
Large-scale Machine Learning in
Distributed Environments

Chih-Jen Lin

National Taiwan University eBay Research Labs

Tutorial at ACM ICMR, June 5, 2012

Chih-Jen Lin (National Taiwan Univ.) 1 / 105

Outline

1 Why distributed machine learning?

2 Distributed classification algorithms
Kernel support vector machines
Linear support vector machines
Parallel tree learning

3 Distributed clustering algorithms
k-means
Spectral clustering
Topic models

4 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 2 / 105

Why distributed machine learning?

Why Distributed Machine Learning

The usual answer is that data are too big to be
stored in one computer

Some say that because “Hadoop” and “MapReduce
are buzzwords

No, we should never believe buzzwords

I will argue that things are more complicated than
we thought

Chih-Jen Lin (National Taiwan Univ.) 3 / 105

Why distributed machine learning?

In this talk I will consider only machine learning in
data-center environments

That is, clusters using regular PCs

I will not discuss machine learning in other parallel
environments:

GPU, multi-core, specialized clusters such as
supercomputers

Slides of this talk are available at

http://www.csie.ntu.edu.tw/~cjlin/talks/

icmr2012.pdf

Chih-Jen Lin (National Taiwan Univ.) 4 / 105

http://www.csie.ntu.edu.tw/~cjlin/talks/icmr2012.pdf
http://www.csie.ntu.edu.tw/~cjlin/talks/icmr2012.pdf

Why distributed machine learning?

Let’s Start with An Example

Using a linear classifier LIBLINEAR (Fan et al.,
2008) to train the rcv1 document data sets (Lewis
et al., 2004).

instances: 677,399, # features: 47,236

On a typical PC

$time ./train rcv1_test.binary

Total time: 50.88 seconds

Loading time: 43.51 seconds

For this example

loading time � running time

Chih-Jen Lin (National Taiwan Univ.) 5 / 105

Why distributed machine learning?

Loading Time Versus Running Time I

Let’s assume the memory hierarchy contains only
disk

Assume # instances is l

Loading time: l × (a big constant)

Running time: lq × (some constant), where q ≥ 1.

Running time often larger because q > 1 (e.g.,
q = 2 or 3) and

lq−1 > a big constant

Chih-Jen Lin (National Taiwan Univ.) 6 / 105

Why distributed machine learning?

Loading Time Versus Running Time II
Traditionally machine learning and data mining
papers consider only running time

For example, in this ICML 2008 paper (Hsieh et al.,
2008), some training algorithms were compared for
rcv1

Chih-Jen Lin (National Taiwan Univ.) 7 / 105

Why distributed machine learning?

Loading Time Versus Running Time III
DCDL1 is what LIBLINEAR used

We see that in 2 seconds, final testing accuracy is
achieved

But as we said, this 2-second running time is
misleading

So what happened? Didn’t you say that

lq−1 > a big constant??

The reason is that when l is large, we usually can
afford using only q = 1 (i.e., linear algorithm)

Now we see different situations
Chih-Jen Lin (National Taiwan Univ.) 8 / 105

Why distributed machine learning?

Loading Time Versus Running Time IV

- If running time dominates, then we should design
algorithms to reduce number of operations

- If loading time dominates, then we should design
algorithms to reduce number of data accesses

Distributed environment is another layer of memory
hierarchy

So things become even more complicated

Chih-Jen Lin (National Taiwan Univ.) 9 / 105

Why distributed machine learning?

Data in a Distributed Environment

One apparent reason of using distributed clusters is
that data are too large for one disk

But in addition to that, what are other reasons of
using distributed environments?

On the other hand, now disk is large. If you have
several TB data, should we use one or several
machines?

We will try to answer this question in the following
slides

Chih-Jen Lin (National Taiwan Univ.) 10 / 105

Why distributed machine learning?

Possible Advantages of Distributed
Systems

Parallel data loading

Reading several TB data from disk ⇒ a few hours

Using 100 machines, each has 1/100 data in its
local disk ⇒ a few minutes

Fault tolerance

Some data replicated across machines: if one fails,
others are still available

Of course how to efficiently/effectively do this is a
challenge

Chih-Jen Lin (National Taiwan Univ.) 11 / 105

Why distributed machine learning?

An Introduction of Distributed Systems I

Distributed file systems

We need it because a file is now managed at
different nodes

A file split to chunks and each chunk is replicated

⇒ if some nodes fail, data still available

Example: GFS (Google file system), HDFS (Hadoop
file system)

Parallel programming frameworks

A framework is like a language or a specification.
You can then have different implementations

Chih-Jen Lin (National Taiwan Univ.) 12 / 105

Why distributed machine learning?

An Introduction of Distributed Systems II
Example:
MPI (Snir and Otto, 1998): a parallel programming
framework
MPICH2 (Gropp et al., 1999): an implementation
Sample MPI functions

MPI Bcast: Broadcasts to all processes.
MPI AllGather: Gathers the data contributed by each

process on all processes.
MPI Reduce: A global reduction (e.g., sum)

to the specified root.
MPI AllReduce: A global reduction and

sending result to all processes.
Chih-Jen Lin (National Taiwan Univ.) 13 / 105

Why distributed machine learning?

An Introduction of Distributed Systems III

They are reasonable functions that we can think
about

MapReduce (Dean and Ghemawat, 2008). A
framework now commonly used for large-scale data
processing

In MapReduce, every element is a (key, value) pair

Mapper: a list of data elements provided. Each
element transformed to an output element

Reducer: values with same key presented to a single
reducer

Chih-Jen Lin (National Taiwan Univ.) 14 / 105

Why distributed machine learning?

