs we cannot change α at all

Therefore, an interesting situation is as follows
Working set Without With Used
selection bias bias for
cyclic OK not OK linear
greedy (with ∇f (α)) OK OK kernel

Chih-Jen Lin (National Taiwan Univ.) 98 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection and Bias Term
(Cont’d)

Fortunately, linear classification is often used to
handle large data with many sparse features

In such a high dimensional space, bias term is often
not needed

Even if it is, there is a trick of adding the bias term
to the objective function

min
w ,b

1

2
wTw+

1

2
b2+C

l∑
i=1

max(1−yi(
[
wT b

] [x
1

]
), 0)

Chih-Jen Lin (National Taiwan Univ.) 99 / 164

Optimization methods for linear classification Decomposition method

Working Set Selection and Bias Term
(Cont’d)

The dual no longer has the linear constraint

yTα = 0

However, for some problems (e.g., one-class SVM),
a linear constraint must be there (details not shown)

Then the training by coordinate descent for the
linear case can be an issue

Chih-Jen Lin (National Taiwan Univ.) 100 / 164

Optimization methods for linear classification Decomposition method

Other Losses

Our discussion so far is for l1 loss

All results can be applied to other losses such as l2
loss, logistic loss, etc.

Chih-Jen Lin (National Taiwan Univ.) 101 / 164

Optimization methods for linear classification Newton methods

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 102 / 164

Optimization methods for linear classification Newton methods

More Optimization Methods can be
Applied for Linear

Recall that

w =
l∑

i=1

yiαiφ(x i)

Kernel: can only solve an optimization problem of α
because w is too high dimensional

Linear: can solve either w or α

We will show an example to minimize over w

Chih-Jen Lin (National Taiwan Univ.) 103 / 164

Optimization methods for linear classification Newton methods

Newton Method

Let’s minimize a twice-differentiable function

min
w

f (w)

For example, logistic regression has

min
w

1

2
wTw + C

l∑
i=1

log
(

1 + e−yiw
Tx i

)
.

Newton direction at iterate w k

min
s

∇f (w k)Ts +
1

2
sT∇2f (w k)s

Chih-Jen Lin (National Taiwan Univ.) 104 / 164

Optimization methods for linear classification Newton methods

Truncated Newton Method

The above sub-problem is equivalent to solving
Newton linear system

∇2f (w k)s = −∇f (w k)

Approximately solving the linear system ⇒
truncated Newton

However, Hessian matrix ∇2f (w k) is too large to be
stored

∇2f (w k) : n × n, n : number of features

For document data, n can be millions or more
Chih-Jen Lin (National Taiwan Univ.) 105 / 164

Optimization methods for linear classification Newton methods

Using Properties of Data Classification

But Hessian has a special form

∇2f (w) = I + CXTDX ,

D is diagonal. For logistic regression,

Dii =
e−yiw

Tx i

1 + e−yiwTx i

X : data, # instances × # features

X =

xT
1
...

xT
l

 ∈ R l×n

Chih-Jen Lin (National Taiwan Univ.) 106 / 164

Optimization methods for linear classification Newton methods

Using Properties of Data Classification
(Cont’d)

Using Conjugate Gradient (CG) to solve the linear
system.

CG is an iterative procedure. Each CG step mainly
needs one Hessian-vector product

∇2f (w)d = d + C · XT (D(Xd))

Therefore, we have a Hessian-free approach

Chih-Jen Lin (National Taiwan Univ.) 107 / 164

Optimization methods for linear classification Newton methods

Using Properties of Data Classification
(Cont’d)

Now the procedure has two layers of iterations

Outer: Newton iterations

Inner: CG iterations per Newton iteration

Past machine learning works used Hessian-free
approaches include, for example, (Keerthi and
DeCoste, 2005; Lin et al., 2008)

Second-order information used: faster convergence
than first-order methods

Chih-Jen Lin (National Taiwan Univ.) 108 / 164

Optimization methods for linear classification Newton methods

Training L2-loss SVM

The loss function is differentiable but not twice
differentiable

ξL2(w ; x , y) ≡ max(0, 1− ywTx)2

We can use generalized Hessian (Mangasarian,
2002); details not shown here

Chih-Jen Lin (National Taiwan Univ.) 109 / 164

Optimization methods for linear classification Newton methods

Preconditioning

Each Hessian-vector product

∇2f (w)d = d + C · XT (D(Xd))

costs
O(ln), where X ∈ R l×n

Each function/gradient evaluation also costs O(ln);
details omitted

Therefore, the cost of each Newton iteration is
roughly

O(ln)×# CG steps

Chih-Jen Lin (National Taiwan Univ.) 110 / 164

Optimization methods for linear classification Newton methods

Preconditioning (Cont’d)

Can we reduce the number of CG steps by
preconditioning?

