Training Large-scale Linear Classifiers

Chih-Jen Lin

Department of Computer Science

National Taiwan University

http://www.csie.ntu.edu.tw/~cjlin

Talk at Hong Kong University of Science and Technology
February 5, 2009

Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions

Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions

Kernel Methods and SVM

- Kernel methods became very popular in the past decade
 In particular, support vector machines (SVM)
- But slow in training large data due to nonlinear mapping (enlarge the # features)
- Example: $\mathbf{x} = [x_1, x_2, x_3]^T \in R^3$

$$\phi(\mathbf{x}) = \begin{bmatrix} 1, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_3, x_1^2, \\ x_2^2, x_3^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \sqrt{2}x_2x_3 \end{bmatrix}^T \in R^{10}$$

 If data are very large ⇒ often need approximation e.g., sub-sampling and many other ways

Linear Classification

- Certain problems: # features large
- Often similar accuracy with/without nonlinear mappings
- Linear classification: no mapping
 Stay in the original input space
- We can efficiently train very large data
- Document classification is of this type
 Very important for Internet companies

An Example

- rcv1: # data: > 600k, # features: > 40k
- Using LIBSVM (linear kernel)
 - > 10 hours
- Using LIBLINEAR
 - Computation: < 5 seconds; I/O: 60 seconds
- Same stopping condition in solving SVM optimization problems
- Will show how this is achieved and discuss if there are any concerns

Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions

Support Vector Classification

• Training data $(\mathbf{x}_i, y_i), i = 1, \dots, I, \mathbf{x}_i \in R^n, y_i = \pm 1$

$$\min_{\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_{i=1}^{I} \max(0, 1 - y_i\mathbf{w}^T\phi(\mathbf{x}_i))$$

- C: regularization parameter
- High dimensional (maybe infinite) feature space

$$\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \ldots]^T.$$

- We omit the bias term b
- w: may have infinite variables

Support Vector Classification (Cont'd)

The dual problem (finite # variables)

$$\min_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha}$$
subject to
$$0 \le \alpha_i \le C, i = 1, \dots, I,$$

where
$$Q_{ij} = y_i y_j \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$
 and $\mathbf{e} = [1, \dots, 1]^T$

At optimum

$$\mathbf{w} = \sum_{i=1}^{I} \alpha_i y_i \phi(\mathbf{x}_i)$$

• Kernel: $K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

Large Dense Quadratic Programming

• $Q_{ij} \neq 0$, Q: an I by I fully dense matrix

$$\min_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \mathbf{e}^T \boldsymbol{\alpha}$$
subject to
$$0 \le \alpha_i \le C, i = 1, \dots, I$$

- 50,000 training points: 50,000 variables: $(50,000^2 \times 8/2)$ bytes = 10GB RAM to store Q
- Traditional methods:
 Newton, Quasi Newton cannot be directly applied
- Now most use decomposition methods
 [Osuna et al., 1997, Joachims, 1998, Platt, 1998]

Decomposition Methods

- We consider a one-variable version
 Similar to coordinate descent methods
- Select the *i*th component for update:

$$\min_{\mathbf{d}} \quad \frac{1}{2} (\alpha + d\mathbf{e}_i)^T Q(\alpha + d\mathbf{e}_i) - \mathbf{e}^T (\alpha + d\mathbf{e}_i)$$
subject to
$$0 \le \alpha_i + d \le C$$

where

$$\mathbf{e}_i \equiv \left[\underbrace{0\ldots0}_{i-1} \ 1 \ 0\ldots0\right]^T$$

ullet lpha: current solution; the *i*th component is changed

Avoid Memory Problems

• The new objective function

$$\frac{1}{2}Q_{ii}d^2 + (Q\alpha - \mathbf{e})_id + \text{constant}$$

• To get $(Q\alpha - \mathbf{e})_i$, only Q's *i*th row is needed

$$(Q\alpha - \mathbf{e})_i = \sum_{j=1}^l Q_{ij}\alpha_j - 1$$

- Calculated when needed. Trade time for space
- Used by popular software (e.g., SVM^{light}, LIBSVM)
 They update 10 and 2 variables at a time

Decomposition Methods: Algorithm

• Optimal d:

$$-rac{(Qoldsymbol{lpha}-\mathbf{e})_i}{Q_{ii}}=-rac{\sum_{j=1}^{I}Q_{ij}lpha_j-1}{Q_{ii}}$$

- Consider lower/upper bounds: [0, C]
- Algorithm:

While lpha is not optimal

- 1. Select the *i*th element for update
- 2. $\alpha_i \leftarrow \min\left(\max\left(\alpha_i \frac{\sum_{j=1}^l Q_{ij}\alpha_j 1}{Q_{ii}}, 0\right), C\right)$

Select an Element for Update

Many ways

- Sequential (easiest)
- Permuting 1, . . . , / every / steps
- Random
- Existing software check gradient information

$$\nabla_1 f(\alpha), \ldots, \nabla_I f(\alpha)$$

But is $\nabla f(\alpha)$ available?