An Introduction of Distributed Systems IV

See the following illustration from Hadoop Tutorial
http:

//developer.yahoo.com/hadoop/tutorial

Chih-Jen Lin (National Taiwan Univ.) 15 / 105

http://developer.yahoo.com/hadoop/tutorial
http://developer.yahoo.com/hadoop/tutorial

Why distributed machine learning?

An Introduction of Distributed Systems V

Chih-Jen Lin (National Taiwan Univ.) 16 / 105

Why distributed machine learning?

An Introduction of Distributed Systems VI

Let’s compare MPI and MapReduce

MPI: communication explicitly specified

MapReduce: communication performed implicitly

In a sense, MPI is like an assembly language, but
MapReduce is high-level

MPI: sends/receives data to/from a node’s memory

MapReduce: communication involves expensive disk
I/O

MPI: no fault tolerance

MapReduce: support fault tolerance

Chih-Jen Lin (National Taiwan Univ.) 17 / 105

Why distributed machine learning?

An Introduction of Distributed Systems
VII

Because of disk I/O, MapReduce can be inefficient
for iterative algorithms

To remedy this, some modifications have been
proposed

Example: Spark (Zaharia et al., 2010) supports

- MapReduce and fault tolerance

- Cache data in memory between iterations

MapReduce is a framework; it can have different
implementations

Chih-Jen Lin (National Taiwan Univ.) 18 / 105

Why distributed machine learning?

An Introduction of Distributed Systems
VIII

For example, shared memory (Talbot et al., 2011)
and distributed clusters (Google’s and Hadoop)

An algorithm implementable by a parallel framework

6=
You can easily have efficient implementations

The paper (Chu et al., 2007) has the following title

Map-Reduce for Machine Learning on Multicore

The authors show that many machine learning
algorithms can be implemented by MapReduce

Chih-Jen Lin (National Taiwan Univ.) 19 / 105

Why distributed machine learning?

An Introduction of Distributed Systems IX

These algorithms include linear regression, k-means,
logistic regression, naive Bayes, SVM, ICA, PCA,
EM, Neural networks, etc

But their implementations are on shared-memory
machines; see the word “multicore” in their title

Many wrongly think that their paper implies that
these methods can be efficiently implemented in a
distributed environment. But this is wrong

Chih-Jen Lin (National Taiwan Univ.) 20 / 105

Why distributed machine learning?

Evaluation I

Traditionally a parallel program is evaluated by
scalability

(64, 530,474) (128, 1,060,938) (256, 2,121,863)
(number of machines, data size)

Sp
ee

du
p

Total time
Similarity matrix
Eigendecomposition
K−means

28

27

25

26

Chih-Jen Lin (National Taiwan Univ.) 21 / 105

Why distributed machine learning?

Evaluation II

We hope that when (machines, data size) doubled,
the speedup also doubled.

64 machines, 500k data ⇒ ideal speedup is 64

128 machines, 1M data ⇒ ideal speedup is 128

That is, a linear relationship in the above figure

But in some situations we can simply check
throughput.

For example, # documents per hour.

Chih-Jen Lin (National Taiwan Univ.) 22 / 105

Why distributed machine learning?

Data Locality I

Transferring data across networks is slow.

We should try to access data from local disk

Hadoop tries to move computation to the data.

If data in node A, try to use node A for computation

But most machine learning algorithms are not
designed to achieve good data locality.

Traditional parallel machine learning algorithms
distribute computation to nodes

This works well in dedicated parallel machines with
fast communication among nodes

Chih-Jen Lin (National Taiwan Univ.) 23 / 105

Why distributed machine learning?

Data Locality II

But in data-center environments this may not work
⇒ communication cost is very high

Chih-Jen Lin (National Taiwan Univ.) 24 / 105

Why distributed machine learning?

Now go back to machine learning algorithms

Chih-Jen Lin (National Taiwan Univ.) 25 / 105

Why distributed machine learning?

Classification and Clustering I

They are the two major types of machine learning
methods

Classification Clustering

Distributed system are more useful for which one?

Chih-Jen Lin (National Taiwan Univ.) 26 / 105

Why distributed machine learning?

Classification and Clustering II

The answer is clustering

Clustering: if you have l instances, you need cluster
all of them

Classification: you may not need to use all your
training data

Many training data + a so so method

may not be better than

Some training data + an advanced method

Usually it is easier to play with advanced methods
on one computer

Chih-Jen Lin (National Taiwan Univ.) 27 / 105

Why distributed machine learning?

Classification and Clustering III

The difference between clustering and classification
can also be seen on Apache Mahout, a machine
learning library on Hadoop.

It has more clustering implementations than
classification

See http://mahout.apache.org/

Indeed, some classification implementations in
Mahout are sequential rather than parallel.

Chih-Jen Lin (National Taiwan Univ.) 28 / 105

http://mahout.apache.org/

Why distributed machine learning?

A Brief Summary Now

Going to distributed or not is sometimes a difficult
decision

There are many considerations

Data already in distributed file systems or not

The availability of distributed learning algorithms for
your problems

The efforts for writing a distributed code

The selection of parallel frameworks

And others

We use some simple examples to illustrate why the
decision is not easy.

Chih-Jen Lin (National Taiwan Univ.) 29 / 105

Why distributed machine learning?

Example: A Multi-class Classification
Problem I

At eBay (I am currently a visitor there), I need to
train

55M documents in 29 classes

The number of features ranges from 3M to 100 M,
depending on the settings

I can tell you that I don’t want to run it in a
distributed environment

Reasons

Chih-Jen Lin (National Taiwan Univ.) 30 / 105

Why distributed machine learning?