This classic technique finds

EET ≈ ∇2f (w)

so the linear system

∇2f (w)s = −∇f (w)

becomes

E−1∇2f (w)E−T ŝ = −E−1∇f (w)

Chih-Jen Lin (National Taiwan Univ.) 111 / 164

Optimization methods for linear classification Newton methods

Preconditioning (Cont’d)

Note that
s = E−T ŝ

If
E−1∇2f (w k)E−T ≈ I

then # CG steps can be reduced

For example, we use the diagonal preconditioner so

EET = diag(∇2f (w))

and
E =

√
diag(∇2f (w))

Chih-Jen Lin (National Taiwan Univ.) 112 / 164

Optimization methods for linear classification Newton methods

Preconditioning (Cont’d)

Because
∇2f (w) = I + CXTDX ,

we have

∇2
j ,j f (w) = 1 + C

l∑
i=1

DiiX
2
ij

The cost of constructing the preconditioner is

O(ln)

Chih-Jen Lin (National Taiwan Univ.) 113 / 164

Optimization methods for linear classification Newton methods

Preconditioning (Cont’d)

In each CG step, doing

(E−1 or E−T)× a vector

costs
O(n)

Therefore, extra cost of diagonal preconditioning at
each Newton iteration is

O(n)×# CG steps + O(ln)

This is acceptable in compared with what we
already need

O(ln)×# CG steps
Chih-Jen Lin (National Taiwan Univ.) 114 / 164

Optimization methods for linear classification Newton methods

Preconditioning (Cont’d)

However, the issue is that the number of CG steps
may not be decreased

In the area of numerical analysis, preconditioning is
an art rather than a science

Further, because of using a Hessian-free approach,
many existing preconditioners are not directly
applicable

This is still a research issue

Chih-Jen Lin (National Taiwan Univ.) 115 / 164

Optimization methods for linear classification Newton methods

Sub-sampled Newton Methods

The optimization problem can be rewritten as

min
w

wTw
2Cl

+
1

l

∑l

i=1
max(1− yiwTx i , 0)

The second term is indeed the average loss

A subset of data should give similar gradient or
Hessian!!

This kind of settings has been explored in Byrd
et al. (2011); Martens (2010)

Clearly this is an example of taking properties of
machine learning problems

Chih-Jen Lin (National Taiwan Univ.) 116 / 164

Optimization methods for linear classification Newton methods

Lesson Learned from Kernel to Linear

We must know the practical machine-learning use in
order to decide if new optimization algorithms are
needed for certain problems

Chih-Jen Lin (National Taiwan Univ.) 117 / 164

Optimization methods for linear classification Experiments

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 118 / 164

Optimization methods for linear classification Experiments

Comparisons

L2-loss SVM is used

DCDL2: Dual coordinate descent (Hsieh et al.,
2008)

DCDL2-S: DCDL2 with shrinking (Hsieh et al.,
2008)

PCD: Primal coordinate descent (Chang et al.,
2008)

TRON: Trust region Newton method (Lin et al.,
2008)

Chih-Jen Lin (National Taiwan Univ.) 119 / 164

Optimization methods for linear classification Experiments

Objective values (Time in Seconds)

news20 rcv1

yahoo-japan yahoo-korea
Chih-Jen Lin (National Taiwan Univ.) 120 / 164

Optimization methods for linear classification Experiments

Analysis

Dual coordinate descents are very effective if #
data and # features are both large