Select an Element for Update (Cont'd)

• We can easily maintain gradient

$$abla f(m{lpha}) = Qm{lpha} - \mathbf{e}$$
 $abla_s f(m{lpha}) = (Qm{lpha})_s - 1 = \sum_{j=1}^l Q_{sj}lpha_j - 1$

• Initial $\alpha = \mathbf{0}$

$$\nabla f(\mathbf{0}) = -\mathbf{e}$$

• α_i updated to $\bar{\alpha}_i$

$$\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + \frac{Q_{si}(\bar{\alpha}_i - \alpha_i)}{Q_{si}(\bar{\alpha}_i - \alpha_i)}, \ \forall s$$

• O(I) if $Q_{si} \forall s$ (*i*th column) are available

Select an Element for Update (Cont'd)

• No matter maintaining $\nabla f(\alpha)$ or not Q's ith row (column) always needed

$$\bar{\alpha}_i \leftarrow \min\left(\max\left(\alpha_i - \frac{\sum_{j=1}^l \frac{Q_{ij}}{Q_{ii}}\alpha_j - 1}{Q_{ii}}, 0\right), C\right)$$

Q is symmetric

• Using $\nabla f(\alpha)$ to select i: faster convergence i.e., fewer iterations

Decomposition Methods: Using Gradient

The new procedure

- $\alpha = \mathbf{0}, \nabla f(\alpha) = -\mathbf{e}$
- While α is not optimal
 - 1. Select the *i*th element using $\nabla f(\alpha)$

2.
$$\bar{\alpha}_i \leftarrow \min\left(\max\left(\alpha_i - \frac{\sum_{j=1}^l Q_{ij}\alpha_j - 1}{Q_{ii}}, 0\right), C\right)$$

3.
$$\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + Q_{si}(\bar{\alpha}_i - \alpha_i), \forall s$$

Cost per iteration

- $O(\ln)$, I: # instances, n: # features
- Assume each $Q_{ij} = y_i y_i K(\mathbf{x}_i, \mathbf{x}_i)$ takes O(n)

Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions

Linear SVM for Large Document Sets

Document classification

- Bag of words model (TF-IDF or others)
 A large # of features
- Testing accuracy: linear/nonlinear SVMs similar nonlinear SVM: we mean SVM via kernels

Recently an active research topic

- SVM^{perf} [Joachims, 2006]
- Pegasos [Shalev-Shwartz et al., 2007]
- LIBLINEAR [Lin et al., 2007, Hsieh et al., 2008]
- and others

Linear SVM

Primal without the bias term b

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{I} \max \left(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i \right)$$

Dual

$$\min_{\alpha} f(\alpha) = \frac{1}{2} \alpha^{T} Q \alpha - \mathbf{e}^{T} \alpha$$
subject to
$$0 \leq \alpha_{i} \leq C, \forall i$$

$$Q_{ij} = y_i y_i \mathbf{x}_i^T \mathbf{x}_i$$

Revisit Decomposition Methods

- ullet While lpha is not optimal
 - 1. Select the ith element for update

2.
$$\alpha_i \leftarrow \min\left(\max\left(\alpha_i - \frac{\sum_{j=1}^l Q_{ij}\alpha_j - 1}{Q_{ii}}, 0\right), C\right)$$

- O(In) per iteration; n: # features, I: # data
- For linear SVM, define

$$\mathbf{w} \equiv \sum\nolimits_{j=1}^{l} y_j \alpha_j \mathbf{x}_j \in R^n$$

O(n) per iteration

$$\sum\nolimits_{j=1}^{I}Q_{ij}\alpha_{j}-1=\sum\nolimits_{j=1}^{I}y_{i}y_{j}\mathbf{x}_{i}^{T}\mathbf{x}_{j}\alpha_{j}-1=y_{i}\mathbf{w}^{T}\mathbf{x}_{i}-1$$

• All we need is to maintain w. If

$$\bar{\alpha}_i \leftarrow \alpha_i$$

then O(n) for

$$\mathbf{w} \leftarrow \mathbf{w} + (\bar{\alpha}_i - \alpha_i) y_i \mathbf{x}_i$$