Example: A Multi-class Classification
Problem II

- I can access machines with 75G RAM to run the
data without problem

- Training is not too slow. Using one core, for 55M
documents and 3M features, training multi-class
SVM by LIBLINEAR takes only 20 minutes

- On one computer I can easily try various features.
From 3M to 100M, accuracy is improved. It won’t
be easy to achieve this by using more data in a
distributed cluster.

Chih-Jen Lin (National Taiwan Univ.) 31 / 105

Why distributed machine learning?

Example: A Bagging Implementation I

Assume data is large, say 1TB. You have 10
machines with 100GB RAM each.

One way to train this large data is a bagging
approach

machine 1 trains 1/10 data
2 1/10
...

...
10 1/10

Then use 10 models for prediction and combine
results

Chih-Jen Lin (National Taiwan Univ.) 32 / 105

Why distributed machine learning?

Example: A Bagging Implementation II

Reasons of doing so is obvious: parallel data loading
and parallel computation

But it is not that simple if using MapReduce and
Hadoop.

Hadoop file system is not designed so we can easily
copy a subset of data to a node

That is, you cannot say: block 10 goes to node 75

A possible way is

1. Copy all data to HDFS

Chih-Jen Lin (National Taiwan Univ.) 33 / 105

Why distributed machine learning?

Example: A Bagging Implementation III

2. Let each n/p points to have the same key
(assume p is # of nodes). The reduce phase
collects n/p points to a node. Then we can do the
parallel training

As a result, we may not get 1/10 loading time

In Hadoop, data are transparent to users

We don’t know details of data locality and
communication

Here is an interesting communication between me and a
friend (called D here)

Chih-Jen Lin (National Taiwan Univ.) 34 / 105

Why distributed machine learning?

Example: A Bagging Implementation IV

Me: If I have data in several blocks and would like
to copy them to HDFS, it’s not easy to specifically
assign them to different machines

D: yes, that’s right.

Me: So probably using a poor-man’s approach is
easier. I use USB to copy block/code to 10
machines and hit return 10 times

D: Yes, but you can do better by scp and ssh.
Indeed that’s usually how I do “parallel
programming”

This example is a bit extreme

Chih-Jen Lin (National Taiwan Univ.) 35 / 105

Why distributed machine learning?

Example: A Bagging Implementation V

We are not saying that Hadoop or MapReduce are
not useful

The point is that they are not designed in particular
for machine learning applications.

We need to know when and where they are suitable
to be used.

Also whether your data are already in distributed
systems or not is important

Chih-Jen Lin (National Taiwan Univ.) 36 / 105

Why distributed machine learning?

Resources of Distributes Machine Learning

There are many books about Hadoop and
MapReduce. I don’t list them here.

For things related to machine learning, a collection
of recent works is in the following book

Scaling Up Machine Learning, edited by Bekkerman,
Bilenko, and John Langford, 2011.

This book covers materials using various parallel
environments. Many of them use distributed
clusters.

Chih-Jen Lin (National Taiwan Univ.) 37 / 105

Distributed classification algorithms Kernel support vector machines

Outline

1 Why distributed machine learning?

2 Distributed classification algorithms
Kernel support vector machines
Linear support vector machines
Parallel tree learning

3 Distributed clustering algorithms
k-means
Spectral clustering
Topic models

4 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 38 / 105

Distributed classification algorithms Kernel support vector machines

Support Vector Machines I

A popular classification method developed in the
past two decades (Boser et al., 1992; Cortes and
Vapnik, 1995)

Training data {yi , xi}, xi ∈ Rn, i = 1, . . . , l , yi = ±1

l : # of data, n: # of features

SVM solves the following optimization problem

min
w,b

wTw

2
+ C

l∑
i=1

max(0, 1− yi(wTxi + b))

wTw/2: regularization term
Chih-Jen Lin (National Taiwan Univ.) 39 / 105

Distributed classification algorithms Kernel support vector machines

Support Vector Machines II

C : regularization parameter

Decision function

sgn(wTφ(x) + b)

φ(x): data mapped to a higher dimensional space

Chih-Jen Lin (National Taiwan Univ.) 40 / 105

Distributed classification algorithms Kernel support vector machines

Finding the Decision Function

w: maybe infinite variables
The dual problem: finite number of variables

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

yTα = 0,

where Qij = yiyjφ(xi)
Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

A finite problem: #variables = #training data
Chih-Jen Lin (National Taiwan Univ.) 41 / 105

Distributed classification algorithms Kernel support vector machines

Kernel Tricks

Qij = yiyjφ(xi)
Tφ(xj) needs a closed form

Example: xi ∈ R3, φ(xi) ∈ R10

φ(xi) = [1,
√

2(xi)1,
√

2(xi)2,
√

2(xi)3, (xi)
2
1,

(xi)
2
2, (xi)

2
3,
√

2(xi)1(xi)2,
√

2(xi)1(xi)3,
√

2(xi)2(xi)3]T

Then φ(xi)
Tφ(xj) = (1 + xT

i xj)
2.

Kernel: K (x, y) = φ(x)Tφ(y); common kernels:

e−γ‖xi−xj‖2

, (Gaussian and Radial Basis Function)

(xT
i xj/a + b)d (Polynomial kernel)

Chih-Jen Lin (National Taiwan Univ.) 42 / 105

Distributed classification algorithms Kernel support vector machines

Computational and Memory Bottleneck I

The square kernel matrix. Assume the Gaussian
kernel is taken

e−γ‖xi−xj‖2

Then

O(l2) memory and O(l2n) computation

If l = 106, then

1012 × 8 bytes = 8TB

Existing methods (serial or parallel) try not to use
the whole kernel matrix at the same time

Chih-Jen Lin (National Taiwan Univ.) 43 / 105

Distributed classification algorithms Kernel support vector machines

Computational and Memory Bottleneck II

Distributed implementations include, for example,
Chang et al. (2008); Zhu et al. (2009)

We will look at ideas of these two implementations

Because the computational cost is high (not linear),
the data loading and communication cost is less a
concern.