Useful for document classification

Half million data in a few seconds

However, it is less effective if

features small: should solve primal; or

large penalty parameter C ; problems are more
ill-conditioned

Chih-Jen Lin (National Taiwan Univ.) 121 / 164

Optimization methods for linear classification Experiments

An Example When # Features Small

instance: 32,561, # features: 123

Objective value Accuracy

Chih-Jen Lin (National Taiwan Univ.) 122 / 164

Optimization methods for linear classification Experiments

Careful Evaluation

This is very very important

Let me give you one real personal experience

Chih-Jen Lin (National Taiwan Univ.) 123 / 164

Optimization methods for linear classification Experiments

Careful Evaluation (Cont’d)

In Lin et al. (2008), to check if diagonal
perconditioner works in Newton methods we give
the following table of total number of CG steps

Problem CG PCG
a9a 567 263
real-sim 104 160
news20 71 155
citeseer 113 115
yahoo-japan 278 326
rcv1 225 280
yahoo-korea 779 736

Chih-Jen Lin (National Taiwan Univ.) 124 / 164

Optimization methods for linear classification Experiments

Careful Evaluation (Cont’d)

Clearly, PCG may not be better

But this conclusion is misleading

In this experiment,

a strict stopping condition is used

Chih-Jen Lin (National Taiwan Univ.) 125 / 164

Optimization methods for linear classification Experiments

Careful Evaluation (Cont’d)

Let’s look at this figure for yahoo-japan

0.0 0.5 1.0 1.5 2.0 2.5

CG iterations 1e2

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(f
−
f
∗)
/f

∗
CG

Diagonal

You see four horizontal lines
Chih-Jen Lin (National Taiwan Univ.) 126 / 164

Optimization methods for linear classification Experiments

Careful Evaluation (Cont’d)

The second line corresponds to the default
LIBLINEAR stopping condition

The 4 lines are by using

10ε, ε, 0.1ε, 0.01ε,

where ε is the default LIBLINEAR stopping
tolerance

Things below/above these 4 lines are not useful

They are too loose or too strict for the machine
learning task

Chih-Jen Lin (National Taiwan Univ.) 127 / 164

Optimization methods for linear classification Experiments

Careful Evaluation (Cont’d)

Another issue is which regularization parameter C
to be used in presenting results?

In the table, we use C = 1, the simplest choice

In the figure, we use

CBest = 0.5,

where CBest is the value leading to the best
validation accuracy.

A reasonable setting is to show figures of

C = CBest × {0.01, 0.1, 1, 10, 100},

Chih-Jen Lin (National Taiwan Univ.) 128 / 164

Optimization methods for linear classification Experiments

Careful Evaluation (Cont’d)

The reason is that in practice we start from a small
C to search for CBest.

Things are larger than 100× CBest are not important

Lesson: even in comparing optimization algorithms
for machine learning, we need to take machine
learning properties into account

Chih-Jen Lin (National Taiwan Univ.) 129 / 164

Multi-core implementation

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 130 / 164

Multi-core implementation

Multi-core Implementation

Nowadays each computer has several cores

They can do parallel computation

However, most machine learning algorithms
(including those we have discussed) do not take
parallel computation into account

Chih-Jen Lin (National Taiwan Univ.) 131 / 164

Multi-core implementation

Multi-core Implementation (Cont’d)

In fact, algorithms may need to be redesigned

Recently we did two studies
1 Newton method for solving the primal problem

(Lee et al., 2015)
2 Coordinate descent method for solving the dual

problem (Chiang et al., 2016)

We will discuss the Newton method in detail

Chih-Jen Lin (National Taiwan Univ.) 132 / 164

Multi-core implementation

Parallel Newton Implementation

Recall the bottleneck is the Hessian-vector product

∇2f (w)d = d + C · XT (D(Xd))

This is conducted at each CG step

Chih-Jen Lin (National Taiwan Univ.) 133 / 164

Multi-core implementation

Matrix-vector Multiplications: More Than
90% of the Training Time

Data set #instances #features ratio
kddb 19,264,097 29,890,095 82.11%
url combined 2,396,130 3,231,961 94.83%
webspam 350,000 16,609,143 97.95%
rcv1 binary 677,399 47,236 97.88%
covtype binary 581,012 54 89.20%
epsilon normalized 400,000 2,000 99.88%
rcv1 multiclass 518,571 47,236 97.04%
covtype multiclass 581,012 54 89.06%

Chih-Jen Lin (National Taiwan Univ.) 134 / 164

Multi-core implementation

Matrix-vector Multiplications: More Than
90% of the Training Time (Cont’d)