Initial w

$$lpha = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \mathbf{0}$$

- Give up maintaining $\nabla f(\alpha)$
- Select i for update
 Sequential, random, or
 Permuting 1,..., l every l steps

Algorithms for Linear and Nonlinear SVM

Linear:

- While α is not optimal
 - 1. Select the *i*th element for update

2.
$$\bar{\alpha}_i \leftarrow \min\left(\max\left(\alpha_i - \frac{y_i \mathbf{w}^T \mathbf{x}_i - 1}{Q_{ii}}, 0\right), C\right)$$

3.
$$\mathbf{w} \leftarrow \mathbf{w} + (\bar{\alpha}_i - \alpha_i)y_i\mathbf{x}_i$$

Nonlinear:

- ullet While lpha is not optimal
 - 1. Select the *i*th element using $\nabla f(\alpha)$

2.
$$\bar{\alpha}_i \leftarrow \min\left(\max\left(\alpha_i - \frac{\sum_{j=1}^{l} Q_{ij}\alpha_j - 1}{Q_{ii}}, 0\right), C\right)$$

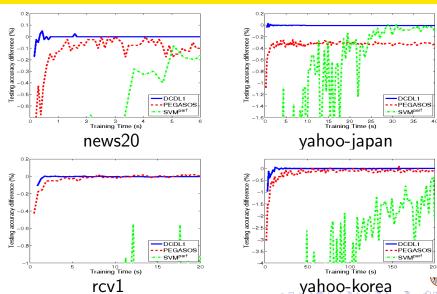
3.
$$\nabla_s f(\alpha) \leftarrow \nabla_s f(\alpha) + Q_{si}(\bar{\alpha}_i - \alpha_i), \forall s$$

Analysis

- Decomposition method for nonlinear (also linear):
 O(In) per iteration (used in LIBSVM)
- New way for linear:
 O(n) per iteration (used in LIBLINEAR)
- Faster if # iterations not / times more
- Experiments

Problem	/: # data	n: # features
news20	19,996	1,355,191
yahoo-japan	176,203	832,026
rcv1	677,399	47,236
yahoo-korea	460,554	3,052,939

Testing Accuracy versus Training Time



Outline

- Linear versus Nonlinear Classification
- Review of SVM Training
- Large-scale Linear SVM
- Discussion and Conclusions

Limitation

- A few seconds for million data; Too good to be true?
- Less effective if C is large (or data not scaled)
 Same problem occurs for training nonlinear SVMs
- But no need to use large CSame model after $C \ge \overline{C}$ [Keerthi and Lin, 2003] \overline{C} is small for document data (if scaled)

Limitation (Cont'd)

Less effective if # features small
 Should solve primal: # variables = # features
 Why not using kernels with nonlinear mappings?

Comparing Different Training Methods

- $O(\ln)$ versus O(n) per iteration
- Generally, the new method for linear is much faster
 Especially for document data
- But can always find weird cases where LIBSVM faster than LIBLINEAR
- Apply the right approach to the right problem is essential
- One must be careful on comparing training algorithms

Software Issue

- Large data ⇒ may need different training strategies for different problems
- But we pay the price of complicating software packages
- The success of LIBSVM and SVM^{light}
 Simple and general
- They cover both linear/nonlinear
- General versus special: always an issue

Other Methods for Linear SVM

• w is the key to reduce $O(\ln)$ to O(n) per iteration

$$\mathbf{w} = \sum\nolimits_{j=1}^{l} y_j \alpha_j \mathbf{x}_j \in R^n$$

- Many optimization methods can be used
- We can now solve primal: **w** not infinite any more

$$\min_{\mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{I} \max (0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

We used decomposition method as an example as it works for both linear and nonlinear
 Easily see the striking difference with/without w

Other Linear Classifiers

 Logistic regression, maximum entropy, conditional random fields (CRF)

All linear classifiers

- In the past, SVM training is considered very different from them
- For the linear case, things are very related
- Many interesting findings; but no time to show details

What if Data Are Even Larger?

- We see I/O costs more than computing
- Large-scale document classification on a single computer essentially a solved problem
- Challenges:
 What if data larger than computer RAM?
 What if data distributedly stored?
- Document classification in a data center environment is an interesting research direction

Conclusions

- For certain problems, linear classifiers as accurate as nonlinear, and more efficient for training/testing
- However, we are not claiming you shouldn't use kernels any more
- For large data, right approaches are essential
 Machine learning researchers should clearly tell people when to use which methods
- You are welcome to try our software http://www.csie.ntu.edu.tw/~cjlin/libsvm http://www.csie.ntu.edu.tw/~cjlin/liblinear