Chih-Jen Lin (National Taiwan Univ.) 44 / 105

Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) I

Kernel matrix approximation.

Original matrix Q with

Qij = yiyjK (xi , xj)

Consider
Q̄ = Φ̄T Φ̄ ≈ Q.

Φ̄ ≡ [x̄1, . . . , x̄l] becomes new training data

Φ̄ ∈ Rd×l , d � l . # features � # data

Testing is an issue, but let’s not worry about it here

Chih-Jen Lin (National Taiwan Univ.) 45 / 105

Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) II

They follow Fine and Scheinberg (2001) to use
incomplete Cholesky factorization

What is Cholesky factorization?

Any symmetric positive definite Q can be factorized
as

Q = LLT ,

where L ∈ R l×l is lower triangular

Chih-Jen Lin (National Taiwan Univ.) 46 / 105

Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) III

There are several ways to do Cholesky factorization.
If we do it columnwisely
L11
L21
L31
L41
L51

⇒

L11
L21 L22
L31 L32
L41 L42
L51 L52

⇒

L11
L21 L22
L31 L32 L33
L41 L42 L43
L51 L52 L53

and stop before it’s fully done, then we get
incomplete Cholesky factorization

Chih-Jen Lin (National Taiwan Univ.) 47 / 105

Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) IV

To get one column, we need to use previous
columns:[

L43
L53

]
needs

[
Q43

Q53

]
−
[
L41 L42
L51 L52

] [
L31
L32

]
This matrix-vector product is parallelized. Each
machine is responsible for several rows

Using d =
√
l , they report the following training

time

Chih-Jen Lin (National Taiwan Univ.) 48 / 105

Distributed classification algorithms Kernel support vector machines

The Approach by Chang et al. (2008) V

Nodes Image (200k) CoverType (500k) RCV (800k)
10 1,958 16,818 45,135

200 814 1,655 2,671

We can see that communication cost is a concern

The reason they can get speedup is because the
complexity of the algorithm is more than linear

They implemented MPI in Google distributed
environments

If MapReduce is used, scalability will be worse

Chih-Jen Lin (National Taiwan Univ.) 49 / 105

Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) I

They consider stochastic gradient descent methods
(SGD)

SGD is popular for linear SVM (i.e., kernels not
used).

At the tth iteration, a training instance xit is chosen
and w is updated by

w← w − ηt∇S
(1

2
‖w‖22 + C max(0, 1− yit w

Txit)
)
,

∇S : a sub-gradient operator; η: learning rate.

Chih-Jen Lin (National Taiwan Univ.) 50 / 105

Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) II
The update rule becomes

If 1− yit w
Txit > 0, then

w← (1− ηt)w + ηtCyit xit .

For kernel SVM, w cannot be stored. So we need to
store all η1, . . . , ηt
The calculation of

wTxit

becomes

t−1∑
s=1

(some coefficient)K (xis , xit) (1)

Chih-Jen Lin (National Taiwan Univ.) 51 / 105

Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) III
Parallel implementation.

If xi1, . . . , xit distributedly stored, then (1) can be
computed in parallel

Two challenges

1. xi1, . . . , xit must be evenly distributed to nodes,
so (1) can be fast.

2. The communication cost can be high

– Each node must have xit

– Results from (1) must be summed up

Zhu et al. (2009) propose some ways to handle
these two problems

Chih-Jen Lin (National Taiwan Univ.) 52 / 105

Distributed classification algorithms Kernel support vector machines

A Primal Method by Zhu et al. (2009) IV

Note that Zhu et al. (2009) use a more
sophisticated SGD by Shalev-Shwartz et al. (2011),
though concepts are similar.

MPI rather than MapReduce is used

Again, if they use MapReduce, the communication
cost will be a big concern

Chih-Jen Lin (National Taiwan Univ.) 53 / 105

Distributed classification algorithms Kernel support vector machines

Discussion: Parallel Kernel SVM

An attempt to use MapReduce is by Liu (2010)

As expected, the speedup is not good

From both Chang et al. (2008); Zhu et al. (2009),
we know that algorithms must be carefully designed
so that time saved on computation can compensate
communication/loading

Chih-Jen Lin (National Taiwan Univ.) 54 / 105

Distributed classification algorithms Linear support vector machines

Outline

1 Why distributed machine learning?

2 Distributed classification algorithms
Kernel support vector machines
Linear support vector machines
Parallel tree learning

3 Distributed clustering algorithms
k-means
Spectral clustering
Topic models

4 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 55 / 105

Distributed classification algorithms Linear support vector machines

Linear Support Vector Machines

By linear we mean kernels are not used

For certain problems, accuracy by linear is as good
as nonlinear

But training and testing are much faster

Especially document classification

Number of features (bag-of-words model) very large

Recently linear classification is a popular research
topic. Sample works in 2005-2008: Joachims
(2006); Shalev-Shwartz et al. (2007); Hsieh et al.
(2008)

There are many other recent papers and software

Chih-Jen Lin (National Taiwan Univ.) 56 / 105

Distributed classification algorithms Linear support vector machines

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features

Chih-Jen Lin (National Taiwan Univ.) 57 / 105

Distributed classification algorithms Linear support vector machines

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features

Chih-Jen Lin (National Taiwan Univ.) 57 / 105

Distributed classification algorithms Linear support vector machines

Comparison Between Linear and Nonlinear
(Training Time & Testing Accuracy)