This result is by Newton methods using one core

We should parallelize matrix-vector multiplications

For ∇2f (w)d we must calculate

u = Xd (5)

u← Du (6)

ū = XTu, where u = DXd (7)

Because D is diagonal, (6) is easy

Chih-Jen Lin (National Taiwan Univ.) 135 / 164

Multi-core implementation

Matrix-vector Multiplications: More Than
90% of the Training Time (Cont’d)

We will discuss the parallelization of (5) and (7)

They are more complicated

For our problems, X is large and sparse

Efficient parallel sparse matrix-vector multiplications
are still a research issue

Chih-Jen Lin (National Taiwan Univ.) 136 / 164

Multi-core implementation

Parallel Xd Operation

Assume that X is in a row-oriented sparse format

X =

xT
1

...

xT
l

 and u = Xd =

xT
1 d
...

xT
l d


we have the following simple loop

1: for i = 1, . . . , l do
2: ui = xT

i d
3: end for

Because the l inner products are independent, we
can easily parallelize the loop by, for example,
OpenMP

Chih-Jen Lin (National Taiwan Univ.) 137 / 164

Multi-core implementation

Parallel XTu Operation

For the other matrix-vector multiplication

ū = XTu, where u = DXd ,

we have
ū = u1x1 + · · ·+ ulx l .

Because matrix X is row-oriented, accessing
columns in XT is much easier than rows

We can use the following loop

1: for i = 1, . . . , l do
2: ū← ū + uix i

3: end for
Chih-Jen Lin (National Taiwan Univ.) 138 / 164

Multi-core implementation

Parallel XTu Operation (Cont’d)

There is no need to store a separate XT

However, it is possible that threads on ui1x i1 and
ui2x i2 want to update the same component ūs at the
same time:

1: for i = 1, . . . , l do in parallel
2: for (x i)s 6= 0 do
3: ūs ← ūs + ui(x i)s
4: end for
5: end for

Chih-Jen Lin (National Taiwan Univ.) 139 / 164

Multi-core implementation

Atomic Operations for Parallel XTu

An atomic operation can avoid other threads to
write ūs at the same time.

1: for i = 1, . . . , l do in parallel
2: for (x i)s 6= 0 do
3: atomic: ūs ← ūs + ui(x i)s
4: end for
5: end for

However, waiting time can be a serious problem

Chih-Jen Lin (National Taiwan Univ.) 140 / 164

Multi-core implementation

Reduce Operations for Parallel XTu

Another method is using temporary dense arrays
maintained by each thread, and summing up them
in the end

That is, store

ûp =
∑
i

{uix i | i run by thread p}

and then
ū =

∑
p

ûp

Chih-Jen Lin (National Taiwan Univ.) 141 / 164

Multi-core implementation

Atomic Operation: Almost No Speedup

Reduce operations are superior to atomic operations

1 2 4 6 8 10 12
threads

0

2

4

6

8

10

Sp
ee

du
p

OMP-array
OMP-atomic

1 2 4 6 8 10 12
threads

0

1

2

3

4

5

Sp
ee

du
p

OMP-array
OMP-atomic

rcv1 binary covtype binary

Subsequently we use the reduce operations

Chih-Jen Lin (National Taiwan Univ.) 142 / 164

Multi-core implementation

Existing Algorithms for Sparse
Matrix-vector Product

Instead of our direct implementation to parallelize
loops, in the next slides we will consider two existing
methods

Chih-Jen Lin (National Taiwan Univ.) 143 / 164

Multi-core implementation

Recursive Sparse Blocks (Martone, 2014)

RSB (Recursive Sparse Blocks) is
an effective format for fast parallel
sparse matrix-vector multiplications

It recursively partitions a matrix to
be like the figure
Locality of memory references improved, but the
construction time is not negligible

Chih-Jen Lin (National Taiwan Univ.) 144 / 164

Multi-core implementation

Recursive Sparse Blocks (Cont’d)

Parallel, efficient sparse matrix-vector operations

Improve locality of memory references

But the initial construction time is about 20
multiplications, which is not negligible in some cases

We will show the result in the experiments

Chih-Jen Lin (National Taiwan Univ.) 145 / 164

Multi-core implementation

Intel MKL

Intel Math Kernel Library (MKL) is a commercial
library including optimized routines for linear algebra
(Intel)

It supports fast matrix-vector multiplications for
different sparse formats.