Linear RBF Kernel
Data set Time Accuracy Time Accuracy
MNIST38 0.1 96.82 38.1 99.70
ijcnn1 1.6 91.81 26.8 98.69
covtype 1.4 76.37 46,695.8 96.11
news20 1.1 96.95 383.2 96.90
real-sim 0.3 97.44 938.3 97.82
yahoo-japan 3.1 92.63 20,955.2 93.31
webspam 25.7 93.35 15,681.8 99.26

Size reasonably large: e.g., yahoo-japan: 140k instances
and 830k features

Chih-Jen Lin (National Taiwan Univ.) 57 / 105

Distributed classification algorithms Linear support vector machines

Parallel Linear SVM I

It is known that linear SVM or logistic regression
can easily train millions of data in a few seconds on
one machine

This is a figure shown earlier

Chih-Jen Lin (National Taiwan Univ.) 58 / 105

Distributed classification algorithms Linear support vector machines

Parallel Linear SVM II

Training linear SVM is faster than kernel SVM
because w can be maintained

Recall that SGD’s update rule is

If 1− yit w
Txit > 0, then

w← (1− ηt)w + ηtCyit xit .
(2)

For linear, we directly calculate

wTxit

Chih-Jen Lin (National Taiwan Univ.) 59 / 105

Distributed classification algorithms Linear support vector machines

Parallel Linear SVM III
For kernel, w cannot be stored. So we need to store
all η1, . . . , ηt−1

t−1∑
s=1

(some coefficient)K (xis , xit)

For linear SVM, each iteration is cheap.

It is difficult to parallelize the code

Issues for parallelization

- Many methods (e.g., stochastic gradient descent
or coordinate descent) are inherently sequential

- Communication cost is a concern
Chih-Jen Lin (National Taiwan Univ.) 60 / 105

Distributed classification algorithms Linear support vector machines

Simple Distributed Linear Classification I

Bagging: train several subsets and ensemble results;
we mentioned this approach in earlier discussion

- Useful in distributed environments; each node ⇒ a
subset

- Example: Zinkevich et al. (2010)

Some results by averaging models

yahoo-korea kddcup10 webspam epsilson
Using all 87.29 89.89 99.51 89.78
Avg. models 86.08 89.64 98.40 88.83

Chih-Jen Lin (National Taiwan Univ.) 61 / 105

Distributed classification algorithms Linear support vector machines

Simple Distributed Linear Classification II

Using all: solves a single linear SVM

Avg. models: each node solves a linear SVM on a
subset

Slightly worse but in general OK

Chih-Jen Lin (National Taiwan Univ.) 62 / 105

Distributed classification algorithms Linear support vector machines

ADMM by Boyd et al. (2011) I

Recall the SVM problem (bias term b omitted)

min
w

wTw

2
+ C

l∑
i=1

max(0, 1− yiw
Txi)

An equivalent optimization problem

min
w1,...,wm,z

1

2
zTz + C

m∑
j=1

∑
i∈Bj

max(0, 1− yiw
T
j xi)+

ρ

2

m∑
j=1

‖wj − z‖2

subject to wj − z = 0,∀j
Chih-Jen Lin (National Taiwan Univ.) 63 / 105

Distributed classification algorithms Linear support vector machines

ADMM by Boyd et al. (2011) II
The key is that

z = w1 = · · · = wm

are all optimal w

This optimization problem was proposed in 1970s,
but is now applied to distributed machine learning

Each node has Bj and updates wj

Only w1, . . . ,wm must be collected

Data not moved

Still, communication cost at each iteration is a
concern

Chih-Jen Lin (National Taiwan Univ.) 64 / 105

Distributed classification algorithms Linear support vector machines

ADMM by Boyd et al. (2011) III

We cannot afford too many iterations

An MPI implementation is by Zhang et al. (2012)

I am not aware of any MapReduce implementation
yet

Chih-Jen Lin (National Taiwan Univ.) 65 / 105

Distributed classification algorithms Linear support vector machines

Vowpal Wabbit (Langford et al., 2007) I

It started as a linear classification package on a
single computer

After version 6.0, Hadoop support has been provided

Parallel strategies SGD initially and then LBFGS
(quasi Newton)

The interesting point is that it argues that
AllReduce is a more suitable operation than
MapReduce

What is AllReduce?

Every node starts with a value and ends up with the
sum at all nodes

Chih-Jen Lin (National Taiwan Univ.) 66 / 105

Distributed classification algorithms Linear support vector machines

Vowpal Wabbit (Langford et al., 2007) II

In Agarwal et al. (2012), the authors argue that
many machine learning algorithms can be
implemented using AllReduce

LBFGS is an example

In the following talk

Scaling Up Machine Learning

the authors train 17B samples with 16M features on
1K nodes ⇒ 70 minutes

Chih-Jen Lin (National Taiwan Univ.) 67 / 105

http://hunch.net/~large_scale_survey/

Distributed classification algorithms Linear support vector machines

The Approach by Pechyony et al. (2011) I

They consider the following SVM dual

min
α

1

2
αTQα− eTα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

This is the SVM dual without considering the bias
term “b”

Ideas similar to ADMM

Data split to B1, . . . ,Bm

Each node responsible for one block

Chih-Jen Lin (National Taiwan Univ.) 68 / 105

Distributed classification algorithms Linear support vector machines

The Approach by Pechyony et al. (2011) II
If a block of variables B is updated and others
B̄ ≡ {1, . . . , l}\B are fixed, then the sub-problem is

1

2
(α + d)TQ(α + d)− eT (α + d)

=
1

2
dT
BQBBdB + (QB,:α)TdB − eTdB + const

(3)

If
w =

∑l
i=1 αiyixi

is maintained during iterations, then (3) becomes

1

2
dT
BQBBdB + wTXT

B,:dB − eTdB

Chih-Jen Lin (National Taiwan Univ.) 69 / 105

Distributed classification algorithms Linear support vector machines

The Approach by Pechyony et al. (2011)
III

They solve

1

2
dT
Bi
QBiBi

dBi
+ wTXT

Bi ,:
dBi
− eTdBi

,∀i

in parallel

They need to collect all dBi
and then update w

They have a MapReduce implementation

Issues:

No convergence proof yet

Chih-Jen Lin (National Taiwan Univ.) 70 / 105

Distributed classification algorithms Parallel tree learning

Outline

1 Why distributed machine learning?

2 Distributed classification algorithms
Kernel support vector machines
Linear support vector machines
Parallel tree learning

3 Distributed clustering algorithms
k-means
Spectral clustering
Topic models

4 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 71 / 105

Distributed classification algorithms Parallel tree learning

Parallel Tree Learning I

We describe the work by Panda et al. (2009)

It considers two parallel tasks

- single tree generation

- tree ensembles

The main procedure of constructing a tree is to
decide how to split a node

This becomes difficult if data are larger than a
machine’s memory

Basic idea:

Chih-Jen Lin (National Taiwan Univ.) 72 / 105

Distributed classification algorithms Parallel tree learning

Parallel Tree Learning II

A

B

C D

If A and B are finished, then we can generate C and
D in parallel

But a more careful design is needed. If data for C
can fit in memory, we should generate all
subsequent nodes on a machine

Chih-Jen Lin (National Taiwan Univ.) 73 / 105

Distributed classification algorithms Parallel tree learning

Parallel Tree Learning III

That is, when we are close to leaf nodes, no need to
use parallel programs

If you have only few samples, a parallel
implementation is slower than one single machine

The concept looks simple, but generating a useful
code is not easy

The authors mentioned that they face some
challenges

- “MapReduce was not intended ... for highly
iterative process .., MapReduce start and tear down
costs were primary bottlenecks”

Chih-Jen Lin (National Taiwan Univ.) 74 / 105

Distributed classification algorithms Parallel tree learning

Parallel Tree Learning IV

- “cost ... in determining split points ... higher than
expected”

- “... though MapReduce offers graceful handling of
failures within a specific MapReduce ..., since our
computation spans multiple MapReduce ...”

The authors address these issues using engineering
techniques.

In some places they even need RPCs (Remote
Procedure Calls) rather than standard MapReduce

For 314 million instances (> 50G storage), in 2009
they report

Chih-Jen Lin (National Taiwan Univ.) 75 / 105

Distributed classification algorithms Parallel tree learning

Parallel Tree Learning V

nodes time (s)
25 ≈ 400

200 ≈ 1,350

This is good in 2009. At least they trained a set
where one single machine cannot handle at that
time

The running time does not decrease from 200 to
400 nodes

This study shows that

Chih-Jen Lin (National Taiwan Univ.) 76 / 105

Distributed classification algorithms Parallel tree learning

Parallel Tree Learning VI

- Implementing a distributed learning algorithm is
not easy. You may need to solve certain engineering
issues

- But sometimes you must do it because of handling
huge data

Chih-Jen Lin (National Taiwan Univ.) 77 / 105

Distributed clustering algorithms k-means

Outline

1 Why distributed machine learning?

2 Distributed classification algorithms
Kernel support vector machines
Linear support vector machines
Parallel tree learning

3 Distributed clustering algorithms
k-means
Spectral clustering
Topic models

4 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 78 / 105

Distributed clustering algorithms k-means

k-means I

One of the most basic and widely used clustering
algorithms

The idea is very simple.

Finding k cluster centers and assign each data to
the cluster of its closest center

Chih-Jen Lin (National Taiwan Univ.) 79 / 105

Distributed clustering algorithms k-means

k-means II

Algorithm 1 k-means procedure
1 Find initial k centers
2 While not converge

- Find each point’s closest center

- Update centers by averaging all its members

We discuss difference between MPI and MapReduce
implementations of k-means

Chih-Jen Lin (National Taiwan Univ.) 80 / 105

Distributed clustering algorithms k-means

k-means: MPI implementation I

Broadcast initial centers to all machines

While not converged

Each node assigns its data to k clusters and
compute local sum of each cluster

An MPI AllReduce operation obtains sum of all k
clusters to find new centers

Communication versus computation:

If x ∈ Rn, then

transfer kn elements after kn × l/p operations,

l : total number of data and p: number of nodes.

Chih-Jen Lin (National Taiwan Univ.) 81 / 105

Distributed clustering algorithms k-means

k-means: MapReduce implementation I

We describe one implementation by Thomas
Jungblut

http:

//codingwiththomas.blogspot.com/2011/05/

k-means-clustering-with-mapreduce.html

You don’t specifically assign data to nodes

That is, data has been stored somewhere at HDFS

Each instance: a (key, value) pair

key: its associated cluster center

value: the instance

Chih-Jen Lin (National Taiwan Univ.) 82 / 105

http://codingwiththomas.blogspot.com/2011/05/k-means-clustering-with-mapreduce.html
http://codingwiththomas.blogspot.com/2011/05/k-means-clustering-with-mapreduce.html
http://codingwiththomas.blogspot.com/2011/05/k-means-clustering-with-mapreduce.html

Distributed clustering algorithms k-means

k-means: MapReduce implementation II

Map:

Each (key, value) pair find the closest center and
update the key

Reduce:

For instances with the same key (cluster), calculate
the new cluster center

As we said earlier, you don’t control where data
points are.

Therefore, it’s unclear how expensive loading and
communication is.