We consider the row-oriented format to store X .

Chih-Jen Lin (National Taiwan Univ.) 146 / 164

Multi-core implementation

Experiments

Baseline: Single core version in LIBLINEAR 1.96. It
sequentially run the following operations

u = Xd
u← Du

ū = XTu, where u = DXd

OpenMP: Use OpenMP to parallelize loops

MKL: Intel MKL version 11.2

RSB: librsb version 1.2.0

Chih-Jen Lin (National Taiwan Univ.) 147 / 164

Multi-core implementation

Speedup of Xd : All are Excellent
rcv1 binary webspam kddb

url combined covtype binary rcv1 multiclass

Chih-Jen Lin (National Taiwan Univ.) 148 / 164

Multi-core implementation

More Difficult to Speed up XTu
rcv1 binary webspam kddb

url combined covtype binary rcv1 multiclass

Chih-Jen Lin (National Taiwan Univ.) 149 / 164

Multi-core implementation

Indeed it’s not easy to have a multi-core implementation
that is

1 simple, and
2 reasonably efficient

Let me describe what we do in the end in multi-core
LIBLINEAR

Chih-Jen Lin (National Taiwan Univ.) 150 / 164

Multi-core implementation

Reducing Memory Access to Improve
Speedup

In computing

Xd and XT (DXd)

the data matrix is accessed twice

We notice that these two operations can be
combined together

XTDXd =
∑l

i=1
x iDiixT

i d

We can parallelize one single loop by OpenMP

Chih-Jen Lin (National Taiwan Univ.) 151 / 164

Multi-core implementation

Reducing Memory Access to Improve
Speedup (Cont’d)

Better speedup as memory accesses are reduced

1 2 4 6 8 10 12
threads

0

2

4

6

8

10

Sp
ee

du
p

Combined
Separated

1 2 4 6 8 10 12
threads

0
1
2
3
4
5
6
7
8

Sp
ee

du
p

Combined
Separated

rcv1 binary covtype binary

The number of operations is the same, but memory
access dramatically affects the idle time of threads

Chih-Jen Lin (National Taiwan Univ.) 152 / 164

Multi-core implementation

Reducing Memory Access to Improve
Speedup (Cont’d)

Therefore, if we can efficiently do∑l

i=1
x iDiixT

i d (8)

then probably we don’t need sophisticated sparse
matrix-vector packages

However, for a simple operation like (8) careful
implementations are still needed

Chih-Jen Lin (National Taiwan Univ.) 153 / 164

Multi-core implementation

OpenMP Scheduling

An OpenMP loop assigns tasks to different threads.

The default schedule(static) splits indices to P
blocks, where each contains l/P elements.

However, as tasks may be unbalanced, we can have
a dynamic scheduling – available threads are
assigned to the next tasks.

For example, schedule(dynamic,256) implies
that a thread works on 256 elements each time.

Unfortunately, overheads occur for the dynamic task
assignment.

Chih-Jen Lin (National Taiwan Univ.) 154 / 164

Multi-core implementation

OpenMP Scheduling (Cont’d)

Deciding suitable scheduling is not trivial.

Consider implementing XTu as an example. This
operation involves the following three loops.

1 Initializing ûp = 0,∀p = 1, . . . ,P .
2 Calculating ûp,∀p by

ûp =
∑
{uix i | i run by thread p}

3 Calculating ū =
∑P

p=1 û
p.

Chih-Jen Lin (National Taiwan Univ.) 155 / 164

Multi-core implementation

OpenMP Scheduling (Cont’d)

• Consider the second step

covtype binary rcv1 binary
schedule(static) 0.2879 2.9387
schedule(dynamic) 1.2611 2.6084
schedule(dynamic, 256) 0.2558 1.6505

• Clearly, a suitable scheduling is essential

• The other two steps are more balanced, so
schedule(static) is used (details omitted)

Chih-Jen Lin (National Taiwan Univ.) 156 / 164

Multi-core implementation

Speedup of Total Training Time
rcv1 binary webspam kddb

url combined covtype binary rcv1 multiclass

Chih-Jen Lin (National Taiwan Univ.) 157 / 164

Multi-core implementation

Analysis of Experimental Results

For RSB, the speedup for Xd is excellent, but is
poor for XTu on some n� l data (e.g. covtype)
Furthermore, construction time is expensive