Chih-Jen Lin (National Taiwan Univ.) 83 / 105

Distributed clustering algorithms Spectral clustering

Outline

1 Why distributed machine learning?

2 Distributed classification algorithms
Kernel support vector machines
Linear support vector machines
Parallel tree learning

3 Distributed clustering algorithms
k-means
Spectral clustering
Topic models

4 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 84 / 105

Distributed clustering algorithms Spectral clustering

Spectral Clustering I

Input: Data points x1, . . . , xn; k : number of desired
clusters.

1 Construct similarity matrix S ∈ Rn×n.

2 Modify S to be a sparse matrix.
3 Compute the Laplacian matrix L by

L = I − D−1/2SD−1/2,

4 Compute the first k eigenvectors of L; and construct
V ∈ Rn×k , whose columns are the k eigenvectors.

Chih-Jen Lin (National Taiwan Univ.) 85 / 105

Distributed clustering algorithms Spectral clustering

Spectral Clustering II

5 Compute the normalized matrix U of V by

Uij =
Vij√∑k
r=1 V

2
ir

, i = 1, . . . , n, j = 1, . . . , k .

6 Use k-means algorithm to cluster n rows of U into
k groups.

Early studies of this method were by, for example, Shi
and Malik (2000); Ng et al. (2001)

We discuss the parallel implementation by Chen et al.
(2011)

Chih-Jen Lin (National Taiwan Univ.) 86 / 105

Distributed clustering algorithms Spectral clustering

MPI and MapReduce

Similarity matrix

Only done once: suitable for MapReduce

But size grows in O(n2)

First k Eigenvectors

An iterative algorithm called implicitly restarted
Arnoldi

Iterative: not suitable for MapReduce

MPI is used but no fault tolerance

Chih-Jen Lin (National Taiwan Univ.) 87 / 105

Distributed clustering algorithms Spectral clustering

Sample Results I

2,121,863 points and 1,000 classes

(64, 530,474) (128, 1,060,938) (256, 2,121,863)
(number of machines, data size)

Sp
ee

du
p

Total time
Similarity matrix
Eigendecomposition
K−means

28

27

25

26

Chih-Jen Lin (National Taiwan Univ.) 88 / 105

Distributed clustering algorithms Spectral clustering

Sample Results II

We can see that scalability of eigen decomposition is not
good

Nodes Similarity Eigen kmeans Total Speedup
16 752542s 25049s 18223s 795814s 16.00
32 377001s 12772s 9337s 399110s 31.90
64 192029s 8751s 4591s 205371s 62.00

128 101260s 6641s 2944s 110845s 114.87
256 54726s 5797s 1740s 62263s 204.50

Chih-Jen Lin (National Taiwan Univ.) 89 / 105

Distributed clustering algorithms Spectral clustering

How to Scale Up?

We can see two bottlenecks

- computation: O(n2) similarity matrix

- communication: finding eigenvectors

To handle even larger sets we may need to modify
the algorithm

For example, we can use only part of the similarity
matrix (e.g., Nyström approximation)

Slightly worse performance, but may scale up better

The decision relies on your number of data and
other considerations

Chih-Jen Lin (National Taiwan Univ.) 90 / 105

Distributed clustering algorithms Topic models

Outline

1 Why distributed machine learning?

2 Distributed classification algorithms
Kernel support vector machines
Linear support vector machines
Parallel tree learning

3 Distributed clustering algorithms
k-means
Spectral clustering
Topic models

4 Discussion and conclusions

Chih-Jen Lin (National Taiwan Univ.) 91 / 105

Distributed clustering algorithms Topic models

Latent Dirichlet Allocation I

Basic idea

each word wij ⇒ an associated topic zij

For a query

“ice skating”

LDA (Blei et al., 2003) can infer from “ice” that
“skating” is closer to a topic “sports” rather than a
topic “computer”

The LDA model

Chih-Jen Lin (National Taiwan Univ.) 92 / 105

Distributed clustering algorithms Topic models

Latent Dirichlet Allocation II
p(w, z,Θ,Φ|α,β) = m∏

i=1

mi∏
j=1

p(wij |zij ,Φ)p(zij |θi)

[m∏
i=1

p(θi |α)

] k∏
j=1

p(φj |β)

wij : jth word from ith document

zij : the topic

p(wij |zij ,Φ) and p(zij |θi): multinomial distributions

That is, wij is drawn from zij ,Φ and zij is drawn
from θi

p(θi |α), p(φj |β): Dirichlet distributions

Chih-Jen Lin (National Taiwan Univ.) 93 / 105

Distributed clustering algorithms Topic models

Latent Dirichlet Allocation III
α,β: prior of Θ,Φ, respectively

Maximizing the likelihood is not easy, so Griffiths
and Steyvers (2004) propose using Gipps sampling
to iteratively estimate the posterior p(z|w)

While the model looks complicated, Θ and Φ can
be integrated out to

p(w, z|α,β)

Then at each iteration only a counting procedure is
needed

We omit details but essentially the algorithm is

Chih-Jen Lin (National Taiwan Univ.) 94 / 105

Distributed clustering algorithms Topic models

Latent Dirichlet Allocation IV

Algorithm 2 LDA Algorithm
For each iteration

For each document i

For each word j in document i

Sampling and counting

Distributed learning seems straightforward

- Divide data to several nodes

- Each node counts local data

- Models are summed up

Chih-Jen Lin (National Taiwan Univ.) 95 / 105

Distributed clustering algorithms Topic models

Latent Dirichlet Allocation V

However, an efficient implementation is not that
simple

Some existing implementations

Wang et al. (2009): both MPI and MapReduce

Newman et al. (2009): MPI

Smola and Narayanamurthy (2010): Something else

Smola and Narayanamurthy (2010) claim higher
throughputs.