OpenMP is the best for almost all cases, mainly
because of combing Xd and XTu together

Therefore, with appropriate settings, simple
implementations by OpenMP can achieve excellent
speedup

Chih-Jen Lin (National Taiwan Univ.) 158 / 164

Discussion and conclusions

Outline
1 Introduction: why optimization and machine learning

are related?
2 Optimization methods for kernel support vector

machines
Decomposition methods

3 Optimization methods for linear classification
Decomposition method
Newton methods
Experiments

4 Multi-core implementation

5 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 159 / 164

Discussion and conclusions

Conclusions

Optimization has been very useful for machine
learning

We must incorporate machine learning knowledge in
designing suitable optimization algorithms and
software

The interaction between optimization and machine
learning is very interesting and exciting.

Chih-Jen Lin (National Taiwan Univ.) 160 / 164

Discussion and conclusions

References I

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages
144–152. ACM Press, 1992.

R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic Hessian
information in optimization methods for machine learning. SIAM Journal on Optimization,
21(3):977–995, 2011.

K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale L2-loss
linear SVM. Journal of Machine Learning Research, 9:1369–1398, 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf.

W.-L. Chiang, M.-C. Lee, and C.-J. Lin. Parallel dual coordinate descent method for
large-scale linear classification in multi-core environments. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
2016. URL http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_cddual.pdf.

C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–297, 1995.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for
training SVM. Journal of Machine Learning Research, 6:1889–1918, 2005. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf.

Chih-Jen Lin (National Taiwan Univ.) 161 / 164

http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_cddual.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf

Discussion and conclusions

References II
T. Glasmachers and U. Dogan. Accelerated coordinate descent with adaptive coordinate

frequencies. In Proceedings of the 5th Asian Conference on Machine Learning, volume 29
of Proceedings of Machine Learning Research, pages 72–86, 2013.

C. Hildreth. A quadratic programming procedure. Naval Research Logistics Quarterly, 4:
79–85, 1957.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the Twenty Fifth
International Conference on Machine Learning (ICML), 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

Intel. Intel Math Kernel Library Reference Manual.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and
A. J. Smola, editors, Advances in Kernel Methods – Support Vector Learning, pages
169–184, Cambridge, MA, 1998. MIT Press.

S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale
linear SVMs. Journal of Machine Learning Research, 6:341–361, 2005.

S. S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines with Gaussian
kernel. Neural Computation, 15(7):1667–1689, 2003.

C.-P. Lee and S. J. Wright. Random permutations fix a worst case for cyclic coordinate
descent, 2016. arXiv preprint arXiv:1607.08320.

Chih-Jen Lin (National Taiwan Univ.) 162 / 164

http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf

Discussion and conclusions

References III

M.-C. Lee, W.-L. Chiang, and C.-J. Lin. Fast matrix-vector multiplications for large-scale
logistic regression on shared-memory systems. In Proceedings of the IEEE International
Conference on Data Mining (ICDM), 2015. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf.

C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale logistic
regression. Journal of Machine Learning Research, 9:627–650, 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf.

O. L. Mangasarian. A finite Newton method for classification. Optimization Methods and
Software, 17(5):913–929, 2002.

J. Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning (ICML), 2010.

M. Martone. Efficient multithreaded untransposed, transposed or symmetric sparse
matrix–vector multiplication with the recursive sparse blocks format. Parallel Computing,
40:251–270, 2014.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face
detection. In Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), pages 130–136, 1997.

Chih-Jen Lin (National Taiwan Univ.) 163 / 164

http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/logistic.pdf

Discussion and conclusions

References IV

J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods -
Support Vector Learning, Cambridge, MA, 1998. MIT Press.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14:567–599, 2013.

Chih-Jen Lin (National Taiwan Univ.) 164 / 164

	Introduction: why optimization and machine learning are related?
	Optimization methods for kernel support vector machines
	Decomposition methods

	Optimization methods for linear classification
	Decomposition method
	Newton methods
	Experiments

	Multi-core implementation
	Discussion and conclusions