These works all use same algorithm, but
implementations are different

Chih-Jen Lin (National Taiwan Univ.) 96 / 105

Distributed clustering algorithms Topic models

Latent Dirichlet Allocation VI

A direct MapReduce implementation may not be
efficient due to I/O at each iteration

Smola and Narayanamurthy (2010) use quite
sophisticated techniques to get high throughputs

- They don’t partition documents to several
machines. Otherwise machines need to wait for
synchronization

- Instead, they consider several samplers and
synchronize between them

- They use memcached so data stored in memory
rather than disk

Chih-Jen Lin (National Taiwan Univ.) 97 / 105

Distributed clustering algorithms Topic models

Latent Dirichlet Allocation VII

- They use Hadoop streaming so C++ rather than
Java is used

- And some other techniques

We can see that a efficient implementation is not
easy

Chih-Jen Lin (National Taiwan Univ.) 98 / 105

Discussion and conclusions

Conclusions

Distributed machine learning is still an active
research topic

It is related to both machine learning and systems

While machine learning people can’t develop
systems, they need to know how to choose systems

An important fact is that existing distributed
systems or parallel frameworks are not particularly
designed for machine learning algorithms

Machine learning people can

- help to affect how systems are designed

- design new algorithms for existing systems

Chih-Jen Lin (National Taiwan Univ.) 99 / 105

Discussion and conclusions

Acknowledgments

I thank comments from

Wen-Yen Chen

Dennis DeCoste

Alex Smola

Chien-Chih Wang

Xiaoyun Wu

Rong Yen

Chih-Jen Lin (National Taiwan Univ.) 100 / 105

Discussion and conclusions

References I

A. Agarwal, O. Chapelle, and M. D. J. Langford. A reliable effective terascale linear learning
system. 2012. Submitted to KDD 2012.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages
144–152. ACM Press, 1992.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011.

E. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Parallelizing support vector
machines on distributed computers. In J. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 257–264. MIT
Press, Cambridge, MA, 2008.

W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. Parallel spectral clustering in
distributed systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33
(3):568–586, 2011.

Chih-Jen Lin (National Taiwan Univ.) 101 / 105

Discussion and conclusions

References II

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce
for machine learning on multicore. In B. Schölkopf, J. Platt, and T. Hoffman, editors,
Advances in Neural Information Processing Systems 19, pages 281–288. MIT Press,
Cambridge, MA, 2007.

C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–297, 1995.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf.

S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations.
Journal of Machine Learning Research, 2:243–264, 2001.

T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences, 101:5228–5235, 2004.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI-2: Advanced Features of the
Message-Passing Interface. MIT Press,, 1999.

Chih-Jen Lin (National Taiwan Univ.) 102 / 105

http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

Discussion and conclusions

References III

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear SVM. In Proceedings of the Twenty Fifth
International Conference on Machine Learning (ICML), 2008. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the Twelfth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006.

J. Langford, L. Li, and A. Strehl. Vowpal Wabbit, 2007.
https://github.com/JohnLangford/vowpal_wabbit/wiki.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

S. Liu. Upscaling key machine learning algorithms. Master’s thesis, University of Bristol, 2010.

D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for topic models.
Journal of Machine Learning Research, 10:1801–1828, 2009.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Proceedings of NIPS, pages 849–856, 2001.

B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo. PLANET: massively parallel learning of
tree ensembles with mapreduce. Proceedings of VLDB, 2(2):1426–1437, 2009.

Chih-Jen Lin (National Taiwan Univ.) 103 / 105

http://www.csie.ntu.edu.tw/~cjlin/papers/cddual.pdf
https://github.com/JohnLangford/vowpal_wabbit/wiki

Discussion and conclusions

References IV

D. Pechyony, L. Shen, and R. Jones. Solving large scale linear svm with distributed block
minimization. In NIPS 2011 Workshop on Big Learning: Algorithms, Systems, and Tools
for Learning at Scale. 2011.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-gradient solver
for SVM. In Proceedings of the Twenty Fourth International Conference on Machine
Learning (ICML), 2007.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-gradient solver
for SVM. Mathematical Programming, 127(1):3–30, 2011.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

A. Smola and S. Narayanamurthy. An architecture for parallel topic models. In Proceedings of
the VLDB Endowment, volume 3, pages 703–710, 2010.

M. Snir and S. Otto. MPI-The Complete Reference: The MPI Core. MIT Press, Cambridge,
MA, USA, 1998.

J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular mapreduce for shared-memory
systems. In Second International Workshop on MapReduce and its Applications, June
2011.

Chih-Jen Lin (National Taiwan Univ.) 104 / 105

Discussion and conclusions

References V

Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y. Chang. PLDA: Parallel latent Dirichlet
allocation for large-scale applications. In International Conference on Algorithmic Aspects
in Information and Management, 2009.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing, 2010.

C. Zhang, H. Lee, and K. G. Shin. Efficient distributed linear classification algorithms via the
alternating direction method of multipliers. In Proceedings of the 15th International
Conference on Artificial Intelligence and Statistics, 2012.

Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. P-packSVM: Parallel primal gradient
descent kernel SVM. In Proceedings of the IEEE International Conference on Data
Mining, 2009.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. In
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23, pages 2595–2603. 2010.

Chih-Jen Lin (National Taiwan Univ.) 105 / 105

	Why distributed machine learning?
	Distributed classification algorithms
	Kernel support vector machines
	Linear support vector machines
	Parallel tree learning

	Distributed clustering algorithms
	k-means
	Spectral clustering
	Topic models

	Discussion and conclusions

